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The default mode network (DMN) isimplicated in many aspects of complex
thought and behavior. Here, we leverage postmortem histology and in vivo
neuroimaging to characterize the anatomy of the DMN to better understand
itsrole ininformation processing and cortical communication. Our results
show that the DMN is cytoarchitecturally heterogenous, containing
cytoarchitectural types that are variably specialized for unimodal,
heteromodal and memory-related processing. Studying diffusion-based
structural connectivity in combination with cytoarchitecture, we found
the DMN contains regions receptive to input from sensory cortexand a
core thatisrelatively insulated from environmental input. Finally, analysis
of signal flow with effective connectivity models showed that the DMN is
unique amongst cortical networks in balancing its output across the levels
of sensory hierarchies. Together, our study establishes an anatomical
foundation from which accounts of the broad role the DMN plays in human
brain function and cognition can be developed.

The default mode network (DMN) is a distributed set of brain regions
in the frontal, temporal and parietal lobes with strongly correlated
fluctuations'. It isamong the most influential, yet challenging, discover-
ies of modern neuroscience. Theories on the role of the DMN initially
focused on internally oriented cognition and its antagonism with
task-positive networks*?, but increasing evidence shows DMN activity
is related to the content of external stimuli*® and externally oriented
task demands®®. Additionally, DMN subregions can cofluctuate with
regions of task-positive networks®'°. Thus, the DMN poses a conceptual

challenge: how can a neural system be involved in so many different
states, particularly as many seem antagonistic, such as perceptually
driven decision-making" and perceptually decoupled cognition'*?

Recent perspectives have argued that resolving the role of the
DMN in cognition depends on understandingits anatomy>"'* because
neuroanatomical insights can narrow the search space for conceivable
theoretical accounts of its function. Although the DMN is typically
defined on functional grounds (thatis, strong resting-state functional
connectivity and relatively lower activity during externally oriented
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tasks), its subregions are also connected by long-range tracts"*® and
each subregion is maximally distant from primary sensory and motor
areas'’. This topography may allow activity in the DMN to be decoupled
from perception of the here and now”, as neural signals are trans-
formedincrementally across cortical areas fromthose capturing details
of sensory input toward more abstract features of the environment**?",
These observations suggest neural activity in the DMN has the poten-
tial to be both distinct from sensory input, while also incorporating
abstractrepresentations of the external world. This could explain the
network’s involvement across diverse contexts”. Although this topo-
graphical perspective, in principle, accounts for its broad involvement
in human cognition, we lack a detailed explanation of how the neural
circuitry in the DMN enables this hypothesized role.

Giventhe highly distributed nature of the subregions of the DMN,
itislikely tobe heterogeneousin terms of its microarchitecture; how-
ever, the specific nature of this heterogeneity remains unknown. On
the onehand, itis conceivable that regional differencesinthe DMN are
most pronounced between subregions situated in different lobes, with
different white matter tracts connecting each subregion®?, On the
other hand, an increasing literature has emphasized the presence of
large-scale cytoarchitectural gradients across the cortex, suggesting
a microstructural differentiation between sensory and transmodal
regions as well as long distance similarities in microarchitectural
profiles**. Such large-scale cytoarchitectural gradients can also
underlie organization within a subregion such as the mesiotemporal
lobe and insula®*”’. Thereby, fine-grained intraregional differentia-
tion is another important contributor to heterogeneity in the DMN.
Fine-grained patterns of differentiation need not be gradients, how-
ever. Primate tract-tracing and precision functional imaging studies
have revealed interdigitation of connectivity within regions of the
DMN, such as the prefrontal cortex and the inferior parietal lobe**’.
Thus, whilelaminar connectivity across the cortex follows consistent
rules®®, microstructure and connections can be organized locally ina
range of patterns fromrelatively smooth gradients to checkered inter-
digitation. Recent innovations in whole-brain human histology and
quantitative in vivo magnetic resonance imaging (MRI) at high fields
have made it possible to determine how these various findings mani-
festinthe DMN, enabling the derivation of an anatomically grounded
blueprint of its organization.

The microarchitectural make-up of the DMN ultimately influences
how it processes information because microarchitecture influences
boththeintrinsic computation within aregion and its connectivity to
otherregions—the two sides of functional specialization. Forinstance,
the degree of laminar differentiation, which variesinagraded manner
across the cortex™, reflects different specializations of the underlying

cortical microcircuits, ranging from externally focused sensory areas
through unimodal and heteromodal cortex to amodal agranular
areas’, Patterns of projections also vary systematically along this
gradient®>®, forming a hierarchical architecture of cortico-cortical
tractsspanning from primary sensory areas to the prefrontal cortex and
mesiotemporal lobe* %, Whether a hierarchy constrains connectivity
within association cortex (such as the DMN) has been questioned*"*,
Instead, the DMN may comprise densely interconnected yet spatially
distributed circuits, operating in parallel to the canonical sensory
hierarchies”. Distinguishing between hierarchical and nonhierarchical
schemas relies upon characterizing how signal flows with respect to
the underlying microarchitecture. To this end, state-of-the-art con-
nectivity mapping approaches that emphasize directed signal flow,
including recently introduced measures of navigation efficiency (E,,,)
of structural connections® and regression dynamic causal modeling
(DCM) (rDCM) of functional signals*®*, can help adjudicate between
different theoretical perspectives. In combination with data-driven
microarchitectural mapping, these approaches can elucidate how
cortical anatomy constrains the communication of the DMN, shed-
ding light on the perhaps unique organizational principles of human
association cortex.

Here, we capitalize on a combination of postmortem histology
and multimodalin vivo neuroimaging to map DMN microarchitecture
and examine how that microarchitecture contributes to its structural
and functionalembeddinginthebrain. Inparticular, we leverage (1) an
established atlas of cytoarchitectural taxonomy (cortical types)**, (2)
whole-brain three-dimensional (3D) histology for fine-grained cyto-
architectonic mapping*>** and (3) multimodal in vivo neuroimaging
for approximations of structural wiring and functional flow. Finally,
(4) using high-field 7-T MRI, we demonstrate how the discovered rela-
tionships between microarchitecture, connectivity and function of
the DMN exist within an individual brain.

Results

Cytoarchitectural heterogeneity

The DMNis generally agreed to encompass subsections of (1) the para-
hippocampal cortex, (2) precuneus and posterior cingulate cortex, (3)
acaudalregion of the inferior parietal lobule, (4) the middle temporal
cortex, (5) the inferior fronto-lateral cortex, and (6) a region of the
prefrontal cortex, covering primarily the superior frontal gyrus and
anterior cingulate, aswell as asmall part of the middle frontal gyrus>.
Throughout our primary analyses, we used the most common atlas of
the default mode network’ (Fig. 1a) and identified six spatially contigu-
oussubregions withineach hemisphere that correspond to the above-
mentioned regions (see Supplementary Table 1for Von Economo areas

Fig. 1| Cytoarchitectural heterogeneity of the DMN. a, Distribution of

cortical types within the DMN. Upper left, the most common atlas of the

DMN' (used in primary analyses) is shown on the cortical surface. Lower left,
cytoarchitectonic atlas of cortical types***. Upper middle, histogram depicting
frequency of cortical types within the DMN. The plus sign indicates significant
over-representation and the minus sign, under-representation, relative to
whole-cortex proportions. Lower middle, schematic highlighting prominent
features that vary across cortical types, including the location/size of largest
pyramidal neurons (triangles), thickness of layer 1V, existence of sublayers in V-VI
(gray dashed lines), regularity of layer I/l boundary (straightness of line). Kon,
koniocortical; Eul, eulaminate; Dys, dysgranular; Ag, agranular. Right, circular
plotrepresenting the spread of the DMN from externally to internally driven
cortical types. The percentage of each type within the DMN is depicted by the
amount of the respective line (not the areain between lines) covered by the red
shaded violin. Similar schematics may be found in extant literature'**>®,

b, Three-dimensional reconstructed sliced and stained human brain. Coronal
slices of cell-body-stained sections (20-um thick, n = 7,404) were reconstructed
into a3D human brain model, BigBrain*. ¢, Example cortical patch shows
depth-wise variations in cell-body-staining in BigBrain. d, Cytoarchitectural

differentiation within the DMN. Principal eigenvector (E1) projected onto the
inflated BigBrain surface shows the patterns of cytoarchitectural differentiation
within the DMN. PHPC, parahippocampus; Prec., precuneus; IP, inferior parietal;
MT, middle temporal; IF, inferior frontal; PFC, prefrontal cortex (superior
frontal and anterior cingulate cortex). e, Cytoarchitectural profiles. Line plots
represent cell-body-staining intensity by intracortical depth (from pial to white
matter (wm) boundary) at different points along E1. Cortical points with lower
E1(blue) have peaked cellular density in mid-deep cortical layers, indicative

of pronounced laminar differentiation, whereas cortical points with higher E1
(red) have more consistent cellular density across cortical layers, illustrating
lower laminar differentiation. f, Cytoarchitectural landscapes of subregions.

(i) Topography of E1in each subregion shown as 3D surface plots, with E1 as the
zaxis. Thexandy axes are defined by Isomax flattening of each subregion. (ii)
Proportion of variance in E1 explained by spatial axes (x,y) for each subregion
and for models of increasing complexity (second- to fourth-order polynomial
regression). (iii) Waviness of E1in each subregion. Upper and lower bounds of
eachbox represent the adjusted R for each hemisphere (n =2), and the center
point is the adjusted R? averaged across hemispheres.
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and Schaefer parcels encompassed by each subregion). In supplemen-
tary analyses, we show the replicability of key findings with alternative
delineations of the DMN, based on deactivations during externally
oriented tasks®, independent component analysis of task-based func-
tional MRI(fMRI)*, and individualized Bayesian modeling of functional
communities*.

The most noticeable difference in cytoarchitecture across corti-
cal regions is the degree of laminar differentiation, that is, the distin-
guishability and thickness of layers. Degree of laminar differentiation
is highest in primary sensory areas and decreases along the cortical
mantle in agraded manner, reaching a low in agranular cortex, which
neighbors hippocampal and piriform allocortex. This gradient of
laminar differentiation is synopsized by six cortical types, defined
originally by Von Economo?®**? (Fig. 1a). Patterns of projections also
vary systematically along this gradient®**, forming a hierarchical
architecture spanning primary sensory areas to the prefrontal cortex
and hippocampus®*~°. The cortical types (synonymous with levels of
sensory hierarchies) are hypothesized to reflect different specializa-
tions of the underlying cortical microcircuits, ranging from externally
focused sensory areas through unimodal and heteromodal cortex to
agranular, paralimbic areas® . This hypothesized relationship, based
primarily on neurophysiological evidence innonhuman primates and
lesion studies inhumans®, is supported here by meta-analytical decod-
ing of the cortical types, using activation maps from thousands of fMRI
studies (Extended Data Fig.1).

