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Background: Hand grip strength (HGS) is a cost-efficient and reliable measure in clinical 
practice and is even recognized by the WHO as key marker for vitality in aging populations 
[1]. While HGS reflects overall strength of a person, it is also closely related to physical 
disability, cognitive decline and mortality [2,8,5]. Despite its significance, the neural 
mechanisms governing HGS remain unclear. Our study systematically developed and 
evaluated the combination of neuroimaging-derived features with machine learning models to 
predict HGS. The aim was to identify models that are solely driven by brain information free 
from confounding factors such as sex, age and body composition to gain insights in the neural 
underpinnings of HGS.
Objectives: see Background.
Question: see Background.
Methods: We leveraged large-scale data from the UK Biobank [3] (N=22554-33136) to 
predict HGS from 9 neuroimaging-derived feature categories: Gray matter volume (GMV) 
[10], fALFF, LCOR, GCOR [7] (each 1088 ROIs), cortical thickness, white surface area, white 
matter hyperintensity (WMH) with PSMD [4], gray white contrast and a collection of 6 white 
matter microstructural characteristics (Fractional Anisotropy (FA), Mean Diffusivity (MD), free 
water volume fraction (ISOVF), orientation dispersion index (OD), intra-cellular volume 
fraction (ICVF), diffusion tensor mode (MO)). We used 80% of the data to independently train 
7 algorithms for each of the 9 categories in a 5-fold (nested) cross validation (CV) (Fig. 1A). 
Features were univariately, linearly adjusted for six confounder setups (Fig. 1B). A final 
model was trained on the entire training data to predict HGS in 20% unseen subjects. The 
same analyses were performed on sex-split data to rule out non-linear sex influences on 
predictions. For the six most successful confound-free models we employed explainable AI 
methods (SHAP [6]) to determine the neuroimaging information predictive of HGS.
Results: The sex-mixed sample analysis identified GMV, white surface, fALFF and white 
matter as most predictive features (Fig. 1B). Predictability decreased noticeably when 
adjusting for sex and age, but didn’t drop further when removing more confounders (Fig. 1B). 
Non-linear algorithms performed better than linear ones in the sex-age-adjusted scenario 
(Fig. 1B purple vs. blue). Non-linear approaches also showed superior performance in "sex-
split" models, even after controlling for age (Fig. 1D). GMV, fALFF and white matter were 
most resilient for the very stringent confounder control (Fig. 1D). For these three feature 
categories XGBoost excelled other non-linear algorithms, leading to the six (3 per sex) best 
models: r(m)GMV = 0.18, r(f)GMV = 0.20; r(m)fALFF = 0.18, r(f)fALFF = 0.23; r(m)WM = 0.21, 
r(f)WM = 0.23 (Fig. 1F). Interpretative SHAP analyses reveiled GMV’s importance in anterior 
globus pallidus (Fig. 2A, B) and microstructural characteristics of sensory input bundles to the 
thalamus and thalamo-cortical tracts (Fig. 2E, F) as neural correlates for successful, 
confound-free HGS predictions.
Conclusions: Our exhaustive evaluation of ML models and features from diverse MRI 
modalities identified six effective models for predicting HGS under stringent confounding 
constraints. Our results are in line with insights from functional neuroanatomy and bridge a 
gap between the micro- and macrolevel neuroscientific understanding of HGS as a vitality 
marker.
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