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Background: Hand grip strength (HGS) is a cost-efficient and reliable measure in clinical
practice and is even recognized by the WHO as key marker for vitality in aging populations
[1]. While HGS reflects overall strength of a person, it is also closely related to physical
disability, cognitive decline and mortality [2,8,5]. Despite its significance, the neural
mechanisms governing HGS remain unclear. Our study systematically developed and
evaluated the combination of neuroimaging-derived features with machine learning models to
predict HGS. The aim was to identify models that are solely driven by brain information free
from confounding factors such as sex, age and body composition to gain insights in the neural
underpinnings of HGS.

Objectives: see Background.

Question: see Background.

Methods: We leveraged large-scale data from the UK Biobank [3] (N=22554-33136) to
predict HGS from 9 neuroimaging-derived feature categories: Gray matter volume (GMV)
[10], fALFF, LCOR, GCOR [7] (each 1088 ROIs), cortical thickness, white surface area, white
matter hyperintensity (WMH) with PSMD [4], gray white contrast and a collection of 6 white
matter microstructural characteristics (Fractional Anisotropy (FA), Mean Diffusivity (MD), free
water volume fraction (ISOVF), orientation dispersion index (OD), intra-cellular volume
fraction (ICVF), diffusion tensor mode (MO)). We used 80% of the data to independently train
7 algorithms for each of the 9 categories in a 5-fold (nested) cross validation (CV) (Fig. 1A).
Features were univariately, linearly adjusted for six confounder setups (Fig. 1B). A final
model was trained on the entire training data to predict HGS in 20% unseen subjects. The
same analyses were performed on sex-split data to rule out non-linear sex influences on
predictions. For the six most successful confound-free models we employed explainable Al
methods (SHAP [6]) to determine the neuroimaging information predictive of HGS.

Results: The sex-mixed sample analysis identified GMV, white surface, fALFF and white
matter as most predictive features (Fig. 1B). Predictability decreased noticeably when
adjusting for sex and age, but didn’t drop further when removing more confounders (Fig. 1B).
Non-linear algorithms performed better than linear ones in the sex-age-adjusted scenario
(Fig. 1B purple vs. blue). Non-linear approaches also showed superior performance in "sex-
split" models, even after controlling for age (Fig. 1D). GMV, fALFF and white matter were
most resilient for the very stringent confounder control (Fig. 1D). For these three feature
categories XGBoost excelled other non-linear algorithms, leading to the six (3 per sex) best
models: r(m)GMV = 0.18, r(f)GMV = 0.20; r(m)fALFF = 0.18, r(f)fALFF = 0.23; r(m)WM = 0.21,
r(f)um = 0.23 (Fig. 1F). Interpretative SHAP analyses reveiled GMV’s importance in anterior
globus pallidus (Fig. 2A, B) and microstructural characteristics of sensory input bundles to the
thalamus and thalamo-cortical tracts (Fig. 2E, F) as neural correlates for successful,
confound-free HGS predictions.

Conclusions: Our exhaustive evaluation of ML models and features from diverse MRI
modalities identified six effective models for predicting HGS under stringent confounding
constraints. Our results are in line with insights from functional neuroanatomy and bridge a
gap between the micro- and macrolevel neuroscientific understanding of HGS as a vitality
marker.
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Fig. 1 - Comparison of ML models for HGS
prediction from imaging derived phenotypes
independent of confounder information. A)
Scheme of the ML workflow. B) Overview of|
models’ CV-performances. C) Classification of]

sex for determination of non-linear sex-confound

.[residuals. D) Same as B) for sex-split samples
(CV & OOS accuracies). E) OOS model

performances for most conservative confound

scenario. F) Best performing XGBoost models.
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Fig. 2 - SHAP Feature importance
" lanalysis for the best performing
sex-split and age regressed
models. A) & B) XGBoost, GMV
:i/model feature relevance with brain
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w . |respectively. Top left shows the

mean absolute SHAP values. Top
right depicts the relation of the SHAP
values (feature importance) with the
actual feature value. The overlay
scatter plot reveals the nature of the
relationship between the most
important feature’s value (x-axis) and
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