Based on overlap of the DMN atlas with a cytoarchitectonic atlas
of cortical types****, we found that the DMN contains five of six cor-
tical types (Fig. 1a). This make-up was distinctive relative to other
functional networks (Extended Data Table 1, all Kolgomorov-Smirnoff
tests >0.11; P< 0.001). Indeed, pairwise comparisons showed that all
networks exhibited aunique composition of cortical types (Extended
DataFig.2). Notably, of all functional networks, the DMN contains the
mostbalanced representation of the three eulaminate types commonly
associated with processing of sensory information andits progressive
integration (eulaminate-I, -1l and -11I). In addition, the DMN contains
dysgranular and agranular cortex that are often linked to internally
generated processes such as memory and affect® (Extended Data
Fig.1). These cortical types are not represented equally within the
DMN, however (x*=1,497; P< 0.001). Approximately 90% of the DMN
is eulaminate, which is even higher than the cortex-wide rate of 84%
(Extended Data Table 1). To evaluate whether this type of cortex is
over-represented in the DMN, we compared the proportion of corti-
cal types within the DMN and within 10,000 rotated versions of the
DMN. The rotated versions are generated by randomly spinning the
functional network atlas on a spherical representation of the cortex,
providing anull distribution of outcome statistics that account for the
network’s size and distribution. In doing so, we found that the DMN
over-represents eulaminate-1 (18% increase; Py, = 0.006), classically
known as heteromodal cortex, whichis hypothesized to process infor-
mation fromseveral sensory domains® (Extended Data Fig. 1). This dis-
tinctive composition of cortical types was evident regardless of slight
alterationsto the DMN atlas (Extended Data Fig. 3). The broad range of
cortical types in the DMN, combined with the over-representation of
eulaminate-l, is consistent with arole of this network in integration of
information from several systems, including those linked to sensory
and memory processes.

Having established that the DMN contains a broad array of cor-
tical types, we next adopted a data-driven approach to character-
ize fine-grained spatial patterns of cytoarchitectural variation. We
transformed the functional network atlas' to a 3D cell-body-stained
postmortem human brain*® using specially tailored cortical registra-
tion procedures***%, Using intracortical profiles of cell-body-staining
intensity (Fig. 1c,e), we assessed cytoarchitectural variability within
the DMN, mapping cytoarchitectural variation by nonlinear manifold
learning®’ (Fig. 1d and Extended Data Fig. 4). The first eigenvector

(E1) of this manifold, hereafter referred to as the cytoarchitectural
axis, described a shift in the shape of the underlying cytoarchitectural
profiles from peaked to flat (Fig. 1e) and reflects variations in cellular
density (Fig. 1¢). The cytoarchitectural axis is anchored on one end
by unimodal eulaminate-Ill cortex (for example, retrosplenial and
posterior middle temporal) and on the other by agranular cortex (for
example, medial parahippocampus and anterior cingulate). Thus,
the endpoints of the cytoarchitectural axis are the most extreme
cortical types found within the DMN (Extended Data Fig. 4). Beyond
the endpoints, however, the cytoarchitectural axis deviates from the
gradient described by cortical types®***? (Extended Data Fig. 4). This
pattern does not discriminate subregions of the DMN or follow an
anterior-posterior gradient as seen in neuronal density*°. Instead,
we observed a mosaic of different spatial topographies across DMN
subregions, where neighboring points are sometimes distinct and
distant points are sometimes similar. Our data-driven approach thus
indicates that organization within the DMN is unlike those observed
acrosssensory hierarchies andisrelatively unconstrained by large-scale
spatial gradients®,

Acloserlook at the topography of cytoarchitecture highlights the
(dis)similarity of neighboring areas within the DMN. Given the ubiquity
of local connectivity in the cortex, topography provides important
information on the form of communication within spatially contigu-
oussubregions. Subregions of the DMN evidently vary in terms of their
cytoarchitectural topography (Fig. 1f), and we quantified these differ-
ences using two complementary measures: smoothness and waviness.
The smoothness of the microarchitectural landscape was calculated
by evaluating the proportion of variance in the cytoarchitectural axis
that could be accounted for by spatial axes. Waviness was indexed
by deviations from the mean—a common technique in mechanical
engineering® (see Extended Data Fig. 5 for simulation-based valida-
tion of these metrics). We found that subregions differ significantly in
terms of both smoothness and waviness (smoothness (second-/third-/
fourth-order, F=14.5/14.9/20.1; P < 0.004; waviness, F = 48.3; P=0.001).
Smoothness is particularly high in the parahippocampus, showing
that its cytoarchitectural axis follows a relatively smooth gradient,
as shown previously?”*, Conversely, the prefrontal cortex exhibits
especially high waviness. This pattern of frequent changes across the
cortex, back-and-forth between two contrasting properties, is remi-
niscent of the interdigitated connectivity patterns that are known to
exist within the prefrontal cortex?*?*%, This analysis establishes that
the DMN contains distinct cytoarchitectural patterns representa-
tive of two different ways that neural signals are hypothesized to be
integrated in the cortex: a mesiotemporal gradient associated with
progressive convergence of information®**, and prefrontal interdigi-
tation that enables information from disparate sources to be linked*.
Together, these metrics, further described and validated in Extended
Data Fig. 5, quantify how cytoarchitectural landscapes vary between
subregions, fromarelatively simple gradientin the parahippocampus,
well-explained by the spatial regression model and with low waviness,
to marked fluctuations in the dorsal prefrontal cortex, characterized
by high waviness and poor regression model performance.

Receivers on the periphery and aninsulated core

Next, using multimodal MRI, we explored how the variable cytoarchi-
tecture of the DMN relates to its connectivity. We hypothesized that
connectivity would covary with the cytoarchitectural axis (E1, Fig. 1d),
because propensity for connectivity increases with cytoarchitectural
similarity. Although this principle has been observed across association
and sensory regions’*®, it remains unclear how it applies specifically
to the DMN.

First, we measured communication efficiency along white matter
tracts® using diffusion MRI tractography*®. Navigation is a decentral-
ized communication strategy that is particularly suited to spatially
embedded networks, which has recently been proposed to study
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Fig. 2| Organization of DMN connectivity. a, Top, scatterplots show correlation
of cytoarchitectural (Cyto-axis) axis (E1) with average (i) structurally modeled
E,.., (i) functionally modeled input and (iii) functionally modeled output.

Each point represents anode of the DMN; rand P, rrecieq Values indicate the
statistical outcomes of two-sided product-moment correlation tests (subregion
assignment s illustrated in Extended Data Figs. 6a and 7 and Supplementary
Table1). Line plots are presented with 95% confidence interval shading.

Bottom, bar plots shows the linear correlation coefficient (r) of E1 with average
connectivity to each cortical type. The stability of the correlation coefficient
was calculated by repeating the procedure ten times, each including 90% of
datapoints. Error bars, s.d. of the r value across repetitions. Asterisks, significant
negative rvalues indicating that DMN nodes with peaked profiles have higher
E,., with externally driven cortical types and stronger input from most cortical
types. b, Multimodal model of DMN organization shows the dual character of
the DMN, including areas with convergent input and insulated areas. All points
inthe scatterplot represent units of the DMN, are colored by position along

the cytoarchitectural axis (y axis) and are organized along the x axis based on

Output strength  Degree of imbalance

weighted average of type-specific £,,,. The top 75% of functionally defined inputs
areshown. ¢, The DMN is unique amongst functional networks in balancing the
strength of output across cortical types. (i) Distributions of strength of input
from and output to each type. Colored ridge plots show probability distributions
of connectivity between the DMN and each cortical type. For functional output,
the DMN exhibits overlapping, normal distributions, whereas for functional
input, type-wise differences are evident. (ii) Comparing networks in terms of
balance of their output per type. Focusing on functional output, colored ridge
plots show distributions for all networks, illustrating more balance between
typesin the DMN. Right, Imbalance of connectivity to distinct cortical types
evaluated as the KL divergence from a null model with equal connectivity to each
type. Colored dots show the empirical KL divergence for each network and the
gray density plots show the null distribution of KL divergence values based on
10,000 spin permutations. Permutation testing indicated that the DMN is unique
among functional networks in balancing output across cortical types (that is,
imbalance lower than 95% of permutations). attn., attention network.

structural connectivity and structure-function relationships in the
human brain®® (see Methods for further description and motivation).
We found that the propensity to communicate with other cortical
areas (indexed by average E,,,*’) varied within the DMN (coefficient
of variation = 18%). Areas toward one end of the cytoarchitectural
axis of the DMN, specifically those with more peaked cytoarchitec-
tural profiles, such as the anterior cingulate and more anterior aspect
of the precuneus, exhibited more efficient communication with
the rest of the cortex (r=-0.60; P, = 0.001; Fig. 2a(i)). This effect
was particularly pronounced for communication with perceptually
coupled cortical types (koniocortical/eulaminate-lll/eulaminate-II;
r=-0.63/-0.60/-0.38, P, < 0.025; Fig. 2a(i)). Thus, the cytoarchitec-
tural organization of the DMN also correlates with spatial patterns of
tract-based communication, especially between the DMN and cortical
areas engaged in sensory processing. This pattern of covariation was
specific to connectivity between the DMN and non-DMN areas, and
did not apply to connectivity within the DMN (Extended Data Fig. 6),
suggesting that inter- and intranetwork connectivity may involve

distinct rules of organization that are embedded within in more gen-
eral, cortex-wide principles, such as the structural model*.

