001040621 001__ 1040621 001040621 005__ 20250512115726.0 001040621 0247_ $$2doi$$a10.1029/2024JA033429 001040621 0247_ $$2ISSN$$a0196-6928 001040621 0247_ $$2ISSN$$a0148-0227 001040621 0247_ $$2ISSN$$a2156-2202 001040621 0247_ $$2ISSN$$a2169-9380 001040621 0247_ $$2ISSN$$a2169-9402 001040621 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-01970 001040621 0247_ $$2WOS$$aWOS:001467227200001 001040621 037__ $$aFZJ-2025-01970 001040621 041__ $$aEnglish 001040621 082__ $$a520 001040621 1001_ $$0P:(DE-HGF)0$$aKogure, Masaru$$b0$$eCorresponding author 001040621 245__ $$aCoincident/Simultaneous Observations of Stratospheric Concentric Gravity Waves and Concentric Traveling Ionospheric Disturbances Over the Continental U.S. in 2022 001040621 260__ $$aHoboken, NJ$$bWiley$$c2025 001040621 3367_ $$2DRIVER$$aarticle 001040621 3367_ $$2DataCite$$aOutput Types/Journal article 001040621 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745847832_9746 001040621 3367_ $$2BibTeX$$aARTICLE 001040621 3367_ $$2ORCID$$aJOURNAL_ARTICLE 001040621 3367_ $$00$$2EndNote$$aJournal Article 001040621 520__ $$aThis study examines the seasonal distributions of simultaneous stratospheric concentric gravity waves (GWs) observed by the Atmospheric Infrared Sounders and concentric traveling ionospheric disturbances (TIDs) detected by the ground-based Global Navigation Satellite System Total Electron Content observations over the U.S. in 2022, to illustrate the mesoscale vertical coupling between the lower atmosphere and the ionosphere. We compared epicenters of GWs and TIDs in the stratosphere and ionosphere with tropospheric weather conditions and background winds in the thermosphere. Epicenters of concentric TIDs associated with stratospheric concentric GWs correspond to areas with high convective available potential energy over the central to eastern U.S. (∼60–110°W) in summer and over the southern U.S. (south of ∼40°) in spring and fall. Conversely, in fall to spring, epicenters over the northern U.S. (north of ∼40°) appeared south of regions with high extratropical cyclone activity. These findings suggest that convection was a primary source of concentric GWs driving TIDs over the continental U.S. during all four seasons, although the specific weather phenomena associated with the convection varied by season. Convection over the central to eastern U.S. in summer and the southern U.S. in spring could be linked to thunderstorms. In contrast, convection over the northern U.S. from fall through spring was likely linked to extratropical cyclones. We also found that concentric TIDs were linked to 66% of the stratospheric concentric GW events (195 events in total), underscoring the significant role of convection as a source of TIDs in the lower atmosphere and its contribution to the vertical coupling. 001040621 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0 001040621 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 001040621 7001_ $$0P:(DE-HGF)0$$aYue, Jia$$b1 001040621 7001_ $$0P:(DE-HGF)0$$aChou, Min-Yang$$b2 001040621 7001_ $$0P:(DE-HGF)0$$aLiu, Huixin$$b3 001040621 7001_ $$0P:(DE-HGF)0$$aOtsuka, Yuichi$$b4 001040621 7001_ $$0P:(DE-HGF)0$$aRandall, Cora E$$b5 001040621 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b6 001040621 7001_ $$0P:(DE-HGF)0$$aHozumi, Yuta$$b7 001040621 773__ $$0PERI:(DE-600)3094181-7$$a10.1029/2024JA033429$$gVol. 130, no. 3, p. e2024JA033429$$n3$$pe2024JA033429$$tJGR / Space physics (0196-6928)$$v130$$x2169-9402$$y2025 001040621 8564_ $$uhttps://juser.fz-juelich.de/record/1040621/files/JGR%20Space%20Physics%20-%202025%20-%20Kogure%20-%20Coincident%20Simultaneous%20Observations%20of%20Stratospheric%20Concentric%20Gravity%20Waves%20and.pdf$$yOpenAccess 001040621 909CO $$ooai:juser.fz-juelich.de:1040621$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 001040621 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b6$$kFZJ 001040621 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 001040621 9141_ $$y2025 001040621 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-11 001040621 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-11 001040621 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 001040621 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ GEOPHYS RES-SPACE : 2022$$d2024-12-11 001040621 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2024-12-11$$wger 001040621 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-11 001040621 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-11 001040621 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-11 001040621 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 001040621 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-11 001040621 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-11 001040621 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-11 001040621 920__ $$lyes 001040621 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0 001040621 980__ $$ajournal 001040621 980__ $$aVDB 001040621 980__ $$aUNRESTRICTED 001040621 980__ $$aI:(DE-Juel1)JSC-20090406 001040621 9801_ $$aFullTexts