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The architecture of the human default mode 
network explored through cytoarchitecture, 
wiring and signal flow
 

Casey Paquola    1,2  , Margaret Garber1, Stefan Frässle    3, Jessica Royer    1, 
Yigu Zhou1, Shahin Tavakol1, Raul Rodriguez-Cruces    1, Donna Gift Cabalo1, 
Sofie Valk    2,4,5, Simon B. Eickhoff2,5, Daniel S. Margulies    6, Alan Evans    1, 
Katrin Amunts    7, Elizabeth Jefferies    8, Jonathan Smallwood    9,10 & 
Boris C. Bernhardt    1,10

The default mode network (DMN) is implicated in many aspects of complex 
thought and behavior. Here, we leverage postmortem histology and in vivo 
neuroimaging to characterize the anatomy of the DMN to better understand 
its role in information processing and cortical communication. Our results 
show that the DMN is cytoarchitecturally heterogenous, containing 
cytoarchitectural types that are variably specialized for unimodal, 
heteromodal and memory-related processing. Studying diffusion-based 
structural connectivity in combination with cytoarchitecture, we found 
the DMN contains regions receptive to input from sensory cortex and a 
core that is relatively insulated from environmental input. Finally, analysis 
of signal flow with effective connectivity models showed that the DMN is 
unique amongst cortical networks in balancing its output across the levels 
of sensory hierarchies. Together, our study establishes an anatomical 
foundation from which accounts of the broad role the DMN plays in human 
brain function and cognition can be developed.

The default mode network (DMN) is a distributed set of brain regions 
in the frontal, temporal and parietal lobes with strongly correlated 
fluctuations1. It is among the most influential, yet challenging, discover-
ies of modern neuroscience. Theories on the role of the DMN initially 
focused on internally oriented cognition and its antagonism with 
task-positive networks2,3, but increasing evidence shows DMN activity 
is related to the content of external stimuli4,5 and externally oriented 
task demands6–8. Additionally, DMN subregions can cofluctuate with 
regions of task-positive networks9,10. Thus, the DMN poses a conceptual 

challenge: how can a neural system be involved in so many different 
states, particularly as many seem antagonistic, such as perceptually 
driven decision-making11 and perceptually decoupled cognition12–14?

Recent perspectives have argued that resolving the role of the 
DMN in cognition depends on understanding its anatomy3,15,16 because 
neuroanatomical insights can narrow the search space for conceivable 
theoretical accounts of its function. Although the DMN is typically 
defined on functional grounds (that is, strong resting-state functional 
connectivity and relatively lower activity during externally oriented 
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cortical microcircuits, ranging from externally focused sensory areas 
through unimodal and heteromodal cortex to amodal agranular 
areas31,32. Patterns of projections also vary systematically along this 
gradient30,33, forming a hierarchical architecture of cortico–cortical 
tracts spanning from primary sensory areas to the prefrontal cortex and 
mesiotemporal lobe34–36. Whether a hierarchy constrains connectivity 
within association cortex (such as the DMN) has been questioned1,37,38. 
Instead, the DMN may comprise densely interconnected yet spatially 
distributed circuits, operating in parallel to the canonical sensory 
hierarchies37. Distinguishing between hierarchical and nonhierarchical 
schemas relies upon characterizing how signal flows with respect to 
the underlying microarchitecture. To this end, state-of-the-art con-
nectivity mapping approaches that emphasize directed signal flow, 
including recently introduced measures of navigation efficiency (Enav) 
of structural connections39 and regression dynamic causal modeling 
(DCM) (rDCM) of functional signals40,41, can help adjudicate between 
different theoretical perspectives. In combination with data-driven 
microarchitectural mapping, these approaches can elucidate how 
cortical anatomy constrains the communication of the DMN, shed-
ding light on the perhaps unique organizational principles of human 
association cortex.

Here, we capitalize on a combination of postmortem histology 
and multimodal in vivo neuroimaging to map DMN microarchitecture 
and examine how that microarchitecture contributes to its structural 
and functional embedding in the brain. In particular, we leverage (1) an 
established atlas of cytoarchitectural taxonomy (cortical types)24,42, (2) 
whole-brain three-dimensional (3D) histology for fine-grained cyto-
architectonic mapping43,44 and (3) multimodal in vivo neuroimaging 
for approximations of structural wiring and functional flow. Finally, 
(4) using high-field 7-T MRI, we demonstrate how the discovered rela-
tionships between microarchitecture, connectivity and function of 
the DMN exist within an individual brain.

Results
Cytoarchitectural heterogeneity
The DMN is generally agreed to encompass subsections of (1) the para-
hippocampal cortex, (2) precuneus and posterior cingulate cortex, (3) 
a caudal region of the inferior parietal lobule, (4) the middle temporal 
cortex, (5) the inferior fronto-lateral cortex, and (6) a region of the 
prefrontal cortex, covering primarily the superior frontal gyrus and 
anterior cingulate, as well as a small part of the middle frontal gyrus2,3. 
Throughout our primary analyses, we used the most common atlas of 
the default mode network1 (Fig. 1a) and identified six spatially contigu-
ous subregions within each hemisphere that correspond to the above-
mentioned regions (see Supplementary Table 1 for Von Economo areas 

tasks), its subregions are also connected by long-range tracts17,18 and 
each subregion is maximally distant from primary sensory and motor 
areas19. This topography may allow activity in the DMN to be decoupled 
from perception of the here and now15, as neural signals are trans-
formed incrementally across cortical areas from those capturing details 
of sensory input toward more abstract features of the environment20,21. 
These observations suggest neural activity in the DMN has the poten-
tial to be both distinct from sensory input, while also incorporating 
abstract representations of the external world. This could explain the 
network’s involvement across diverse contexts15. Although this topo-
graphical perspective, in principle, accounts for its broad involvement 
in human cognition, we lack a detailed explanation of how the neural 
circuitry in the DMN enables this hypothesized role.