Next, we examined the consequences of this structural organiza-
tion on the functional flow of information in the cortex. We applied
rDCM—a scalable generative model of effective connectivity*°
resting-state fMRI timeseries of 400 isocortical parcels, covering
the entire isocortex (Methods). In the current work, we conducted
awhole-cortexrDCM, then selected DMN parcels as targets for func-
tionalinput analyses and DMN parcels as seeds for functional output
analyses. Functionally estimated input and output varied within the
DMN (coefficient of variation = 24% and 29%, respectively). Average
strength of input was significantly higher to those areas of the DMN
with more peaked cytoarchitectural profiles (r=-0.54; P, < 0.001),
thatis, those regions that were also highlighted as having more effi-
cient communication with the rest of the cortex in the above struc-
tural connectivity analysis (see Extended Data Fig. 7 for acomparison
of cortical maps). Examination of type-specific connectivity showed
limited discrimination between cortical types, whereby inputs from
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dataset (BigBrain), revealing similar patterns. (i) Primary histological axis,
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(i) Parahippocampal (left) and prefrontal (right) landscapes. (ii) Landscape
waviness. The parahippocampus exhibited a graded transition from high-to-

Cortical types
(externally to internally driven)

Microarchitectural
axis of the DMN (E1)

low E1, reflected by high smoothness and low waviness, whereas the prefrontal
cortex exhibited an undulating landscape with high waviness. For individual
replications (n = 8), bars show the median across subjects and error bars depict
the maximum and minimum. ¢, Communication efficiency and functional

input decrease along the microstructural axis of the DMN. Using individual-
specific measures, we consistently found that cortical points with higher E1 were
associated with (i) lower average E,,,,, (ii) especially lower £,,, with perceptually
coupled cortical types and (iii) lower functional input. Line plots are presented
with 95% confidence interval shading. Column plots with error bars, for
individual replications, show mean + s.d. across subjects (n = 8).

externally and internally focused cortical types were all concentrated
on DMN areas with peaked cytoarchitectural profiles (Fig. 2a(ii), (iii)
and Supplementary Table 2). Thus, several inputs converge on a sub-
set of DMN subunits, such as inferior parietal and precuneus areas,
whereas asubset of DMN subunits—those with flat cytoarchitectural
profiles—remained relatively insulated from cortical input. Output
did not covary with the cytoarchitectural axis (r = —0.18; P, = 0.064;
Fig.2a(ii),(iii)). These findings were consistentin areplication data-
setand whenincluding subcortical structures and the hippocampus
in the model (Supplementary Table 2). Together, these analyses
suggest that the DMN comprises two microarchitecturally distinct
subsets—one with highly efficient tract-based communication with
cortical areas implicated in perception and receiving convergent
input fromacross all levels of sensory hierarchies, and another that
exhibits less efficient tract-based communication with the rest of
the cortex andis relatively insulated from input signals from sensory
systems (Fig. 2b).

A unique balance of output

Focusing on the anatomy of the DMN revealed its distinctive pattern
of cytoarchitectural heterogeneity, which constrains how it communi-
cateswith other systems. Now, we turn our attention to how these ana-
tomical properties contribute to the position of the DMN in large-scale
cortical organization by understanding how effective functional con-
nectivity of the DMN is distributed across cortical types.

First, we discovered that the DMN communicates in a balanced
manner with all cortical types. Compared with other functional net-
works, the DMN exhibits the most balanced efficiency of communica-
tionacross cortical types (thatis, lowest KL divergence from nullmodel
(Extended Data Fig. 8 and see Supplementary Table 3 for statistics)).
We could further specify that output of the DMN is balanced across
the cortical types, but input is not (Fig. 2c(i) and see Supplementary
Table 3 for statistics and replication). In other words, the DMN outputs
signalsin approximately equal strength to all cortical types (that s, all
levels of sensory hierarchies). Ofall the functional systems in the human
cortex, only the DMN exhibited this balance in output across cortical
types (Fig.2c(ii)). The spatial distribution, internal heterogeneity and
connectivity of the DMN thus engender a unique ability to receive
temporally distinct signals and then send neural signals that influence
alllevels of the sensory hierarchies in a similar manner.

Correspondence of microarchitecture and connectivity within
anindividual brain

To demonstrate that our findings generalize to individual brains, we
acquired high-resolution quantitative T1(qT1) relaxometry MRI, along-
side diffusion-weighted and functional MRIin eight healthy people using
a7-TMRI.Methods wereidentical to those described above, except that
histology was replaced by qT1. We hypothesized that qT1, sensitive to
cortical myelin®”*%, could recapitulate regional differences in cytoarchi-
tecture, because corticalareas andintracortical layers defined on cyto- or

Nature Neuroscience | Volume 28 | March 2025 | 654-664

659


http://www.nature.com/natureneuroscience

Article

https://doi.org/10.1038/s41593-024-01868-0

myeloarchitecture align®, and our previous work has shown strong cor-
respondence of principal axes of microstructural differentiation derived
from histology and qT1 MRI*. While the qT1and histological datasets
differ in terms of biological sensitivity (myelin versus cell bodies) and
resolution (500 pm versus 100 pm), the patterns of microarchitectural
differentiationinthe DMN had moderate similarity between the modali-
ties (r,, = 0.34; P,,, < 0.001), for example, highlighting microstructural
differences of the prefrontal cortex from the lateral temporal region
(Fig. 3a). We also repeated the analysis using individual-specific DMNs
(Methods) and found highly similar axes (Supplementary Fig.1). Thereby,
microstructural variation within the DMN is not due to idiosyncratic
positioning of the DMN, relative to the group-average atlas.

Althoughidiosyncrasies and crossmodal differences were evident,
especiallyinthelateral parietaland anterior cingulate regions (Supple-
mentary Fig.1), the topography of microarchitectural differentiation
wassimilarinbothqT1and histological datasets, varying from asmooth
gradientinthe mesiotemporal lobe to higher waviness inthe prefrontal
cortex (Fig.3b).Indeed, subregion smoothness (r,, = 0.51; P, = 0.09)
and waviness (r,,,=0.74; P,,, = 0.011) were correlated between the data-
sets. Furthermore, in line with our primary analyses, communica-
tion efficiency between DMN subregions and the rest of the cortex
was higher toward one end of the microstructural axis (r,,, =-0.38;
Pie.spin = 0.015). This effect was especially pronounced with regards to
communication to perceptually coupled cortical types (koniocortical/
eulaminate-lll: r,,, = —0.40/0.37; P,yq.qpin = 0.044/0.089). Finally, func-
tional input also tended to decrease along the microstructural axes
(Favg=—0.26; P,q.pin = 0.101). Together, these individual-level analyses
indicate that the microarchitectural axis of the DMN discriminates a
zone of multimodal convergence froma core thatisrelatively insulated
from external input (Fig. 3¢). Thus, in line with histological evidence,
the MRI-based approach highlights that a subsection of the DMN is
relatively insulated from external input.

Discussion

Historically, anatomical details of brain systems have helped constrain
accounts of their function®**°, Our study extended this perspective to
the DMN—one of the most extensively studied yet least well understood
systems in the human brain. Leveraging postmortem histology and
invivo MRI, we observed pronounced cytoarchitectural heterogeneity
within the DMN, showing that the network encompasses types of micro-
architecture variably specialized for modality-specific, heteromodal
and self-generated processing***. By combining cytoarchitectural
information with structural and functional connectivity, we found
that the DMN contains convergence zones that receive input from
other cortical regions, as well as arelatively insulated core. Moreover,
unlike other functional networks, outgoing signals of the DMN are of
similar strength to different cortical types, meaning the network may
be uniquely capable of influencing function across all levels of sensory
hierarchies in arelatively coherent manner.

The DMN harbors a complex landscape of cytoarchitecture
and connectivity

Complementary theory-and data-driven analyses revealed the hetero-
geneous cytoarchitecture of the DMN. First, comparison of functional
and cytoarchitectural atlases showed that the DMN contains a wide
range of cortical types, from eulaminate-Ill to agranular. This type-based
analysis demonstrates the extent of cytoarchitectural variation within
theDMN and that it spans several steps of laminar elaboration***2, Sec-
ond, applying nonlinear dimensionality reduction techniques to a 3D
histological reconstruction of a human brain highlighted an axis of
cytoarchitectural differentiation, E1, within the DMN that is distinct
from the gradient of laminar elaboration. Both the type-based and
data-driven axes stretch between the primary sensory areas and the
allocortex, but they capture different aspects of cytoarchitectural simi-
larity in eulaminate-II, - and dysgranular cortex. For instance, while

corticaltypesare related to the combination of qualitative and quanti-
tative measures across cortical layers, the most prominent differences
pertain to neuronal density in layers II/Ill (ref. 61). In contrast, the first
data-driven axis is related primarily to cytoarchitectural markers in
the mid-to-deep cortical layers. Higher-order components, such as E4
and ES5, may better reflect the cytoarchitectural features captured by
corticaltypes, and furtherresearchis necessary to address the sensitiv-
ity of our automated profiling approach to superficial versus deeper
layers (forexample, the influence of cortical curvature, resolution and
interpolation techniques), especially given the singular nature of the
BigBrain dataset. In addition, cortical types are defined by topology,
that is, their spatial relations, whereas the data-driven axis is derived
inamanner thatis agnostic to spatial constraints. The latter approach
revealed pronounced cytoarchitectural variation within the DMN that
is not as constrained by cortex-wide gradients, but rather involves a
complex pattern of subregion-specific cytoarchitectural topographies,
including both local gradients and interdigitation.

A core principle of neuroanatomy holds that topographies of
cortical microstructure, connectivity and function are intrinsically
related*****, We found a clear example of this relationship inthe DMN,
whereby the principal cytoarchitectural axis captures differences in
structural and functional connectivity to other cortical territories.
By combining diffusion-based tractography with physical distance
measurements into a model of E,,,**¢, we found that the strength of
communication between the DMN and other cortical areas was related
to the cytoarchitecture of each endpoint. Specifically, regions of the
DMN low on El exhibited preferentially higher E,,, to granular cortical
types. Tract-tracing studies in macaques focusing on circumscribed
regions of the DMN, such as the precuneus/posterior cingulate, have
shown similar patterns of differential connectivity to primary sensory
areas®>*®, Theinfluence of E1, rather than cortical types, in our analyses,
suggests that unique principles of cortical organization may apply
specifically to internetwork connectivity of the DMN.

Repeating the analysis with whole-brain effective connectivity*’,
we observed decreasing afferent connectivity along the principal cyto-
architectural axis E1. Areas of the DMN with high afferent connectivity,
such as the precuneus and inferior parietal lobe, probably have more
supragranular neurons than areas with low afferent connectivity, such
as the anterior cingulate and superior frontal gyrus®”*®, It is possible,
therefore, that regions that act as receivers within the DMN may be
especially important in feedforward processing®’°. This pattern sug-
gests that preferential E,,, from certain subunits of the DMN to more
granular types may relate to the speed or directedness of communica-
tion, especially given that more granular areas exhibit faster intrinsic
timescales” 7 and sensory areas require high-fidelity information®. In
contrast, parcels of the DMN with flatter profiles (that is, higher E1) are
more insulated from primary sensory areas (also evident in ref. 19) and
receive lessinput from non-DMN cortex. This suggests that the charac-
terization of the DMN as distant frominput" is especially true for those
insulated subsections of the DMN (for example, the anterior cingulate).
The degree of insulation may be concordant with suppression during
externally oriented tasks, which is also regionally variable within the
DMN".Inlinewith our results, subunits of the DMN high on E1, suchas the
medial prefrontal cortex, are suppressed for longer than those lower on
E1,suchasthe temporoparietal junction. Taken together, the connectiv-
ity analyses, therefore, illustrate the complementary functional roles of
cytoarchitecturally distinct subunits of the DMN, fromreceivers on one
side of the cytoarchitectural axis to insulated subunits on the otherside.

