001040669 001__ 1040669 001040669 005__ 20250318202209.0 001040669 037__ $$aFZJ-2025-01996 001040669 1001_ $$0P:(DE-Juel1)208590$$aCorkett, Alexander$$b0$$ufzj 001040669 1112_ $$a(Digital) Institute Seminar JCNS-2$$cForschungszentrum Jülich, JCNS + online$$wGermany 001040669 245__ $$aTransition-metal carbodiimides$$f2025-03-20 - 001040669 260__ $$c2025 001040669 3367_ $$033$$2EndNote$$aConference Paper 001040669 3367_ $$2DataCite$$aOther 001040669 3367_ $$2BibTeX$$aINPROCEEDINGS 001040669 3367_ $$2ORCID$$aLECTURE_SPEECH 001040669 3367_ $$0PUB:(DE-HGF)31$$2PUB:(DE-HGF)$$aTalk (non-conference)$$btalk$$mtalk$$s1742280271_29925$$xInvited 001040669 3367_ $$2DINI$$aOther 001040669 520__ $$aTransition-metal carbodiimides, with the general formula Mx(NCN)y, are gaining renewed interest due to their excellent electrochemical and photocatalytic properties.[1-2] These quasi-binary compounds can be seen as nitrogen-containing versions of MxOy oxides generated by the isovalent replacement of O2− by the extended carbodiimide −N=C=N− or cyanamide N≡C−N2− dianions. Indeed, their crystal structures show similarities to oxides, with a clear propensity for close-packed anionic arrangements. However, the lower electronegativity of NCN compared to O, along with a greater degree of charge delocalization, results in phases with enhanced covalent character and reduced band gaps.A natural development, therefore, is to expand the range of transition-metal carbodiimides to include ternary and higher-order compounds, which may lead to new or improved properties. In this talk, I will discuss the synthesis of the first non-binary transition-metal carbodiimides, analyse their crystal structures, with the support of DFT calculations, and investigate their diverse physicochemical properties and potential applications. [3-5]References[1] M. T. Sougrati, A. Darwiche, X. Liu, A. Mahmoud, R. P. Hermann, S. Jouen, L. Monconduit, R. Dronskowski,* L. Stievano,* Angew. Chem. Int. Ed., 2016, 55, 5090[2] A. J. Corkett, O. Reckeweg, R. Pöttgen, R. Dronskowski*, Chem. Mater., 2024, 36, 9107–9125.[3] A. J. Corkett,* R. Dronskowski, Dalton Trans., 2019, 48, 150[4] A. J. Corkett,* Z. Chen, C. Ertural, A. Slabon, R. Dronskowski*, Inorg. Chem., 2022, 61, 18221–18228[5] H. Bourakhouadar, J. Hempelmann, J. van Leusen, A. Drichel, L. Bayarjargal, A. Koldemir, M. K. Reimann, R. Pöttgen, A. Slabon, A. J. Corkett*, R. Dronskowski*, J. Am. Chem. Soc., 2024, 146 (38), 26071–26080 001040669 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0 001040669 536__ $$0G:(DE-HGF)POF4-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)$$cPOF4-6G4$$fPOF IV$$x1 001040669 909CO $$ooai:juser.fz-juelich.de:1040669$$pVDB 001040669 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)208590$$aForschungszentrum Jülich$$b0$$kFZJ 001040669 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0 001040669 9131_ $$0G:(DE-HGF)POF4-6G4$$1G:(DE-HGF)POF4-6G0$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vJülich Centre for Neutron Research (JCNS) (FZJ)$$x1 001040669 9141_ $$y2025 001040669 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0 001040669 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1 001040669 980__ $$atalk 001040669 980__ $$aVDB 001040669 980__ $$aI:(DE-Juel1)JCNS-2-20110106 001040669 980__ $$aI:(DE-82)080009_20140620 001040669 980__ $$aUNRESTRICTED