001     1040618
005     20250811202235.0
024 7 _ |a 10.1140/epjp/s13360-025-06046-0
|2 doi
024 7 _ |a 10.34734/FZJ-2025-01967
|2 datacite_doi
024 7 _ |a WOS:001417585000003
|2 WOS
037 _ _ |a FZJ-2025-01967
082 _ _ |a 530
100 1 _ |a Schmidt, Norberto Sebastián
|0 P:(DE-Juel1)192138
|b 0
|e Corresponding author
245 _ _ |a Monte Carlo simulations of cold neutron spectra for various para- and ortho-hydrogen ratios using different codes and nuclear data libraries
260 _ _ |a Heidelberg
|c 2025
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742472779_13558
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This work compares simulated and measured neutron time-of-flight spectra for a cold neutron moderator with varyingpara-hydrogen concentrations (25%, 50%, 90% and 99.9%) embedded in a polyethylene thermal moderator. The primary neutronsare generated from the interaction of 45MeV protons with a tantalum target. The simulations were performed using several MonteCarlo codes (MCNP, PHITS, McStas, VITESS, and KDSource) together with nuclear data from the ENDF/B-VII.1 and JENDL−5.0libraries. The simulated primary neutron yields had deviations from experimental measurements ranging from 0.3 to 16% dependingon the code and the nuclear data used. The neutron moderation in the para-hydrogen moderator coupled with a neutron guide wasthen modeled. The neutron time distribution was measured by a 3He detector at the end of the guide. Comparison with experimentaldata showed good agreement, with relative differences of less than 15%. For the 99.9% para-hydrogen concentration, simulationswith JENDL−5.0 were in better agreement with the experimental data, while ENDF-B/VII.1 showed better agreement for the 25%para-hydrogen case. The analysis of the results obtained provides insights into the strengths and limitations of each Monte Carlo codeand nuclear data library combination. The observed discrepancies were analyzed, and possible sources of error were also identified.The analytical procedure followed in this work will help to improve the accuracy and reliability of neutron cold moderator design.
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 0
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
650 2 7 |a Instrument and Method Development
|0 V:(DE-MLZ)SciArea-220
|2 V:(DE-HGF)
|x 0
650 1 7 |a Instrument and Method Development
|0 V:(DE-MLZ)GC-2002-2016
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)NOSPEC-20140101
|5 EXP:(DE-MLZ)NOSPEC-20140101
|e No specific instrument
|x 0
700 1 _ |a Schwab, Alexander
|b 1
700 1 _ |a Li, Jingjing
|b 2
700 1 _ |a Rücker, Ulrich
|b 3
700 1 _ |a Zakalek, Paul
|b 4
700 1 _ |a Mauerhofer, Eric
|b 5
700 1 _ |a Dawidowski, Javier
|b 6
700 1 _ |a Gutberlet, Thomas
|b 7
773 _ _ |a 10.1140/epjp/s13360-025-06046-0
|g Vol. 140, no. 2, p. 114
|0 PERI:(DE-600)2595693-0
|n 2
|p 114
|t The European physical journal / Plus
|v 140
|y 2025
|x 2190-5444
856 4 _ |u https://juser.fz-juelich.de/record/1040618/files/Schmidt_EPJPLus_2025.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1040618
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192138
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-HBS-20180709
|k JCNS-HBS
|l High Brilliance Source
|x 2
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)JCNS-HBS-20180709
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21