Translation from postmortem to in vivo research

Our mainanalyses combined postmortem histology from one person
withinvivoimagingindifferent populations of healthy people. As such,
structure-function relationships may be influenced by crossmodal
registration as well as interindividual differences. In this regard, our
replication analysis using 7-T MRI shows that fine-grained insights
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into microarchitecture, connectivity and function persist at an indi-
vidual level and are observable in vivo. Nevertheless, some observed
differences between the histological and MRI axes may be related to
several factors including modality (cyto- versus myeloarchitecture),
tissue type (postmortem versus in vivo) or interindividual variation.
Further work with several modalities acquired in a single brain (for
example, MRI and histology or cyto- and myelostaining) is necessary
todeterminethe source of these differences. Extending these methods
toinvivoimaging opens unprecedented possibilities to formally test
anatomically grounded hypotheses of the role of the DMNin cognition
and behavior. Forexample, the present multimodal model of the DMN
could be combined with psychometric dataand experience sampling to
test how changesinthe DMN impact cognitive performance, thought
processes and action. Such modeling is a critical next step in evaluat-
ing the causal role of the DMN in the brain, as well as the source of its
cofluctuations (for example, by studying the role of neuromodulatory
systems).

The DMN and cortical hierarchies
Our investigation of DMN microarchitecture can also help discern
the network’s relationship to cortical hierarchies. Established by
foundational research in nonhuman animals and increasingly con-
firmedinthe human brain, hierarchies are arecurring motifin cortical
organization**”, In general, hierarchical architectures are related to
inter-regional variations in temporal dynamics’’* and neural repre-
sentations. Hierarchies in sensory cortex are well documented®®, in
part because their properties can be confirmed directly through the
stimulation of sensory systems. Hierarchies in association networks,
ontheother hand, are more challenging to determine”, duein part to
difficulties in determining a ground truth for their ‘bottom’ and ‘top".
In lieu of such functional evidence, our microarchitectural findings
are important because they show the DMN entails two properties of
hierarchies: (1) connectivity organizable by distinct levels and (2) the
existence of an apex that is relatively insulated from external input.
Unlike sensory hierarchies, however, which increasingly intersect at
upper levels, the internal organization of the DMN is less constrained
by spatial gradients and exhibits more balanced interfacing with several
levels of sensory systems as well as the limbic system. By expanding the
conceptualization of hierarchies beyond sensory systems, our study
helps illuminate the diverse nature of information processing in the
brain, whichislikely to beimportant inunderstanding the mechanisms
that underpin the role of the DMN in human cognition and action.
Our conceptualization of the DMN as an association hierarchy
expands upon previousideas, suchas the DMN as the apex of Margulies
etal.”” orasaparallel network to the sensory-fugal hierarchy of Buckner
and Krienen”. Certain features of these theories are concordant with
ourresults,suchas (parts of) the DMN being insulated frominputand
the distinctiveness of information processing in the DMN. However,
our analyses demonstrate that connectivity is organized along the
most prominent cytoarchitectural axis of the DMN, which is neither
nested within nor parallel to the sensory-fugal hierarchy. Instead, the
DMN seems to protrude from the sensory-fugal hierarchy, with strong
afferent connectivity on one end and insulationon the other. The areas
with convergent afferents, as well as connections within the DMN,
may enable the recombination of neural processes that would not be
possible within sensory-fugal processing streams*. Such topological
complexityisthought tobe animportant trade-offindevelopment and
evolution of biological neural networks” and illustrates how the DMN
canplayadistinctive roleininformationintegration as an association
hierarchy.

Understanding the role of the DMN in cognition and action

We close by speculating on how our analysis can constrain accounts of
the contribution that the DMN makes to human cognition and action.
Our study suggests several anatomically grounded hypotheses on how

the DMN contributes to abroad range of cognitive states. For instance,
the topography of cytoarchitecture can shed light on the different
forms of information integration, because more than 90% of cor-
tico-cortical connections are between neighboring microcircuits”.
We observed microarchitectural gradients in the mesiotemporal
subregion—a pattern linked previously to sequential transforma-
tion of signals from low- to higher-order representations'”’® and a
gradual shift in functional connectivity from the multiple-demand
network to fronto-temporal pole areas®”. In contrast, the interwo-
ven layout of different types of microarchitecture within prefrontal
subregions, perhaps related to interdigitation of connections®®**, may
provide a structural substrate to support domain specialization**°
and cross-domain integration®®. Understanding the complex cyto-
architectural topography of the prefrontal cortex may also help to
understand the region’s functional diversity, which involves both
subregional specialization and functions that are ‘greater than the
sum of its parts™. The presence of both graded and interdigitated
motifs within the DMN suggests that, when these regions function
as a collective, they could contribute to brain function in a man-
ner that combines two different types of integration. Furthermore,
associations between external and internal modes of cognition and
the DMN may be explained by shifting the functional balance from
input-oriented to more insulated regions. Such a mechanism would
also align with functionalimaging studies showing regional differen-
tiation within the DMN for different tasks®**, such as reading versus
mind-wandering®*, which in turn could be linked to how different
regions of the DMN participate in or cross-talk with other networks'*%,
Inlight of the dynamic reconfiguration of functional networks across
cognitive states®®, it will be important to extend the present analysis
approachtostudy the structural properties of the DMN across several
functional contexts. Additionally, the unique balance that the DMN
strikes in terms of its functional output across cortical types may help
to unify neural activity across brain systems or verify predictions of
the world against memory in real time"®".

Taken together, our study offers a set of anatomical hypotheses on
how the human brain may enable the formation of abstract represen-
tations and uses these to inform cognition across a range of domains.
Specifically, the functional multiplicity of the DMN is pillared upon
itsinternal heterogeneity, possession of receivers and more insulated
subunits as well as its balanced communication with all levels of sen-
sory hierarchies. This set of unique features outlines an anatomical
landscape within the DMN that may explain why the DMN is involved
in states that cross traditional psychological categories and that can
have opposing features.

Since its conceptualization, the DMN has been marked by con-
troversy. Various approaches produce the DMN, which has led to a
certainontological capaciousness, that s, thereis a degree of blurriness
about what the DMN is and how to define it®. Our study suggests that
blurriness of the DMN in both spatial and conceptual terms may be
explained by variation in microstructure within subregions and their
unique connectivity to other regions of cortex. Specifically, the DMN
may take on different forms of cognition by recruiting different parts
of each subregion, while the broader system maintains the ability to
broadcast coherent signals to the rest of the brain. It is possible that
the capacity for aset of distributed functionally diverse brain regions
to operate in a coherent manner may be a core feature of how brain
functionsupportsthe range of different behaviors that we asaspecies
are capable of engagingin.

Online content
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Methods

Histological data

An ultrahigh-resolution 3D reconstruction of a sliced and cell-
body-stained postmortem human brain from a 65-year-old man was
obtained from the open-access BigBrain repository on 1 September
2020 (https://bigbrain.loris.ca/main.php)*. The postmortem brain
was paraffin-embedded, coronally sliced into 7,400 20-pm sections,
silver-stained for cell bodies’ and digitized. Manual inspection for
artefacts (that is, rips, tears, shears and stain crystallization) was fol-
lowed by automatic repair procedures, involving nonlinear alignment
to a postmortem MRI of the same individual acquired before section-
ing, together with intensity normalization and block averaging®’. The
3D reconstruction was implemented with a successive coarse-to-fine
hierarchical procedure. We downloaded the 3D volume at 100-pum
resolution, which was the highest resolution available for the whole
brain. Computations were performed oninverted images, where inten-
sity reflects greater cellular density and somasize. Geometric meshes
approximating the outer and inner cortical interface (that s, the gray
matter/cerebrospinal fluid boundary and the gray matter/white mat-
ter boundary) with 163,842 matched vertices per hemisphere were
also obtained”.

We constructed 50 equivolumetric surfaces betweenthe outer and
inner cortical surfaces®. The equivolumetric model compensates for
cortical folding by varying the Euclidean distance, p, between pairs of
intracortical surfaces throughout the cortex to preserve the fractional
volumebetweensurfaces’; pwas calculated as follows for each surface:

1
— X (—Ain +faA2, +(1- a)Afn) 1
Aout _Ain

where a represents fraction of the total volume of the segment
accounted for by the surface, and A, and A;, represent the surface
areaofthe outer andinner cortical surfaces, respectively. Vertex-wise
staining intensity profiles were generated by sampling cell-staining
intensities along linked vertices from the outer to the inner surface.
Smoothing was employed in tangential and axial directions to ame-
liorate the effects of artefacts, blood vessels and individual neuronal
arrangement. The tangential smoothing across depths was enacted
for each staining profile independently, using an iterative piece-wise
linear procedure that minimizes shrinkage (three iterations™). Axial
surface-wise smoothing was performed at each depthindependently
and involved moving a two-vertex full-width at half-maximum Gauss-
ian kernel across the surface mesh using SurfStat in MATLAB**”. The
staining intensity profiles are available in the BigBrainWarp toolbox*.

p=

Comparison of cortical atlases
Functional networks were defined using a widely used atlas’. The
atlas reflects clustering of cortical vertices according to similarity
in resting-state functional connectivity profiles, acquired in 1,000
healthy young adults. Cortical types were assigned to Von Economo
areas*>”s, based on arecent reanalysis of Von Economo micrographs®.
This classification scheme was used because its criteria are (1) clearly
defined, (2) applied consistently across the entire cortex, (3) align
with Von Economo’s original descriptions and (4) are supported by
several histological samples. Criteriaincluded ‘development of layer 1V,
prominence (denser cellularity and larger neurons) of deep (V-VI) or
superficial (II-11I) layers, definition of sublayers (for example, lllaand
I1Ib), sharpness of boundaries between layers and presence of large
pyramids in superficial layers. Thereby, cortical types synopsize
degree of granularity, from high laminar elaboration in koniocortical
areas, six identifiable layers in Eu-Ill to -1, poorly differentiated layers
indysgranular and absent layers in agranular.

The proportion of DMN vertices assigned to each cortical type
was calculated on acommon surface template, fsaverages (ref. 99).
The equivalence of cortical type proportions in the DMN and each

other functional network was evaluated via pairwise Kolgomorov-
Smirnoff tests. Significant over- or under-representation of each
cortical type within the DMN was evaluated with spin permutation
testing'®. Spin permutation testing, used throughout subsequent
statistical analyses, involves generating a null distribution by rotat-
ing one brain map 10,000 times and recomputing the outcome
of interest. We then calculate Py, =1 % and/or
Pypip = 1 — Hemplrical<permutations) 101 The || distribution preserves the
total permutations

spatial structure of both brain maps, which establishes the plausibil-
ity of arandom alignment of the maps explaining their statistical
correspondence. Generally, we deemed significance P < 0.05 for
one-tailed tests and P < 0.025 for two-tailed tests. Additionally, we
used Bonferroni correction when multiple univariate comparisons
were made using the same response variable. In the case of over- or
under-representation of specific cortical types within the DMN, we
randomly rotated the cortical type atlas, then generated null distri-
butions, representing the number of vertices within the DMN
assigned to each type.