Given the highly distributed nature of the subregions of the DMN, 
it is likely to be heterogeneous in terms of its microarchitecture; how-
ever, the specific nature of this heterogeneity remains unknown. On 
the one hand, it is conceivable that regional differences in the DMN are 
most pronounced between subregions situated in different lobes, with 
different white matter tracts connecting each subregion22,23. On the 
other hand, an increasing literature has emphasized the presence of 
large-scale cytoarchitectural gradients across the cortex, suggesting 
a microstructural differentiation between sensory and transmodal 
regions as well as long distance similarities in microarchitectural 
profiles24,25. Such large-scale cytoarchitectural gradients can also 
underlie organization within a subregion such as the mesiotemporal 
lobe and insula26,27. Thereby, fine-grained intraregional differentia-
tion is another important contributor to heterogeneity in the DMN. 
Fine-grained patterns of differentiation need not be gradients, how-
ever. Primate tract-tracing and precision functional imaging studies 
have revealed interdigitation of connectivity within regions of the 
DMN, such as the prefrontal cortex and the inferior parietal lobe28,29. 
Thus, while laminar connectivity across the cortex follows consistent 
rules30, microstructure and connections can be organized locally in a 
range of patterns from relatively smooth gradients to checkered inter-
digitation. Recent innovations in whole-brain human histology and 
quantitative in vivo magnetic resonance imaging (MRI) at high fields 
have made it possible to determine how these various findings mani-
fest in the DMN, enabling the derivation of an anatomically grounded 
blueprint of its organization.

The microarchitectural make-up of the DMN ultimately influences 
how it processes information because microarchitecture influences 
both the intrinsic computation within a region and its connectivity to 
other regions—the two sides of functional specialization. For instance, 
the degree of laminar differentiation, which varies in a graded manner 
across the cortex24, reflects different specializations of the underlying 

Fig. 1 | Cytoarchitectural heterogeneity of the DMN. a, Distribution of 
cortical types within the DMN. Upper left, the most common atlas of the 
DMN1 (used in primary analyses) is shown on the cortical surface. Lower left, 
cytoarchitectonic atlas of cortical types24,42. Upper middle, histogram depicting 
frequency of cortical types within the DMN. The plus sign indicates significant 
over-representation and the minus sign, under-representation, relative to 
whole-cortex proportions. Lower middle, schematic highlighting prominent 
features that vary across cortical types, including the location/size of largest 
pyramidal neurons (triangles), thickness of layer IV, existence of sublayers in V–VI 
(gray dashed lines), regularity of layer I/II boundary (straightness of line). Kon, 
koniocortical; Eul, eulaminate; Dys, dysgranular; Ag, agranular. Right, circular 
plot representing the spread of the DMN from externally to internally driven 
cortical types. The percentage of each type within the DMN is depicted by the 
amount of the respective line (not the area in between lines) covered by the red 
shaded violin. Similar schematics may be found in extant literature16,32,89.  
b, Three-dimensional reconstructed sliced and stained human brain. Coronal 
slices of cell-body-stained sections (20-μm thick, n = 7,404) were reconstructed 
into a 3D human brain model, BigBrain43. c, Example cortical patch shows 
depth-wise variations in cell-body-staining in BigBrain. d, Cytoarchitectural 

differentiation within the DMN. Principal eigenvector (E1) projected onto the 
inflated BigBrain surface shows the patterns of cytoarchitectural differentiation 
within the DMN. PHPC, parahippocampus; Prec., precuneus; IP, inferior parietal; 
MT, middle temporal; IF, inferior frontal; PFC, prefrontal cortex (superior 
frontal and anterior cingulate cortex). e, Cytoarchitectural profiles. Line plots 
represent cell-body-staining intensity by intracortical depth (from pial to white 
matter (wm) boundary) at different points along E1. Cortical points with lower 
E1 (blue) have peaked cellular density in mid–deep cortical layers, indicative 
of pronounced laminar differentiation, whereas cortical points with higher E1 
(red) have more consistent cellular density across cortical layers, illustrating 
lower laminar differentiation. f, Cytoarchitectural landscapes of subregions. 
(i) Topography of E1 in each subregion shown as 3D surface plots, with E1 as the 
z axis. The x and y axes are defined by Isomax flattening of each subregion. (ii) 
Proportion of variance in E1 explained by spatial axes (x,y) for each subregion 
and for models of increasing complexity (second- to fourth-order polynomial 
regression). (iii) Waviness of E1 in each subregion. Upper and lower bounds of 
each box represent the adjusted R2 for each hemisphere (n = 2), and the center 
point is the adjusted R2 averaged across hemispheres.
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and Schaefer parcels encompassed by each subregion). In supplemen-
tary analyses, we show the replicability of key findings with alternative 
delineations of the DMN, based on deactivations during externally 
oriented tasks15, independent component analysis of task-based func-
tional MRI (fMRI)45, and individualized Bayesian modeling of functional 
communities46.

The most noticeable difference in cytoarchitecture across corti-
cal regions is the degree of laminar differentiation, that is, the distin-
guishability and thickness of layers. Degree of laminar differentiation 
is highest in primary sensory areas and decreases along the cortical 
mantle in a graded manner, reaching a low in agranular cortex, which 
neighbors hippocampal and piriform allocortex. This gradient of 
laminar differentiation is synopsized by six cortical types, defined 
originally by Von Economo24,42 (Fig. 1a). Patterns of projections also 
vary systematically along this gradient30,33, forming a hierarchical 
architecture spanning primary sensory areas to the prefrontal cortex 
and hippocampus34–36. The cortical types (synonymous with levels of 
sensory hierarchies) are hypothesized to reflect different specializa-
tions of the underlying cortical microcircuits, ranging from externally 
focused sensory areas through unimodal and heteromodal cortex to 
agranular, paralimbic areas31,32. This hypothesized relationship, based 
primarily on neurophysiological evidence in nonhuman primates and 
lesion studies in humans47, is supported here by meta-analytical decod-
ing of the cortical types, using activation maps from thousands of fMRI 
studies (Extended Data Fig. 1).

