001     1040669
005     20250318202209.0
037 _ _ |a FZJ-2025-01996
100 1 _ |a Corkett, Alexander
|0 P:(DE-Juel1)208590
|b 0
|u fzj
111 2 _ |a (Digital) Institute Seminar JCNS-2
|c Forschungszentrum Jülich, JCNS + online
|w Germany
245 _ _ |a Transition-metal carbodiimides
|f 2025-03-20 -
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Talk (non-conference)
|b talk
|m talk
|0 PUB:(DE-HGF)31
|s 1742280271_29925
|2 PUB:(DE-HGF)
|x Invited
336 7 _ |a Other
|2 DINI
520 _ _ |a Transition-metal carbodiimides, with the general formula Mx(NCN)y, are gaining renewed interest due to their excellent electrochemical and photocatalytic properties.[1-2] These quasi-binary compounds can be seen as nitrogen-containing versions of MxOy oxides generated by the isovalent replacement of O2− by the extended carbodiimide −N=C=N− or cyanamide N≡C−N2− dianions. Indeed, their crystal structures show similarities to oxides, with a clear propensity for close-packed anionic arrangements. However, the lower electronegativity of NCN compared to O, along with a greater degree of charge delocalization, results in phases with enhanced covalent character and reduced band gaps.A natural development, therefore, is to expand the range of transition-metal carbodiimides to include ternary and higher-order compounds, which may lead to new or improved properties. In this talk, I will discuss the synthesis of the first non-binary transition-metal carbodiimides, analyse their crystal structures, with the support of DFT calculations, and investigate their diverse physicochemical properties and potential applications. [3-5]References[1] M. T. Sougrati, A. Darwiche, X. Liu, A. Mahmoud, R. P. Hermann, S. Jouen, L. Monconduit, R. Dronskowski,* L. Stievano,* Angew. Chem. Int. Ed., 2016, 55, 5090[2] A. J. Corkett, O. Reckeweg, R. Pöttgen, R. Dronskowski*, Chem. Mater., 2024, 36, 9107–9125.[3] A. J. Corkett,* R. Dronskowski, Dalton Trans., 2019, 48, 150[4] A. J. Corkett,* Z. Chen, C. Ertural, A. Slabon, R. Dronskowski*, Inorg. Chem., 2022, 61, 18221–18228[5] H. Bourakhouadar, J. Hempelmann, J. van Leusen, A. Drichel, L. Bayarjargal, A. Koldemir, M. K. Reimann, R. Pöttgen, A. Slabon, A. J. Corkett*, R. Dronskowski*, J. Am. Chem. Soc., 2024, 146 (38), 26071–26080
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (FZJ) (POF4-6G4)
|0 G:(DE-HGF)POF4-6G4
|c POF4-6G4
|f POF IV
|x 1
909 C O |o oai:juser.fz-juelich.de:1040669
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)208590
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Großgeräte: Materie
|1 G:(DE-HGF)POF4-6G0
|0 G:(DE-HGF)POF4-6G4
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Jülich Centre for Neutron Research (JCNS) (FZJ)
|x 1
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a talk
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21