The robustness of cytoarchitectural heterogeneity to the DMN
definition was assessed with three alternative atlases. Given the origins
of the DMN as a task-negative set of regions'?, the first alternative
atlas involved identifying regions that are consistently deactivated
during externally oriented tasks. In line with a recent review", we
used predefined contrast maps from 787 healthy young adults of
the Human Connectome Project (HCP_S900_GroupAvg_v.1 Dataset).
Each map represents the contrast between BOLD response during
atask and at baseline. Fifteen tasks were selected to correspond to
early studies of the DMN'*® (working memory (WM)-2 back, WM-0
back, WM-body, WM-face, WM-place, WM-tool, gambling-punish,
gambling-reward, motor-average, social-random, social-theory
of mind, relational-match, relational-relation, emotion-faces,
emotion-shapes). For each contrast, task-related deactivation was
classed asz score < =5, which s consistent with contemporary statisti-
cal thresholds used in neuroimaging to reduce false positives'**. The
second alternative atlas represented an independent component
analysis of 7,342 task fMRI contrasts. The DMN was specified as the
fourth component. The volumetric z statistic map for that component
was projected to the cortical surface for analysis. Thirdly, a probabilis-
ticatlas of the DMN was calculated as the percentage of contrasts with
task-related deactivation. The second alternative atlas represented
the probability of the DMN at each vertex, calculated across 1,029
individual-specific functional network delineations*. For each alterna-
tive atlas, we calculated the proportions of cortical types across arange
of probabilistic thresholds (5-95%, at 5% increments) to determine
whether the discovered cytoarchitectural heterogeneity of the DMN
was robust to atlas definition.

Data-driven cytoarchitectural axis within the DMN

The functional network atlas was transformed to the BigBrain sur-
face using a specially optimized multimodal surface matching
algorithm***%, The pattern of cytoarchitectural heterogeneity in the
DMN was revealed using nonlinear manifold learning. The approach
involved calculating pairwise product-moment correlations of Big-
Brain staining intensity profiles, controlling for the average stain-
ing intensity profile within the DMN. Negative values were zeroed to
emphasize nonshared similarities. Diffusion map embedding of the
correlation matrix was employed to gain a low dimensional represen-
tation of cytoarchitectural patterns**'°°, Diffusion map embedding
belongs to the family of graph Laplacians, which involve constructing
areversible Markov chain on an affinity matrix. Compared with other
nonlinear manifold learning techniques, the algorithm is relatively
robust to noise and computationally inexpensive. A single parameter
a controls theinfluence of the sampling density on the manifold (a =0,
maximalinfluence; a =1, noinfluence). Asin previous studies*>'°°, we
seta = 0.5—achoice retaining the global relations between datapoints
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intheembedded space. Notably, different alpha parameters had little
tonoimpacton the first eigenvector (spatial correlation of eigenvec-
tors,r>0.99).

The DMN comprised 71,576 vertices on the BigBrain surface, each
associated with approximately 1 mm?of surface area; however, pairwise
correlation and manifold learning on 71,576 datapoints was compu-
tationally infeasible. Thus, we performed a sixfold mesh decimation
onthe BigBrain surface to select asubset of vertices that preserve the
overallshape ofthe mesh. Then, we assigned each nonselected vertex
to the nearest maintained vertex, determined by shortest pathon the
mesh (ties were solved by shortest Euclidean distance). Staining inten-
sity profiles were averaged within each surface patch of the DMN, then
the dimensionality reduction procedure was employed. Subsequent
analyses focused on E1, which explained the most variance in the affin-
ity matrix (approximately 28% of variance). Additionally, we repeated
this analysis with a highly conservative delineation of the DMN (gener-
ated by using the intersection of the three abovementioned alternative
atlases), thereby demonstrating that slight variationsin atlas definition
donotimpactthe organization of cytoarchitecture that we discovered
in the network. To ensure the spatial pattern depicted by E1 was not
purely a product of the selected dimensionality reduction method,
we also repeated the procedure using principal component analysis
and Laplacian eigenmaps. The first components were near-identical
across all approaches (r > 0.99).

Local variations in E1 were examined within spatially contiguous
subregions of the DMN. Subregions were defined programmatically on
the cortical mesh, named according to the gyri they primarily occupy
and compared with the Von Economo parcellation (Von Economo
areas occupying >10% of the subregion are listed in ascending orderin
the following): superior frontal and anterior cingulate cortex (FCBm,
FB, FA, FDT), middle temporal (TD, PH), inferior parietal (PF, PD, TD),
precuneus (PD, LA2, LC1), inferior frontal (FE FDdelta) and parahip-
pocampal (HB). Quantitative description of E1 topography within each
subregion was achieved with two complementary approaches. First, to
characterize the smoothness and complexity of the landscape, we fit
polynomialmodels between E1 and two spatial axes'®. The spatial axes
were derived fromanIsomax flattening of each subregion, resultingin
atwo-dimensional (2D) description of each subregion. We compared
adjusted R®between subregions within each polynomial order (quad-
ratic, cubic and quartic) using a one-way analysis of variance, whereby
eachsubregionwas represented by aleft and right hemisphere observa-
tion.Second, to characterize the bumpiness of subregion landscapes,
we adopted anapproach from material engineering for characterizing
the roughness of a surface®'°®, Specifically, we calculated a waviness
metric that reflects the number of intersections of the zero-plane while
accounting for the size of the region. As above, we compared waviness
between subregions using a one-way analysis of variance. Notably,
the sensitivity of each approach to variations in E1 topography was
validated in aseries of simulations, in which we modulated the flatness
and bumpiness of the input landscape (Extended Data Fig. 5).

MRI acquisition and processing—primary analyses

Primary MRI analyses were conducted on 40 healthy adults from the
microstructureinformed connectomics cohort (14 female, mean + s.d.
age, 30.4 + 6.7 years, two left-handed)'””. Scans were completed at
the Brain Imaging Center of the Montreal Neurological Institute
and Hospital on a 3-T Siemens Magnetom Prisma-Fit equipped with
a 64-channel head coil. Two T1w scans with identical parameters
were acquired with a 3D-MPRAGE sequence (0.8-mm isotropic vox-
els, TR=2,300 ms, TE=3.14 ms, TI=900 ms, flip angle =9°,iPAT =2,
matrix =320 x 320, 224 sagittal slices, partial Fourier = 6/8). Tlw
scans were inspected visually to ensure minimal head motion before
they were submitted to further processing. A spin-echo echo-planar
imaging sequence with multiband acceleration was used to obtain
diffusion-weighted imaging (DWI) data, consisting of three shells

with b values of 300, 700 and 2,000 s mm™and 10, 40 and 90 diffu-
sion weighting directions per shell, respectively (1.6-mm isotropic
voxels, TR =3,500 ms, TE = 64.40 ms, flip angle = 90°, refocusing flip
angle =180°, FOV = 224 x 224 mm?, slice thickness =1.6 mm, multiband
factor =3, echo spacing = 0.76 ms, number of bO images = 3). One
7-minrs-fMRIscanwas acquired using multiband accelerated 2D-BOLD
echo-planarimaging (3-mmisotropic voxels, TR=600 ms, TE=30 ms,
flip angle = 52°, FOV = 240 x 240 mm?, slice thickness =3 mm, multi-
band factor = 6, echo spacing = 0.54 ms). Participants were instructed
to keep their eyes open, look at afixation cross and not fall asleep. Two
spin-echoimages with reverse-phase encoding were also acquired for
distortion correction of the rs-fMRI scans (phase encoding = AP/PA,
3-mm isotropic voxels, FOV = 240 x 240 mm?, slice thickness =3 mm,
TR =4,029 ms, TE =48 ms, flip angle = 90°, echo spacing = 0.54 ms,
bandwidth =2,084 Hz per pixel).

Anopen-access tool was used for multimodal data processing'®®.
Each T1w scan was deobliqued and reoriented. Both scans were then
linearly coregistered and averaged, automatically corrected forinten-
sity nonuniformity'®® and intensity normalized. Resulting images were
skull-stripped, and nonisocortical structures were segmented using
FSLFIRST"", Different tissue types (cortical and subcortical gray mat-
ter, white matter, cerebrospinal fluid) were segmented to perform
anatomically constrained tractography™. Cortical surface segmen-
tations were generated from native T1w scans using FreeSurfer v.6.0
(refs. 99,112,113). DWI data were preprocessed using MRtrix"*'>, DWI
data underwent b0 intensity normalization, and were corrected for
susceptibility distortion, head motion and eddy currents. Required
anatomical features for tractography processing (for example, tissue
type segmentations, parcellations) were nonlinearly coregistered to
native DWI space using the deformable SyN approach implemented
in Advanced Neuroimaging Tools (ANTs)". Diffusion processing and
tractography were performed in native DWI space. We performed
anatomically constrained tractography using tissue types segmented
fromeach participant’s preprocessed Tlw images registered to native
DWIspace™. We estimated multishell and multitissue response func-
tions™” and performed constrained spherical deconvolution and
intensity normalization"®, We initiated the tractogram with 40 million
streamlines (maximum tractlength, 250; fractional anisotropy cutoff,
0.06). We applied spherical deconvolution informed filtering of trac-
tograms (SIFT2) to reconstruct whole-brain streamlines weighted by
cross-sectional multipliers". The reconstructed cross-section stream-
lines were averaged within 400 spatially contiguous, functionally
defined parcels'?’, also warped to DWIspace. The rs-fMRIimages were
preprocessed using AFNI"* and FSL™. The first five volumes were dis-
carded to ensure magnetic field saturation. Images were reoriented,
motion corrected and distortion corrected. Nuisance variable signal
was removed using an ICA-FIX classifier'?? and by performing spike
regression. Native timeseries were mapped to individual surface mod-
elsusingaboundary-based registration'”* and smoothed using a Gauss-
iankernel (full-width at half-maximum =10 mm, smoothing performed
on native midsurface mesh) usingworkbench'**. Forisocortical regions,
timeseries were sampled on native surfaces and averaged within 400
spatially contiguous, functionally defined parcels'. For nonisocorti-
cal regions, timeseries were averaged within native parcellations of
the nucleus accumbens, amygdala, caudate nucleus, hippocampus,

pallidum, putamen and thalamus'°.