Based on overlap of the DMN atlas with a cytoarchitectonic atlas 
of cortical types24,42, we found that the DMN contains five of six cor-
tical types (Fig. 1a). This make-up was distinctive relative to other 
functional networks (Extended Data Table 1, all Kolgomorov–Smirnoff 
tests >0.11; P < 0.001). Indeed, pairwise comparisons showed that all 
networks exhibited a unique composition of cortical types (Extended 
Data Fig. 2). Notably, of all functional networks, the DMN contains the 
most balanced representation of the three eulaminate types commonly 
associated with processing of sensory information and its progressive 
integration (eulaminate-I, -II and -III). In addition, the DMN contains 
dysgranular and agranular cortex that are often linked to internally 
generated processes such as memory and affect32 (Extended Data 
Fig. 1). These cortical types are not represented equally within the 
DMN, however (χ2 = 1,497; P < 0.001). Approximately 90% of the DMN 
is eulaminate, which is even higher than the cortex-wide rate of 84% 
(Extended Data Table 1). To evaluate whether this type of cortex is 
over-represented in the DMN, we compared the proportion of corti-
cal types within the DMN and within 10,000 rotated versions of the 
DMN. The rotated versions are generated by randomly spinning the 
functional network atlas on a spherical representation of the cortex, 
providing a null distribution of outcome statistics that account for the 
network’s size and distribution. In doing so, we found that the DMN 
over-represents eulaminate-I (18% increase; Pspin = 0.006), classically 
known as heteromodal cortex, which is hypothesized to process infor-
mation from several sensory domains32 (Extended Data Fig. 1). This dis-
tinctive composition of cortical types was evident regardless of slight 
alterations to the DMN atlas (Extended Data Fig. 3). The broad range of 
cortical types in the DMN, combined with the over-representation of 
eulaminate-I, is consistent with a role of this network in integration of 
information from several systems, including those linked to sensory 
and memory processes.

Having established that the DMN contains a broad array of cor-
tical types, we next adopted a data-driven approach to character-
ize fine-grained spatial patterns of cytoarchitectural variation. We 
transformed the functional network atlas1 to a 3D cell-body-stained 
postmortem human brain43 using specially tailored cortical registra-
tion procedures44,48. Using intracortical profiles of cell-body-staining 
intensity (Fig. 1c,e), we assessed cytoarchitectural variability within 
the DMN, mapping cytoarchitectural variation by nonlinear manifold 
learning49 (Fig. 1d and Extended Data Fig. 4). The first eigenvector 

(E1) of this manifold, hereafter referred to as the cytoarchitectural 
axis, described a shift in the shape of the underlying cytoarchitectural 
profiles from peaked to flat (Fig. 1e) and reflects variations in cellular 
density (Fig. 1c). The cytoarchitectural axis is anchored on one end 
by unimodal eulaminate-III cortex (for example, retrosplenial and 
posterior middle temporal) and on the other by agranular cortex (for 
example, medial parahippocampus and anterior cingulate). Thus, 
the endpoints of the cytoarchitectural axis are the most extreme 
cortical types found within the DMN (Extended Data Fig. 4). Beyond 
the endpoints, however, the cytoarchitectural axis deviates from the 
gradient described by cortical types24,25,32 (Extended Data Fig. 4). This 
pattern does not discriminate subregions of the DMN or follow an 
anterior–posterior gradient as seen in neuronal density50. Instead, 
we observed a mosaic of different spatial topographies across DMN 
subregions, where neighboring points are sometimes distinct and 
distant points are sometimes similar. Our data-driven approach thus 
indicates that organization within the DMN is unlike those observed 
across sensory hierarchies and is relatively unconstrained by large-scale 
spatial gradients37,38.

A closer look at the topography of cytoarchitecture highlights the 
(dis)similarity of neighboring areas within the DMN. Given the ubiquity 
of local connectivity in the cortex, topography provides important 
information on the form of communication within spatially contigu-
ous subregions. Subregions of the DMN evidently vary in terms of their 
cytoarchitectural topography (Fig. 1f), and we quantified these differ-
ences using two complementary measures: smoothness and waviness. 
The smoothness of the microarchitectural landscape was calculated 
by evaluating the proportion of variance in the cytoarchitectural axis 
that could be accounted for by spatial axes. Waviness was indexed 
by deviations from the mean—a common technique in mechanical 
engineering51 (see Extended Data Fig. 5 for simulation-based valida-
tion of these metrics). We found that subregions differ significantly in 
terms of both smoothness and waviness (smoothness (second-/third-/
fourth-order, F = 14.5/14.9/20.1; P < 0.004; waviness, F = 48.3; P = 0.001). 
Smoothness is particularly high in the parahippocampus, showing 
that its cytoarchitectural axis follows a relatively smooth gradient, 
as shown previously27,52. Conversely, the prefrontal cortex exhibits 
especially high waviness. This pattern of frequent changes across the 
cortex, back-and-forth between two contrasting properties, is remi-
niscent of the interdigitated connectivity patterns that are known to 
exist within the prefrontal cortex28,29,53. This analysis establishes that 
the DMN contains distinct cytoarchitectural patterns representa-
tive of two different ways that neural signals are hypothesized to be 
integrated in the cortex: a mesiotemporal gradient associated with 
progressive convergence of information54,55, and prefrontal interdigi-
tation that enables information from disparate sources to be linked28. 
Together, these metrics, further described and validated in Extended 
Data Fig. 5, quantify how cytoarchitectural landscapes vary between 
subregions, from a relatively simple gradient in the parahippocampus, 
well-explained by the spatial regression model and with low waviness, 
to marked fluctuations in the dorsal prefrontal cortex, characterized 
by high waviness and poor regression model performance.

Receivers on the periphery and an insulated core
Next, using multimodal MRI, we explored how the variable cytoarchi-
tecture of the DMN relates to its connectivity. We hypothesized that 
connectivity would covary with the cytoarchitectural axis (E1, Fig. 1d), 
because propensity for connectivity increases with cytoarchitectural 
similarity. Although this principle has been observed across association 
and sensory regions30,33, it remains unclear how it applies specifically 
to the DMN.

First, we measured communication efficiency along white matter 
tracts39 using diffusion MRI tractography56. Navigation is a decentral-
ized communication strategy that is particularly suited to spatially 
embedded networks, which has recently been proposed to study 
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structural connectivity and structure–function relationships in the 
human brain56 (see Methods for further description and motivation). 
We found that the propensity to communicate with other cortical 
areas (indexed by average Enav

39) varied within the DMN (coefficient 
of variation = 18%). Areas toward one end of the cytoarchitectural 
axis of the DMN, specifically those with more peaked cytoarchitec-
tural profiles, such as the anterior cingulate and more anterior aspect 
of the precuneus, exhibited more efficient communication with 
the rest of the cortex (r = −0.60; Pspin = 0.001; Fig. 2a(i)). This effect 
was particularly pronounced for communication with perceptually 
coupled cortical types (koniocortical/eulaminate-III/eulaminate-II; 
r = −0.63/−0.60/−0.38, Pspin < 0.025; Fig. 2a(i)). Thus, the cytoarchitec-
tural organization of the DMN also correlates with spatial patterns of 
tract-based communication, especially between the DMN and cortical 
areas engaged in sensory processing. This pattern of covariation was 
specific to connectivity between the DMN and non-DMN areas, and 
did not apply to connectivity within the DMN (Extended Data Fig. 6), 
suggesting that inter- and intranetwork connectivity may involve 

distinct rules of organization that are embedded within in more gen-
eral, cortex-wide principles, such as the structural model30.