MRI acquisition and processing—secondary analyses

Secondary MRI analyses were conducted in 100 unrelated healthy
adults (66 female, mean + s.d. age = 28.8 + 3.8 years) from the mini-
mally preprocessed S900 release of the Human Connectome Project
(HCP)'**>, MRI data were acquired on the HCP’s custom 3-T Siemens
Skyra equipped with a 32-channel head coil. Two T1lw images with
identical parameters were acquired using a 3D-MPRAGE sequence
(0.7-mm isotropic voxels, TE=2.14 ms, TI=1,000 ms, flip angle = 8°,
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iPAT =2, matrix = 320 x 320, 256 sagittal slices; TR=2,400 ms).
Two T2w images were acquired using a 3D T2-SPACE sequence with
identical geometry (TR =3,200 ms, TE = 565 ms, variable flip angle,
iPAT =2). A spin-echo echo-planar imaging sequence was used to
obtain diffusion-weighted images, consisting of three shells with
bvalues1,000;2,000 and 3,000 s mm2and up to 90 diffusion weight-
ing directions per shell (TR=5,520 ms, TE = 89.5 ms, flip angle = 78°,
refocusing flip angle =160°, FOV = 210 x 180, matrix =178 x 144, slice
thickness =1.25 mm, mb factor =3, echo spacing = 0.78 ms). Four
rs-fMRI scans were acquired using multiband accelerated 2D-BOLD
echo-planarimaging (2-mmisotropic voxels, TR =720 ms, TE=33 ms,
flip angle = 52°, matrix =104 x 90, 72 sagittal slices, multiband fac-
tor =8,1,200 volumes per scan, 3,456 s). Only the first session was
investigatedin the present study. Participants were instructed to keep
their eyes open, look at a fixation cross and not fall asleep. Neverthe-
less, some subjects were drowsy and may have fallenasleep™, and the
group-averages investigated in the present study do not address these
interindividual differences.

MRI data underwent HCP’s minimal preprocessing'*. Cortical
surface models were constructed using Freesurfer v.5.3-HCP?*!1213,
with minor modifications to incorporate both T1w and T2w'”. Diffu-
sion MRI data underwent correction for geometric distortions and
head motion'*. Tractographic analysis was based on MRtrix3 (refs.
114,115). Response functions for each tissue type were estimated using
the dhollander algorithm'®, Fiber orientation distributions (that is,
the apparent density of fibers as a function of orientation) were mod-
eled from the diffusion-weighted MRI with multishell multitissue
spherical deconvolution™®, then values were normalized in the log
domain to optimize the sum of all tissue compartments toward 1,
under constraints of spatial smoothness. Anatomically constrained
tractography was performed systematically by generating stream-
lines using second-order integration over fiber orientation distribu-
tions with dynamic seeding"*'?. Streamline generation was aborted
when 40 millionstreamlines had beenaccepted. We applied spherical
deconvolutioninformed filtering of tractograms (SIFT2) to reconstruct
whole-brain streamlines weighted by cross-sectional multipliers. The
reconstructed cross-section streamlines were averaged within 400
spatially contiguous, functionally defined parcels?, also warped to
DWIspace. The rs-fMRItimeseries were corrected for gradient nonlin-
earity, head motion, bias field and scanner drifts, then structured noise
components were removed using ICA-FIX, further reducing the influ-
ence of motion, non-neuronal physiology, scanner artefacts and other
nuisance sources'”. Thers-fMRI datawere resampled from volume to
MSMAII functionally aligned surface space™*" and averaged within

400 spatially contiguous, functionally defined parcels'.

124

Modeling structural connectivity with E,,,

Connectivity of DMN subunits was mapped using structural connec-
tomes, derived from diffusion-based tractography. Edge weights of
the structural connectomes (W), representing number of stream-
lines, were remapped using a log-based transformation: (-log,,(W/
(max(W) + min(W > 0))). This log-based transformation attenuates
extreme weights and ensures the maximum edge weight is mapped
to a positive value. Euclidean distances were calculated between the
centroid coordinate of each parcel. Communication in the structural
connectome was modeled using navigation®, also known as greedy
routing'. Navigation combines the structural connectome with
physical distances, providing a routing strategy that recapitulates
invasive, tract-tracing measures of communication®. In brief, naviga-
tion involves identifying a single, efficient path between two nodes,
where each step is determined by spatial proximity to target node.
Specifically, the next node in the path is the neighbor of the current
node (that is, sharing a structural connection) that is closest to the
final target node. Navigation is the sum distances of the selected path
and E,,, its inverse; providing an intuitive metric of communication

efficiency between two regions. £,,, was calculated within each hemi-
sphere separately, then concatenated for analyses.

Byintegratingboth topological as well as geometric information
in the routing strategy, navigation achieves a topological balance
between regularity and randomness that is common for small-world
networks such as the human brain'>. Thus, the approach addresses
distance bias in group-representative structural connectomes™*.
In previous evaluations®?°, navigation was found to both promote a
resource-efficient distribution of network information traffic and to
explain variationin resting-state functional connectivity. Unlike other
commonly studied communication strategies in connectomics (for
example, shortest path routing), navigation does not involve global
knowledge of network topology during the node-to-node propagation
butsimply follows agreedy routing strategy that can beimplemented
locally, supporting its biological plausibility.

Modeling functional input and output with effective
connectivity

The position ofthe DMN in large-scale cortical dynamics was explored
with rDCM*—ascalable generative model of effective connectivity that
allows inferences on the directionality of signal flow, openly available
as part of the TAPAS software package'. Effective connectivity aims
todescribe directed interactions amongbrainregions, with estimates
describing how different regions influence each other’s timeseries.
Typically, effective connectivity parameters are estimated in a Bayesian
framework by solving a set of differential equationsin the time domain
(thatis, classic DCM), but computational cost of modelinversion limits
the number of regions that can be included. rDCM overcomes this
limitation by converting the equations into an efficiently solvable
Bayesian linear regression in the frequency domain. In doing so, rDCM
allows computation of effective connectivity parameters for hundreds
of brain regions. In previous work, the face and construct validity of
rDCM for inferring effective connectivity parameters during resting
state has been established using comprehensive simulations and by
comparing rDCM against alternative generative models of rs-fMRI
data for small networks'®.

TherDCMwas implemented usingindividual rs-fMRI timeseries.
Additionally, an extended version of the rDCM was generated with
nonisocortical regions, specifically the nucleusaccumbens, amygdala,
caudate nucleus, hippocampus, pallidum, putamen and thalamus.

Influence of cytoarchitecture on connectivity

Each parcel was labeled according to functional network, modal cor-
tical type and, if part of the DMN, average E1 value. Parcel-average E1
values were calculated by transforming the parcellation scheme to the
BigBrain surface and averaging within each parcel***%, The following
analyses were repeated for E,,,,, effective connectivity derived input
and effective connectivity derived output.

First, we selected DMN rows and non-DMN columns of the con-
nectivity matrix. Then, we performed product-moment correla-
tions between E1 and average connectivity to assess the association
of the cytoarchitectural axis with connectivity. Next, we stratified
the non-DMN columns by cortical type, averaged within type and
calculated product-moment correlation between type-average con-
nectivity and E1, providing more specific insight into the relation of
the cytoarchitectural axis with connectivity of certain cortical types.
For each modality, the correlations were compared with 10,000 spin
permutations. P values were Bonferroni corrected for seven compari-
sons, resulting in significance threshold of P < 0.004 (two-sided test
with alphavalue of 0.05).

Finally, we estimated the imbalance in connectivity to each cortical
type by calculating average connectivity to each type, then calculating
theKullback-Leibler (KL) divergence fromanull model withequal aver-
age connectivity to each type. Theimbalance analysis was repeated for
eachfunctional network. Ineach case, only internetwork connections
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wereincludedinthe calculations. For each modality and each network,
we tested whether the KL divergence value was lower than 10,000 spin
permutations. P values were Bonferroni corrected for seven compari-
sons, resulting in significance threshold of P < 0.007 (one-sided test
with alphavalue of 0.05).

Individual-level replication with high-field MRI
Inthereplication, we sought to address two key limitations of the pri-
mary analyses. First, due to the unique nature of the BigBrain dataset,
cytoarchitectural mapping was based on a single person, limiting our
knowledge of the generalizability of the discovered patterns. Second,
structural and functional connectivity measurements represented
population averages, thus we were not able to conclude whether the
discovered correspondences between cytoarchitecture and con-
nectivity are evident within an individual. To overcome these limita-
tions, we sought to replicate key findings at an individual level using
high-resolution, ultrahigh-field MRI.

Individual-level replication analyses were conducted on eight
healthy adults (five female, mean + s.d. age = 28 + 6.3, one left-handed).
The MRI data acquisition protocols were approved by the Research
Ethics Board of McGill University. All participants provided written
informed consent, which included a provision for openly sharing all
data in anonymized form. Scans were completed at the Brain Imag-
ing Center of the Montreal Neurological Institute and Hospital on a
7-T Siemens Magnetom Terra System equipped with a 32/8 channel
receive/transmit head coil. Two qT1 scans were acquired across two
scanning sessions with identical 3D-MP2RAGE sequences (0.5-mm
isotropic voxels, TR=5,170 ms, TE=2.44 ms, T1,,,=1,000/3,200 ms,
flip angles = 4°, matrix = 488 x 488, slice thickness = 0.5 mm, partial
Fourier = 0.75). qT1 maps from the second session were registered lin-
earlytothe qT1maps fromthe first session, then averaged to enhanced
the signal to noise ratio. A spin-echo echo-planar imaging sequence
with multiband acceleration was used to obtain DWI data, consisting of
three shells with b values 300,700 and 2,000s mm2and 10,40 and 90
diffusion weighting directions per shell, respectively (1.1-mm isotropic
voxels, TR =7,383 ms, TE=70.6 ms, flipangle =90°, matrix =192 x 192,
slice thickness =1.1 mm, multiband factor =2, echo spacing = 0.26 ms,
number of bO images = 3, partial Fourier = 0.75). One 6-min rs-fMRI
scanwas acquired using multi-echo, multiband accelerated 2D-BOLD
echo-planar imaging (1.9-mm isotropic voxels, TR =1,690 ms,
TE,,3=10.8/27.3/43.8 ms, flip angle = 67°, matrix =118 x 118, multiband
factor =3, echo spacing = 0.54 ms, partial Fourier = 0.75). Participants
were instructed to keep their eyes open, look at a fixation cross and
not fall asleep. Two multiband accelerated spin-echo images with
reverse-phase encoding were also acquired for distortion correction
ofthers-fMRI scans.