Next, we examined the consequences of this structural organiza-
tion on the functional flow of information in the cortex. We applied 
rDCM—a scalable generative model of effective connectivity40 to 
resting-state fMRI timeseries of 400 isocortical parcels, covering 
the entire isocortex (Methods). In the current work, we conducted 
a whole-cortex rDCM, then selected DMN parcels as targets for func-
tional input analyses and DMN parcels as seeds for functional output 
analyses. Functionally estimated input and output varied within the 
DMN (coefficient of variation = 24% and 29%, respectively). Average 
strength of input was significantly higher to those areas of the DMN 
with more peaked cytoarchitectural profiles (r = −0.54; Pspin < 0.001), 
that is, those regions that were also highlighted as having more effi-
cient communication with the rest of the cortex in the above struc-
tural connectivity analysis (see Extended Data Fig. 7 for a comparison 
of cortical maps). Examination of type-specific connectivity showed 
limited discrimination between cortical types, whereby inputs from 
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in the scatterplot represent units of the DMN, are colored by position along 
the cytoarchitectural axis (y axis) and are organized along the x axis based on 

weighted average of type-specific Enav. The top 75% of functionally defined inputs 
are shown. c, The DMN is unique amongst functional networks in balancing the 
strength of output across cortical types. (i) Distributions of strength of input 
from and output to each type. Colored ridge plots show probability distributions 
of connectivity between the DMN and each cortical type. For functional output, 
the DMN exhibits overlapping, normal distributions, whereas for functional 
input, type-wise differences are evident. (ii) Comparing networks in terms of 
balance of their output per type. Focusing on functional output, colored ridge 
plots show distributions for all networks, illustrating more balance between 
types in the DMN. Right, Imbalance of connectivity to distinct cortical types 
evaluated as the KL divergence from a null model with equal connectivity to each 
type. Colored dots show the empirical KL divergence for each network and the 
gray density plots show the null distribution of KL divergence values based on 
10,000 spin permutations. Permutation testing indicated that the DMN is unique 
among functional networks in balancing output across cortical types (that is, 
imbalance lower than 95% of permutations). attn., attention network.
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externally and internally focused cortical types were all concentrated 
on DMN areas with peaked cytoarchitectural profiles (Fig. 2a(ii),(iii) 
and Supplementary Table 2). Thus, several inputs converge on a sub-
set of DMN subunits, such as inferior parietal and precuneus areas, 
whereas a subset of DMN subunits—those with flat cytoarchitectural 
profiles—remained relatively insulated from cortical input. Output 
did not covary with the cytoarchitectural axis (r = −0.18; Pspin = 0.064; 
Fig. 2a(ii),(iii)). These findings were consistent in a replication data-
set and when including subcortical structures and the hippocampus 
in the model (Supplementary Table 2). Together, these analyses 
suggest that the DMN comprises two microarchitecturally distinct 
subsets—one with highly efficient tract-based communication with 
cortical areas implicated in perception and receiving convergent 
input from across all levels of sensory hierarchies, and another that 
exhibits less efficient tract-based communication with the rest of 
the cortex and is relatively insulated from input signals from sensory 
systems (Fig. 2b).

A unique balance of output
Focusing on the anatomy of the DMN revealed its distinctive pattern 
of cytoarchitectural heterogeneity, which constrains how it communi-
cates with other systems. Now, we turn our attention to how these ana-
tomical properties contribute to the position of the DMN in large-scale 
cortical organization by understanding how effective functional con-
nectivity of the DMN is distributed across cortical types.

First, we discovered that the DMN communicates in a balanced 
manner with all cortical types. Compared with other functional net-
works, the DMN exhibits the most balanced efficiency of communica-
tion across cortical types (that is, lowest KL divergence from null model 
(Extended Data Fig. 8 and see Supplementary Table 3 for statistics)). 
We could further specify that output of the DMN is balanced across 
the cortical types, but input is not (Fig. 2c(i) and see Supplementary 
Table 3 for statistics and replication). In other words, the DMN outputs 
signals in approximately equal strength to all cortical types (that is, all 
levels of sensory hierarchies). Of all the functional systems in the human 
cortex, only the DMN exhibited this balance in output across cortical 
types (Fig. 2c(ii)). The spatial distribution, internal heterogeneity and 
connectivity of the DMN thus engender a unique ability to receive 
temporally distinct signals and then send neural signals that influence 
all levels of the sensory hierarchies in a similar manner.

Correspondence of microarchitecture and connectivity within 
an individual brain
To demonstrate that our findings generalize to individual brains, we 
acquired high-resolution quantitative T1 (qT1) relaxometry MRI, along-
side diffusion-weighted and functional MRI in eight healthy people using 
a 7-T MRI. Methods were identical to those described above, except that 
histology was replaced by qT1. We hypothesized that qT1, sensitive to 
cortical myelin57,58, could recapitulate regional differences in cytoarchi-
tecture, because cortical areas and intracortical layers defined on cyto- or 
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Fig. 3 | Replication of crossmodal analyses within individual brains using 
7-T MRI. a, Comparison of microstructural axes. The principal eigenvector 
of microstructural variation in the DMN (E1) was extracted from myelin-
sensitive qT1 MRI57, in line with the procedure employed on the histological 
dataset (BigBrain), revealing similar patterns. (i) Primary histological axis, 
(ii) MRI-derived axis. b, Subregions differ in MRI-derived microstructural 
axis topography. The roughness of MRI-derived microstructural 
differentiation varied between subregions in line with histological evidence. 
(i) Parahippocampal (left) and prefrontal (right) landscapes. (ii) Landscape 
waviness. The parahippocampus exhibited a graded transition from high-to-

low E1, reflected by high smoothness and low waviness, whereas the prefrontal 
cortex exhibited an undulating landscape with high waviness. For individual 
replications (n = 8), bars show the median across subjects and error bars depict 
the maximum and minimum. c, Communication efficiency and functional 
input decrease along the microstructural axis of the DMN. Using individual-
specific measures, we consistently found that cortical points with higher E1 were 
associated with (i) lower average Enav, (ii) especially lower Enav with perceptually 
coupled cortical types and (iii) lower functional input. Line plots are presented 
with 95% confidence interval shading. Column plots with error bars, for 
individual replications, show mean ± s.d. across subjects (n = 8).
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myeloarchitecture align59, and our previous work has shown strong cor-
respondence of principal axes of microstructural differentiation derived 
from histology and qT1 MRI25. While the qT1 and histological datasets 
differ in terms of biological sensitivity (myelin versus cell bodies) and 
resolution (500 μm versus 100 μm), the patterns of microarchitectural 
differentiation in the DMN had moderate similarity between the modali-
ties (ravg = 0.34; Pavg < 0.001), for example, highlighting microstructural 
differences of the prefrontal cortex from the lateral temporal region 
(Fig. 3a). We also repeated the analysis using individual-specific DMNs 
(Methods) and found highly similar axes (Supplementary Fig. 1). Thereby, 
microstructural variation within the DMN is not due to idiosyncratic 
positioning of the DMN, relative to the group-average atlas.

Although idiosyncrasies and crossmodal differences were evident, 
especially in the lateral parietal and anterior cingulate regions (Supple-
mentary Fig. 1), the topography of microarchitectural differentiation 
was similar in both qT1 and histological datasets, varying from a smooth 
gradient in the mesiotemporal lobe to higher waviness in the prefrontal 
cortex (Fig. 3b). Indeed, subregion smoothness (ravg = 0.51; Pavg = 0.09) 
and waviness (ravg=0.74; Pavg = 0.011) were correlated between the data-
sets. Furthermore, in line with our primary analyses, communica-
tion efficiency between DMN subregions and the rest of the cortex 
was higher toward one end of the microstructural axis (ravg = −0.38; 
Pavg-spin = 0.015). This effect was especially pronounced with regards to 
communication to perceptually coupled cortical types (koniocortical/
eulaminate-III: ravg = −0.40/0.37; Pavg-spin = 0.044/0.089). Finally, func-
tional input also tended to decrease along the microstructural axes 
(ravg = −0.26; Pavg-spin = 0.101). Together, these individual-level analyses 
indicate that the microarchitectural axis of the DMN discriminates a 
zone of multimodal convergence from a core that is relatively insulated 
from external input (Fig. 3c). Thus, in line with histological evidence, 
the MRI-based approach highlights that a subsection of the DMN is 
relatively insulated from external input.

Discussion
Historically, anatomical details of brain systems have helped constrain 
accounts of their function36,60. Our study extended this perspective to 
the DMN—one of the most extensively studied yet least well understood 
systems in the human brain. Leveraging postmortem histology and 
in vivo MRI, we observed pronounced cytoarchitectural heterogeneity 
within the DMN, showing that the network encompasses types of micro-
architecture variably specialized for modality-specific, heteromodal 
and self-generated processing24,32. By combining cytoarchitectural 
information with structural and functional connectivity, we found 
that the DMN contains convergence zones that receive input from 
other cortical regions, as well as a relatively insulated core. Moreover, 
unlike other functional networks, outgoing signals of the DMN are of 
similar strength to different cortical types, meaning the network may 
be uniquely capable of influencing function across all levels of sensory 
hierarchies in a relatively coherent manner.

The DMN harbors a complex landscape of cytoarchitecture 
and connectivity
Complementary theory- and data-driven analyses revealed the hetero-
geneous cytoarchitecture of the DMN. First, comparison of functional 
and cytoarchitectural atlases showed that the DMN contains a wide 
range of cortical types, from eulaminate-III to agranular. This type-based 
analysis demonstrates the extent of cytoarchitectural variation within 
the DMN and that it spans several steps of laminar elaboration24,42. Sec-
ond, applying nonlinear dimensionality reduction techniques to a 3D 
histological reconstruction of a human brain highlighted an axis of 
cytoarchitectural differentiation, E1, within the DMN that is distinct 
from the gradient of laminar elaboration. Both the type-based and 
data-driven axes stretch between the primary sensory areas and the 
allocortex, but they capture different aspects of cytoarchitectural simi-
larity in eulaminate-II, -I and dysgranular cortex. For instance, while 

cortical types are related to the combination of qualitative and quanti-
tative measures across cortical layers, the most prominent differences 
pertain to neuronal density in layers II/III (ref. 61). In contrast, the first 
data-driven axis is related primarily to cytoarchitectural markers in 
the mid-to-deep cortical layers. Higher-order components, such as E4 
and E5, may better reflect the cytoarchitectural features captured by 
cortical types, and further research is necessary to address the sensitiv-
ity of our automated profiling approach to superficial versus deeper 
layers (for example, the influence of cortical curvature, resolution and 
interpolation techniques), especially given the singular nature of the 
BigBrain dataset. In addition, cortical types are defined by topology, 
that is, their spatial relations, whereas the data-driven axis is derived 
in a manner that is agnostic to spatial constraints. The latter approach 
revealed pronounced cytoarchitectural variation within the DMN that 
is not as constrained by cortex-wide gradients, but rather involves a 
complex pattern of subregion-specific cytoarchitectural topographies, 
including both local gradients and interdigitation.

A core principle of neuroanatomy holds that topographies of 
cortical microstructure, connectivity and function are intrinsically 
related47,62–64. We found a clear example of this relationship in the DMN, 
whereby the principal cytoarchitectural axis captures differences in 
structural and functional connectivity to other cortical territories. 
By combining diffusion-based tractography with physical distance 
measurements into a model of Enav

39,56, we found that the strength of 
communication between the DMN and other cortical areas was related 
to the cytoarchitecture of each endpoint. Specifically, regions of the 
DMN low on E1 exhibited preferentially higher Enav to granular cortical 
types. Tract-tracing studies in macaques focusing on circumscribed 
regions of the DMN, such as the precuneus/posterior cingulate, have 
shown similar patterns of differential connectivity to primary sensory 
areas65,66. The influence of E1, rather than cortical types, in our analyses, 
suggests that unique principles of cortical organization may apply 
specifically to internetwork connectivity of the DMN.