The 7 T dataset was processed in the same manner as the primary
MRIdataset, with two exceptions. qT1maps were used, rather than Tlw
images, to construct cortical surfaces, and nuisance variable signal
was removed fromrs-fMRIusing an approach thatis specially tailored
to multi-echo fMRI (tedana)'”, instead of ICA-FIX, which is optimized
for single-echo data. Subsequently, we extracted intracortical profiles
from qT1volumes and determined E1 of microstructural differentiation
for each individual using the same procedure as for the histological
data. In addition, we used the preprocessed resting-state timeseries
to produce individual-specific parcellations for each subject, via a
pretrained hierarchical Bayesian model™*, We subsequently used these
parcellations to obtain individual-specific DMNs.

The replication focused on three key results from the primary
analysis: (1) DMN subregions differ in terms of the topography of micro-
architectural differentiation, whichis evidentin the roughness of E1.In
particular, subregions vary fromagradientin the mesiotemporal lobe
to a fluctuating landscape in the prefrontal cortex. (2) E,,, decreases
along E1, and this effect is especially pronounced for perceptually
coupled cortical types (koniocortical and Eu-Ill). (3) Functional input

decreases alongEl. For eachresult, we compared statistical outcomes
ofthe primary analysis, derived from BigBrain and population-average
connectivity, with individual-level statistical outcomes, derived from
the 7-T dataset, using product-moment correlations. We report rho
and Pvalues averaged across individual participants.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data that support the findings of this study are openly available.
BigBrainis available with LORIS (https://bigbrain.loris.ca/main.php)>
with preprocessed BigBrain data available in through the BigBrainWarp
GitHubrepository (https:/github.com/caseypaquola/BigBrainWarp)*®.
The MICS dataset is available with CONP Portal (https://portal.conp.
ca/dataset?id=projects/mica-mics)"° and the HCP datasetis available
with Connectome DB (https://db.humanconnectome.org/)*.

Code availability

Custom MATLAB (v.2022b)°° code for this study, as well as data neces-
sary forreproduction, are openly available via GitHub at https://github.
com/caseypaquola/DMN and Zenodo at https://doi.org/10.5281/
zeno0do.14034720 (ref.139).
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Extended Data Fig. 1| Meta-analytic functional decoding of the cortical type eachword reflects the relative strength of its association with the cortical type.
atlas. Meta-analytic functional decoding of the cortical type atlas supports the Only psychological constructs were retained in the term lists (thus excluding
association, described in literature reviews*, between the gradient of cortical anatomical terms, for example “V1”, and experiment-related terms, for example

types and a shiftin function from primary sensory to unimodal to heteromodalto ~ “healthy controls”). Decoding was performed within spatially contiguous
memory-related processes. Using meta-analytic maps of thousands of functional subregions for Kon, Eu-1ll and Eu-ll, because no terms exceeded the threshold
MRI**°, we extracted terms that were consistently associated withincreased when the subregions were combined, due to the distinctive unimodal functions
activity within the specific cortical type (threshold z-statistic>2). The size of of each subregion.
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A | Proportions of cortical types within functional networks
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Extended Data Fig. 2| Cortical types and functional networks. A) Bar charts columns of the matrix are ordered according to the first principal component,
illustrate the proportion of cortical types within each functional network (for thereby showing that the DMN occupies a middle ground between the functional
further details, see Supplementary Table 2. B) Matrix illustrating the outcome networks skewed towards high granularity and the functional networks
of pair-wise Kolmogorov-Smirnov tests, whereby darker colours reflect greater dominated by eulaminate-II.

difference in the cortical type make-up of the functional networks. Rows and
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Cytoarchitectural heterogeneity of the DMN with alternative atlases

A | Type-based decomposition of the DMN
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Extended DataFig. 3| Cytoarchitectural heterogeneity in the DMN replicated
with alternative atlases. A) The diverse cytoarchitectural composition of the
DMN was also evident using alternative atlas definitions. Stacked boxplots
illustrate the number of vertices assigned to each cortical type within the
atlas with increasingly conservative thresholds for inclusion in the DMN
represented along the x-axis. i) DMN based on consistency of deactivation
during perceptually-driven tasks. Vertex-wise change in the BOLD response
were calculated across 787 subjects in Human Connectome Project during
fifteen perceptually-driven tasks. Surface projections show the consistency
of deactivations (z < -5) across the tasks?. i) Association (z-statistic) of each
vertex to the DMN derived from an independent component analysis of 7,342
task contrasts®’. iii) Probability of the DMN at each vertex, calculated across
1029 individual-specific functional network delineations®’. Proportion of
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B | Fine-grained cytoarchitectural
mapping of conservative DMN atlas
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the DMN assigned to each cortical type, where the DMN is defined variably
based on different consistency thresholds. B) Using an intersection of the

three approachesin part A, we created a highly conservative delineation of

the DMN. Specifically, vertices were included in the conservative atlasif (i)
deactivations were observed in more than a quarter of perceptually-driven
tasks, (ii) contribution to the task-ICA exceeded a z-statistic of 1 and (iii)
assignment to the DMN was observed in more than a quarter of individuals.
Subsequently, we replicated the procedure in the primary analysis to extract the
principal cytoarchitectural axis. Notably, similar patterns of cytoarchitectural
differentiation are evident in this conservative delineation of the DMN. The
conservative cytoarchitectural axis also captures a variation from peaked to flat
profiles.
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A | First five eigenvectors of cytoarchitectural differentiation
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Extended DataFig. 4| Lower-order eigenvectors and comparing E1 to cortical producing a deviation map that highlights where the type-based and data-driven

types. A) First five eigenvectors projected on the inflated BigBrain surface. depictions of DMN cytoarchitecture differ. Negative values indicate lower E1

For line plots on the right, staining intensity profiles were averaged within 100 than expected by alinear relationship with cortical type, whereas positive values
bins of the respective eigenvector and coloured by eigenvector position. B) indicate higher than predicted E1. Thus, the E1 patternis distinct to the gradient
i. Raincloud- and box-plots show the distribution of E1 across cortical types oflaminar elaboration that is captured by the cortical types. Both are anchored
(n=109/3785/3982/2913/282/669 for Kon/Eu-11l/Eu-1I/Eu-1/Dys/Ag). Box plots by koniocortex on one side and agranular cortex on the other, but they differin
represent minimum, quartile 1, median, quartile 3 and maximum. ii. Cortical the ordering of Eu-and dysgranular areas.

type assignment (1:6) was rescaled to the range of E1 then subtracted from E1,
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Extended Data Fig. 5| Landscape simulations of smoothness and waviness. As of normally distributed pseudorandom numbers the length of x and sigma is
expected, smoothness decreases with noise and increases with slope, whereas the product of x and a value within [0:0.1:1]. B-C) Left. Each square of the matrix
wavinessincreases with noise and decreases with slope. A) We simulated 121 represents asimulated landscape, with rows reflecting increasing slope and
landscapes with varied slopes and bumpiness (noise). x and y values were columns reflecting increasing noise. Centre-Right. Line plots show the outcome
identicalin all landscapes, while the z-axis - reflecting E1 topography in the main metrics of simulations per row and column, respectively. r-values represent the
study - was modulated in each simulation. The z-axis value was calculated as “(x outcome of partial product-moment correlations (for example correlation of
*slope) + (rand* sigma)”, where slope is a value within [0:0.1:1], rand is a vector smoothness with noise, controlling for slope).
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Extended DataFig. 6 | Intra- and inter-structural connectivity of the DMN
withrespect to the cytoarchitectural axis (E1) and cortical type. Variationsin
navigation efficiency as a function of the cytoarchitectural axis within the DMN,
DMN subregion and cortical type. Panel A) involves connections from each node
of the DMN with all nodes outside the DMN (as in the primary analysis), Panel B)
connections from each node of the DMN to all other nodes of the DMN and Panel
C) connections from each node of the DMN to all other nodes. Far left. Cortical

maps show average navigation efficiency. Centre left. Scatterplots show the
correlation of the cytoarchitectural axis (E1) with average navigation efficiency,
with points coloured by the seed parcel’s position within the DMN. Centre right.
Bar plots show the linear correlation coefficient (r) of E1 with average navigation
efficiency to each cortical type. Far right. Matrix shows the average navigation
efficiency between each subregion of the DMN and each cortical type.
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Extended Data Fig. 7| Overview of key cortical maps. Cortical mapsillustrate the key axes of variation in A-B) cytoarchitecture, C) structural connectivity and D-E)
signal flow. Exact values for each parcel can be found in Supplementary Table 1.
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Comparing networks on basis of connectivity with cortical types
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Extended Data Fig. 8| Comparison of functional networks based on inter-
network connectivity to different cortical types. Coloured ridge plots on the
left of each panel show probability distributions of connectivity between the
functional networks and non-DMN cortical types. We evaluated the imbalance
of connectivity across cortical types using the Kullback-Leibler (KL) divergence
from a null model with equal connectivity to each type. On the right of each
panel, coloured dots show the empirical KL divergence for each network and the
grey density plots show the null distribution of KL divergence values based on
10,000 spin permutations. A) The DMN exhibits the most balanced navigation
efficiency across cortical types, compared to other functional networks.

The balance of the DMN did not reach a level of significance relative to spin
permutations, but spin permutations account for the size and distribution of the
network, thus we may infer it is the large size and wide distribution of the network
that enable the DMN to strike a balance in communication across cortical types.
B) Input to the DMN is not balanced with regards to cortical types. Stronger input
comes from heteromodal, Eu-I cortex, which aligns with the over-representation
of this cortical type within the DMN. C) The DMN is unique amongst functional
networks in exhibiting balanced output to all cortical types, whichis further
supported by the balance of the DMN reaching significance in spin permutation
testing.
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Extended Data Table 1| Cortical types by functional network

Kon Eu-III Eu-II Eu-I Dys Ag Total vertices KS statistic!