Repeating the analysis with whole-brain effective connectivity40, 
we observed decreasing afferent connectivity along the principal cyto-
architectural axis E1. Areas of the DMN with high afferent connectivity, 
such as the precuneus and inferior parietal lobe, probably have more 
supragranular neurons than areas with low afferent connectivity, such 
as the anterior cingulate and superior frontal gyrus67,68. It is possible, 
therefore, that regions that act as receivers within the DMN may be 
especially important in feedforward processing69,70. This pattern sug-
gests that preferential Enav from certain subunits of the DMN to more 
granular types may relate to the speed or directedness of communica-
tion, especially given that more granular areas exhibit faster intrinsic 
timescales71–73 and sensory areas require high-fidelity information32. In 
contrast, parcels of the DMN with flatter profiles (that is, higher E1) are 
more insulated from primary sensory areas (also evident in ref. 19) and 
receive less input from non-DMN cortex. This suggests that the charac-
terization of the DMN as distant from input11 is especially true for those 
insulated subsections of the DMN (for example, the anterior cingulate). 
The degree of insulation may be concordant with suppression during 
externally oriented tasks, which is also regionally variable within the 
DMN74. In line with our results, subunits of the DMN high on E1, such as the 
medial prefrontal cortex, are suppressed for longer than those lower on 
E1, such as the temporoparietal junction. Taken together, the connectiv-
ity analyses, therefore, illustrate the complementary functional roles of 
cytoarchitecturally distinct subunits of the DMN, from receivers on one 
side of the cytoarchitectural axis to insulated subunits on the other side.

Translation from postmortem to in vivo research
Our main analyses combined postmortem histology from one person 
with in vivo imaging in different populations of healthy people. As such, 
structure–function relationships may be influenced by crossmodal 
registration as well as interindividual differences. In this regard, our 
replication analysis using 7-T MRI shows that fine-grained insights 
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into microarchitecture, connectivity and function persist at an indi-
vidual level and are observable in vivo. Nevertheless, some observed 
differences between the histological and MRI axes may be related to 
several factors including modality (cyto- versus myeloarchitecture), 
tissue type (postmortem versus in vivo) or interindividual variation. 
Further work with several modalities acquired in a single brain (for 
example, MRI and histology or cyto- and myelostaining) is necessary 
to determine the source of these differences. Extending these methods 
to in vivo imaging opens unprecedented possibilities to formally test 
anatomically grounded hypotheses of the role of the DMN in cognition 
and behavior. For example, the present multimodal model of the DMN 
could be combined with psychometric data and experience sampling to 
test how changes in the DMN impact cognitive performance, thought 
processes and action. Such modeling is a critical next step in evaluat-
ing the causal role of the DMN in the brain, as well as the source of its 
cofluctuations (for example, by studying the role of neuromodulatory 
systems).

The DMN and cortical hierarchies
Our investigation of DMN microarchitecture can also help discern 
the network’s relationship to cortical hierarchies. Established by 
foundational research in nonhuman animals and increasingly con-
firmed in the human brain, hierarchies are a recurring motif in cortical 
organization34,75. In general, hierarchical architectures are related to 
inter-regional variations in temporal dynamics71,73 and neural repre-
sentations. Hierarchies in sensory cortex are well documented36, in 
part because their properties can be confirmed directly through the 
stimulation of sensory systems. Hierarchies in association networks, 
on the other hand, are more challenging to determine37, due in part to 
difficulties in determining a ground truth for their ‘bottom’ and ‘top’. 
In lieu of such functional evidence, our microarchitectural findings 
are important because they show the DMN entails two properties of 
hierarchies: (1) connectivity organizable by distinct levels and (2) the 
existence of an apex that is relatively insulated from external input. 
Unlike sensory hierarchies, however, which increasingly intersect at 
upper levels, the internal organization of the DMN is less constrained 
by spatial gradients and exhibits more balanced interfacing with several 
levels of sensory systems as well as the limbic system. By expanding the 
conceptualization of hierarchies beyond sensory systems, our study 
helps illuminate the diverse nature of information processing in the 
brain, which is likely to be important in understanding the mechanisms 
that underpin the role of the DMN in human cognition and action.

Our conceptualization of the DMN as an association hierarchy 
expands upon previous ideas, such as the DMN as the apex of Margulies 
et al.19 or as a parallel network to the sensory-fugal hierarchy of Buckner 
and Krienen37. Certain features of these theories are concordant with 
our results, such as (parts of) the DMN being insulated from input and 
the distinctiveness of information processing in the DMN. However, 
our analyses demonstrate that connectivity is organized along the 
most prominent cytoarchitectural axis of the DMN, which is neither 
nested within nor parallel to the sensory-fugal hierarchy. Instead, the 
DMN seems to protrude from the sensory-fugal hierarchy, with strong 
afferent connectivity on one end and insulation on the other. The areas 
with convergent afferents, as well as connections within the DMN, 
may enable the recombination of neural processes that would not be 
possible within sensory-fugal processing streams36. Such topological 
complexity is thought to be an important trade-off in development and 
evolution of biological neural networks76 and illustrates how the DMN 
can play a distinctive role in information integration as an association 
hierarchy.

Understanding the role of the DMN in cognition and action
We close by speculating on how our analysis can constrain accounts of 
the contribution that the DMN makes to human cognition and action. 
Our study suggests several anatomically grounded hypotheses on how 

the DMN contributes to a broad range of cognitive states. For instance, 
the topography of cytoarchitecture can shed light on the different 
forms of information integration, because more than 90% of cor-
tico–cortical connections are between neighboring microcircuits77. 
We observed microarchitectural gradients in the mesiotemporal 
subregion—a pattern linked previously to sequential transforma-
tion of signals from low- to higher-order representations19,78 and a 
gradual shift in functional connectivity from the multiple-demand 
network to fronto-temporal pole areas27,79. In contrast, the interwo-
ven layout of different types of microarchitecture within prefrontal 
subregions, perhaps related to interdigitation of connections28,53, may 
provide a structural substrate to support domain specialization29,80 
and cross-domain integration28. Understanding the complex cyto-
architectural topography of the prefrontal cortex may also help to 
understand the region’s functional diversity, which involves both 
subregional specialization and functions that are ‘greater than the 
sum of its parts’81. The presence of both graded and interdigitated 
motifs within the DMN suggests that, when these regions function 
as a collective, they could contribute to brain function in a man-
ner that combines two different types of integration. Furthermore, 
associations between external and internal modes of cognition and 
the DMN may be explained by shifting the functional balance from 
input-oriented to more insulated regions. Such a mechanism would 
also align with functional imaging studies showing regional differen-
tiation within the DMN for different tasks82,83, such as reading versus 
mind-wandering84, which in turn could be linked to how different 
regions of the DMN participate in or cross-talk with other networks10,85. 
In light of the dynamic reconfiguration of functional networks across 
cognitive states86, it will be important to extend the present analysis 
approach to study the structural properties of the DMN across several 
functional contexts. Additionally, the unique balance that the DMN 
strikes in terms of its functional output across cortical types may help 
to unify neural activity across brain systems or verify predictions of 
the world against memory in real time15,87.

Taken together, our study offers a set of anatomical hypotheses on 
how the human brain may enable the formation of abstract represen-
tations and uses these to inform cognition across a range of domains. 
Specifically, the functional multiplicity of the DMN is pillared upon 
its internal heterogeneity, possession of receivers and more insulated 
subunits as well as its balanced communication with all levels of sen-
sory hierarchies. This set of unique features outlines an anatomical 
landscape within the DMN that may explain why the DMN is involved 
in states that cross traditional psychological categories and that can 
have opposing features.

Since its conceptualization, the DMN has been marked by con-
troversy. Various approaches produce the DMN, which has led to a 
certain ontological capaciousness, that is, there is a degree of blurriness 
about what the DMN is and how to define it88. Our study suggests that 
blurriness of the DMN in both spatial and conceptual terms may be 
explained by variation in microstructure within subregions and their 
unique connectivity to other regions of cortex. Specifically, the DMN 
may take on different forms of cognition by recruiting different parts 
of each subregion, while the broader system maintains the ability to 
broadcast coherent signals to the rest of the brain. It is possible that 
the capacity for a set of distributed functionally diverse brain regions 
to operate in a coherent manner may be a core feature of how brain 
function supports the range of different behaviors that we as a species 
are capable of engaging in.
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Methods
Histological data
An ultrahigh-resolution 3D reconstruction of a sliced and cell- 
body-stained postmortem human brain from a 65-year-old man was 
obtained from the open-access BigBrain repository on 1 September 
2020 (https://bigbrain.loris.ca/main.php)43. The postmortem brain 
was paraffin-embedded, coronally sliced into 7,400 20-μm sections, 
silver-stained for cell bodies90 and digitized. Manual inspection for 
artefacts (that is, rips, tears, shears and stain crystallization) was fol-
lowed by automatic repair procedures, involving nonlinear alignment 
to a postmortem MRI of the same individual acquired before section-
ing, together with intensity normalization and block averaging91. The 
3D reconstruction was implemented with a successive coarse-to-fine 
hierarchical procedure. We downloaded the 3D volume at 100-μm 
resolution, which was the highest resolution available for the whole 
brain. Computations were performed on inverted images, where inten-
sity reflects greater cellular density and soma size. Geometric meshes 
approximating the outer and inner cortical interface (that is, the gray 
matter/cerebrospinal fluid boundary and the gray matter/white mat-
ter boundary) with 163,842 matched vertices per hemisphere were 
also obtained92.

We constructed 50 equivolumetric surfaces between the outer and 
inner cortical surfaces93. The equivolumetric model compensates for 
cortical folding by varying the Euclidean distance, ρ, between pairs of 
intracortical surfaces throughout the cortex to preserve the fractional 
volume between surfaces94; ρ was calculated as follows for each surface:

ρ = 1
Aout − Ain

× (−Ain +√αA2
out + (1 − α)A2

in) (1)

where α represents fraction of the total volume of the segment 
accounted for by the surface, and Aout and Ain represent the surface 
area of the outer and inner cortical surfaces, respectively. Vertex-wise 
staining intensity profiles were generated by sampling cell-staining 
intensities along linked vertices from the outer to the inner surface. 
Smoothing was employed in tangential and axial directions to ame-
liorate the effects of artefacts, blood vessels and individual neuronal 
arrangement. The tangential smoothing across depths was enacted 
for each staining profile independently, using an iterative piece-wise 
linear procedure that minimizes shrinkage (three iterations95). Axial 
surface-wise smoothing was performed at each depth independently 
and involved moving a two-vertex full-width at half-maximum Gauss-
ian kernel across the surface mesh using SurfStat in MATLAB96,97. The 
staining intensity profiles are available in the BigBrainWarp toolbox44.

Comparison of cortical atlases
Functional networks were defined using a widely used atlas1. The 
atlas reflects clustering of cortical vertices according to similarity 
in resting-state functional connectivity profiles, acquired in 1,000 
healthy young adults. Cortical types were assigned to Von Economo 
areas42,98, based on a recent reanalysis of Von Economo micrographs24. 
This classification scheme was used because its criteria are (1) clearly 
defined, (2) applied consistently across the entire cortex, (3) align 
with Von Economo’s original descriptions and (4) are supported by 
several histological samples. Criteria included ‘development of layer IV, 
prominence (denser cellularity and larger neurons) of deep (V–VI) or 
superficial (II–III) layers, definition of sublayers (for example, IIIa and 
IIIb), sharpness of boundaries between layers and presence of large 
pyramids in superficial layers’24. Thereby, cortical types synopsize 
degree of granularity, from high laminar elaboration in koniocortical 
areas, six identifiable layers in Eu-III to -I, poorly differentiated layers 
in dysgranular and absent layers in agranular.

The proportion of DMN vertices assigned to each cortical type 
was calculated on a common surface template, fsaverage5 (ref. 99). 
The equivalence of cortical type proportions in the DMN and each 

other functional network was evaluated via pairwise Kolgomorov–
Smirnoff tests. Significant over- or under-representation of each 
cortical type within the DMN was evaluated with spin permutation 
testing100. Spin permutation testing, used throughout subsequent 
statistical analyses, involves generating a null distribution by rotat-
ing one brain map 10,000 times and recomputing the outcome  
of interest. We then calculate Pspin = 1 − Σ(empirical>permutations)

total permutations
 and/or 

Pspin = 1 − Σ(empirical<permutations)
total permutations

101. The null distribution preserves the 
spatial structure of both brain maps, which establishes the plausibil-
ity of a random alignment of the maps explaining their statistical 
correspondence. Generally, we deemed significance P < 0.05 for 
one-tailed tests and P < 0.025 for two-tailed tests. Additionally, we 
used Bonferroni correction when multiple univariate comparisons 
were made using the same response variable. In the case of over- or 
under-representation of specific cortical types within the DMN, we 
randomly rotated the cortical type atlas, then generated null distri-
butions, representing the number of vertices within the DMN 
assigned to each type.