Visual 0.29 0.41 0.17 0.10 0 0.03 2750 0.36, p<0.001
Sematomotor | 0.10 0.54 0.31 0.04 <0.01 0.01 3751 0.20, p<0.001
DAN <0.01 0.40 0.53 0.06 0 0 2188 0.29, p<0.001
VAN 0.02 0.18 0.50 0.13 0.08 0.09 2285 0.13, p<0.001
Limbic 0 0.24 0.28 0.11 0.26 0.10 1426 0.27, p<0.001
Frontoparietal | 0 0.18 0.56 0.23 <0.01 0.04 2314 0.11, p<0.001
Default mode | <0.01 0.32 0.31 0.28 0.02 0.07 3765

Total vertices | 1218 6400 6805 2572 648 836

"Two-sided Kolmogorov-Smirnov tests for independence of samples were calculated between each network and the DMN. Note: entries in the centre of the table are proportions, which are
provided relative to the functional network (ie: 29% of the visual network is koniocortical), thereby the rows approximately sum to 1(given rounding errors). Kon=koniocortical. Eu=eulaminate.
Dys=dysgranular. Ag=agranular. DAN=dorsal attention network. VAN=ventral attention network.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a | Confirmed
The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

X X

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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X X
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated
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Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used to collect data

Data analysis Custom code for data analysis was written using MATLAB2022a. All custom code is provided in an open GitHub repository (https://
github.com/caseypaquola/DMN).
MRI data were processed using dcm2niix (v1.0.20190902), Freesurfer (v6.0), FSL (v6.0.2), AFNI (v20.3.03), MRtrix (3.0.1) and TAPAS (v6.0.1)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy
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All data that support the findings of this study are openly available. BigBrain is available with LORIS (https://bigbrain.loris.ca/main.php55) with preprocessed
BigBrain data available in through the BigBrainWarp GitHub repository (https://github.com/caseypaquola/BigBrainWarp56). The MICS dataset is available with




CONP Portal (https://portal.conp.ca/dataset?id=projects/mica-mics130) and the HCP dataset is available with Connectome DB (https://
db.humanconnectome.org/)90.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender In the manuscript, we report the proportions of each sex for each cohort. Sexes were relatively balanced in every cohort. Sex
was self-reported by participants. We did not collect gender information from participants. Due to limitations of sample size,
we did not perform sex-specific analyses.

Reporting on race, ethnicity, or Race, ethnicity or other socially relevant categorical variables were not used in the present study.
other socially relevant

groupings

Population characteristics Mean+SD age=30.4+6.7 years (primary dataset), 28.8+3.8 years (secondary dataset) and 28+6.3.0 (replication dataset)

Recruitment For the present study, we recruited healthy individuals in the Montreal area via university networks. No self-selection or
other recruitment biases are relevant to the present results.

Ethics oversight The Ethics Committee of the Montreal Neurological Institute and Hospital approved the study. Written informed consent,

including a statement for openly sharing all data in anonymized form, was obtained from all participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size No sample size calculations were performed, because the analyses were based on comparison between modalities (rather than between
individuals). As such the power of our statistical analyses was related to the density of sampling across the cortex. For each analysis, we used
the maximum number of samples across the cortex, taking into account the spatial resolution of the underlying data.

Data exclusions  No participants or data were excluded from the analyses.

Replication Primary group-level analyses were replicated at an individual-level in a separate cohort (n=8). All replication tests were successful and the full
statistical outcomes are reported in the manuscript.

Randomization  No randomization was implemented in this study, as it was an observational study with no interventions.

Blinding No blinding was implemented in this study, as it was an observational study with no interventions.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
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Experimental design

Design type Structural MR, diffusion MRI and resting-state fMRI (rsfMRI)
Design specifications For rsfMRI, the length of scan time was 7min, 14.4min and 6min for MICs, HCP and the 7T dataset, respectively.

Behavioral performance measures  n/a

Acquisition
Imaging type(s) Structural MRI, diffusion MRI and resting-state fMRI (rsfMRI)
Field strength 3Tand 7T
Sequence & imaging parameters Primary MRI analyses were conducted on 40 healthy adults from the microstructure informed connectomics (MICs)

cohort (14 females, mean+SD age=30.416.7, 2 left-handed). Scans were completed at the Brain Imaging Centre of the
Montreal Neurological Institute and Hospital on a 3T Siemens Magnetom Prisma-Fit equipped with a 64-channel head
coil. Two T1w scans with identical parameters were acquired with a 3D-MPRAGE sequence (0.8mm isotropic voxels,
TR=2300ms, TE=3.14ms, TI=900ms, flip angle=9°, iPAT=2, matrix=320x320, 224 sagittal slices, partial Fourier=6/8). T1w
scans were visually inspected to ensure minimal head motion before they were submitted to further processing. A spin-
echo echo-planar imaging sequence with multi-band acceleration was used to obtain DWI data, consisting of three
shells with b-values 300, 700, and 2000s/mm?2 and 10, 40, and 90 diffusion weighting directions per shell, respectively
(1.6mm isotropic voxels, TR=3500ms, TE=64.40ms, flip angle=90°, refocusing flip angle=180°, FOV=224x224 mm?2, slice
thickness=1.6mm, multiband factor=3, echo spacing=0.76ms, number of b0 images=3). One 7 min rs-fMRI scan was
acquired using multiband accelerated 2D-BOLD echo-planar imaging (3mm isotropic voxels, TR=600ms, TE=30ms, flip
angle=52°, FOV=240x240mm?2, slice thickness=3mm, multiband factor=6, echo spacing=0.54ms). Participants were
instructed to keep their eyes open, look at a fixation cross, and not fall asleep. Two spin-echo images with reverse phase
encoding were also acquired for distortion correction of the rs-fMRI scans (phase encoding=AP/PA, 3mm isotropic
voxels, FOV=240x240mm?2, slice thickness=3mm, TR=4029ms, TE=48ms, flip angle=90°, echo spacing=0.54ms,
bandwidth= 2084 Hz/Px).

Secondary MRI analyses were conducted in 100 unrelated healthy adults (66 females, mean+SD age=28.8+3.8 years)
from the minimally preprocessed S900 release of the Human Connectome Project (HCP) . MRI data were acquired on
the HCP’s custom 3T Siemens Skyra equipped with a 32-channel head coil. Two T1w images with identical parameters
were acquired using a 3D-MPRAGE sequence (0.7mm isotropic voxels, TE=2.14ms, TI=1000ms, flip angle=8°, iPAT=2,
matrix=320x320, 256 sagittal slices; TR=2400ms,). Two T2w images were acquired using a 3D T2-SPACE sequence with
identical geometry (TR=3200ms, TE=565ms, variable flip angle, iPAT=2). A spin-echo EPI sequence was used to obtain
diffusion weighted images, consisting of three shells with b-values 1000, 2000, and 3000s/mm2 and up to 90 diffusion
weighting directions per shell (TR=5520ms, TE=89.5ms, flip angle=78°, refocusing flip angle=160°, FOV=210x180,
matrix=178x144, slice thickness=1.25mm, mb factor=3, echo spacing=0.78ms). Four rs-fMRI scans were acquired using
multi-band accelerated 2D-BOLD echo-planar imaging (2mm isotropic voxels, TR=720ms, TE=33ms, flip angle=52°,
matrix=104x90, 72 sagittal slices, multiband factor=8, 1200 volumes/scan, 3456 seconds). Only the first session was
investigated in the present study. Participants were instructed to keep their eyes open, look at a fixation cross, and not
fall asleep. Nevertheless, some subjects were drowsy and may have fallen asleep121, and the group-averages
investigated in the present study do not address these inter-individual differences.

Individual-level replication analyses were conducted on 8 healthy adults (5 females, mean+SD age=28+6.3, 1 left-
handed). Scans were completed at the Brain Imaging Centre of the Montreal Neurological Institute and Hospital on a 7T
Siemens Magnetom Terra System equipped with a 32/8 channel receive/transmit head coil. Two qT1 scans were
acquired across two scanning sessions with identical 3D-MP2RAGE sequences (0.5mm isotropic voxels, TR=5170ms,
TE=2.44ms, T11/2=1000/3200ms, flip angles=4°, matrix=488x488, slice thickness=0.5mm, partial Fourier=0.75). qT1
maps from the second session were linearly registered to the qT1 maps from the first session, then averaged, to
enhanced the signal to noise ratio. A spin-echo echo-planar imaging sequence with multi-band acceleration was used to
obtain DWI data, consisting of three shells with b-values 300, 700, and 2000s/mm?2 and 10, 40, and 90 diffusion
weighting directions per shell, respectively (1.1mm isotropic voxels, TR=7383ms, TE=70.6ms, flip angle=90°,
matrix=192x192, slice thickness=1.1mm, multiband factor=2, echo spacing=0.26ms, number of b0 images=3, partial
Fourier=0.75). One 6 min rs-fMRI scan was acquired using multi-echo, multiband accelerated 2D-BOLD echo-planar
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imaging (1.9mm isotropic voxels, TR=1690ms, TE1/2/3=10.8/27.3/43.8m:s, flip angle=67°, matrix=118x118, multiband
factor=3, echo spacing=0.54ms, partial Fourier=0.75). Participants were instructed to keep their eyes open, look at a
fixation cross, and not fall asleep. Two multiband accelerated spin-echo images with reverse phase encoding were also
acquired for distortion correction of the rs-fMRI scans.

Area of acquisition Whole brain

Diffusion MRI X Used [ ] Not used

Parameters MICs: b-values 300, 700, and 2000s/mm?2 and 10, 40, and 90 diffusion weighting directions per shell
HCP: three shells with b-values 1000, 2000, and 3000s/mm?2 and up to 90 diffusion weighting directions per shell
7T: three shells with b-values 1000, 2000, and 3000s/mm?2 and up to 90 diffusion weighting directions per shell
Preprocessing

Preprocessing software Preprocessing was conducted with micapipe for the MICs and 7T data and with the HCP minimally-processed pipeline for the
HCP dataset. These packages furthermore depend on FreeSurfer, ANTs and FSL.

Normalization Nonlinear transformation matrices were generated between DWI space and native T1w space to align tissue type
segmentations and parcellations to DWI images.

Nonlinear surface registrations were used to align structural MRI and rsfMRI to a standard template.

Normalization template We used fsaverage as a standard surface template.

Noise and artifact removal For 3T datasets, rsfMRI timeseries were corrected for gradient nonlinearity, head motion, bias field and scanner drifts, then
structured noise components were removed using ICA-FIX, further reducing the influence of motion, non-neuronal
physiology, scanner artefacts and other nuisance sources. A similar procedure was used for the 7T dataset, however, the
"tedana" software package was used rather than ICA-FIX, because tedana it is optimised for multi-echo data.

All DWI scans underwent b0 intensity normalization and were corrected for susceptibility distortion, head motion, and eddy
currents.

Volume censoring The first five volumes of each rsfMRI scan were discarded to ensure magnetic field saturation. No further volume censoring
was employed.

Statistical modeling & inference

Model type and settings Product-moment correlations were performed between cortical maps.

Effect(s) tested The strength of correlation between cortical maps.

Specify type of analysis: [ | whole brain || ROI-based Both

Anatomical location(s) Whole brain as well as analyses focused on the default mode network
Statistic type for inference Significance thresholds were set at p<0.05 for one-sided tests and p<0.025 for two-sided tests.
(See Eklund et al. 2016)
Correction Spin permutation testing was used to correct the statistical analyses, whereby the correction accounts for the known spatial
autocorrelation of cortical maps.

Models & analysis

n/a | Involved in the study
D E Functional and/or effective connectivity

E D Graph analysis

E D Multivariate modeling or predictive analysis

Functional and/or effective connectivity For functional connectivity analyses, product-moment correlations were used.
For effective connectivity analyses, regression dynamic causal modelling was used.
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