The robustness of cytoarchitectural heterogeneity to the DMN 
definition was assessed with three alternative atlases. Given the origins 
of the DMN as a task-negative set of regions102, the first alternative 
atlas involved identifying regions that are consistently deactivated 
during externally oriented tasks. In line with a recent review15, we 
used predefined contrast maps from 787 healthy young adults of 
the Human Connectome Project (HCP_S900_GroupAvg_v.1 Dataset). 
Each map represents the contrast between BOLD response during 
a task and at baseline. Fifteen tasks were selected to correspond to 
early studies of the DMN103 (working memory (WM)–2 back, WM-0 
back, WM-body, WM-face, WM-place, WM-tool, gambling-punish, 
gambling-reward, motor-average, social-random, social-theory 
of mind, relational-match, relational-relation, emotion-faces, 
emotion-shapes). For each contrast, task-related deactivation was 
classed as z score ≤ −5, which is consistent with contemporary statisti-
cal thresholds used in neuroimaging to reduce false positives104. The 
second alternative atlas represented an independent component 
analysis of 7,342 task fMRI contrasts. The DMN was specified as the 
fourth component. The volumetric z statistic map for that component 
was projected to the cortical surface for analysis. Thirdly, a probabilis-
tic atlas of the DMN was calculated as the percentage of contrasts with 
task-related deactivation. The second alternative atlas represented 
the probability of the DMN at each vertex, calculated across 1,029 
individual-specific functional network delineations46. For each alterna-
tive atlas, we calculated the proportions of cortical types across a range 
of probabilistic thresholds (5–95%, at 5% increments) to determine 
whether the discovered cytoarchitectural heterogeneity of the DMN 
was robust to atlas definition.

Data-driven cytoarchitectural axis within the DMN
The functional network atlas was transformed to the BigBrain sur-
face using a specially optimized multimodal surface matching 
algorithm44,48. The pattern of cytoarchitectural heterogeneity in the 
DMN was revealed using nonlinear manifold learning. The approach 
involved calculating pairwise product–moment correlations of Big-
Brain staining intensity profiles, controlling for the average stain-
ing intensity profile within the DMN. Negative values were zeroed to 
emphasize nonshared similarities. Diffusion map embedding of the 
correlation matrix was employed to gain a low dimensional represen-
tation of cytoarchitectural patterns49,100. Diffusion map embedding 
belongs to the family of graph Laplacians, which involve constructing 
a reversible Markov chain on an affinity matrix. Compared with other 
nonlinear manifold learning techniques, the algorithm is relatively 
robust to noise and computationally inexpensive. A single parameter 
α controls the influence of the sampling density on the manifold (α = 0, 
maximal influence; α = 1, no influence). As in previous studies19,25,100, we 
set α = 0.5—a choice retaining the global relations between datapoints 
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in the embedded space. Notably, different alpha parameters had little 
to no impact on the first eigenvector (spatial correlation of eigenvec-
tors, r > 0.99).

The DMN comprised 71,576 vertices on the BigBrain surface, each 
associated with approximately 1 mm2 of surface area; however, pairwise 
correlation and manifold learning on 71,576 datapoints was compu-
tationally infeasible. Thus, we performed a sixfold mesh decimation 
on the BigBrain surface to select a subset of vertices that preserve the 
overall shape of the mesh. Then, we assigned each nonselected vertex 
to the nearest maintained vertex, determined by shortest path on the 
mesh (ties were solved by shortest Euclidean distance). Staining inten-
sity profiles were averaged within each surface patch of the DMN, then 
the dimensionality reduction procedure was employed. Subsequent 
analyses focused on E1, which explained the most variance in the affin-
ity matrix (approximately 28% of variance). Additionally, we repeated 
this analysis with a highly conservative delineation of the DMN (gener-
ated by using the intersection of the three abovementioned alternative 
atlases), thereby demonstrating that slight variations in atlas definition 
do not impact the organization of cytoarchitecture that we discovered 
in the network. To ensure the spatial pattern depicted by E1 was not 
purely a product of the selected dimensionality reduction method, 
we also repeated the procedure using principal component analysis 
and Laplacian eigenmaps. The first components were near-identical 
across all approaches (r > 0.99).

Local variations in E1 were examined within spatially contiguous 
subregions of the DMN. Subregions were defined programmatically on 
the cortical mesh, named according to the gyri they primarily occupy 
and compared with the Von Economo parcellation (Von Economo 
areas occupying >10% of the subregion are listed in ascending order in 
the following): superior frontal and anterior cingulate cortex (FCBm, 
FB, FA, FDT), middle temporal (TD, PH), inferior parietal (PF, PD, TD), 
precuneus (PD, LA2, LC1), inferior frontal (FE FDdelta) and parahip-
pocampal (HB). Quantitative description of E1 topography within each 
subregion was achieved with two complementary approaches. First, to 
characterize the smoothness and complexity of the landscape, we fit 
polynomial models between E1 and two spatial axes105. The spatial axes 
were derived from an Isomax flattening of each subregion, resulting in 
a two-dimensional (2D) description of each subregion. We compared 
adjusted R2 between subregions within each polynomial order (quad-
ratic, cubic and quartic) using a one-way analysis of variance, whereby 
each subregion was represented by a left and right hemisphere observa-
tion. Second, to characterize the bumpiness of subregion landscapes, 
we adopted an approach from material engineering for characterizing 
the roughness of a surface51,106. Specifically, we calculated a waviness 
metric that reflects the number of intersections of the zero-plane while 
accounting for the size of the region. As above, we compared waviness 
between subregions using a one-way analysis of variance. Notably, 
the sensitivity of each approach to variations in E1 topography was 
validated in a series of simulations, in which we modulated the flatness 
and bumpiness of the input landscape (Extended Data Fig. 5).

MRI acquisition and processing—primary analyses
Primary MRI analyses were conducted on 40 healthy adults from the 
microstructure informed connectomics cohort (14 female, mean ± s.d. 
age, 30.4 ± 6.7 years, two left-handed)107. Scans were completed at 
the Brain Imaging Center of the Montreal Neurological Institute 
and Hospital on a 3-T Siemens Magnetom Prisma-Fit equipped with 
a 64-channel head coil. Two T1w scans with identical parameters 
were acquired with a 3D-MPRAGE sequence (0.8-mm isotropic vox-
els, TR = 2,300 ms, TE = 3.14 ms, TI = 900 ms, flip angle = 9°, iPAT = 2, 
matrix = 320 × 320, 224 sagittal slices, partial Fourier = 6/8). T1w 
scans were inspected visually to ensure minimal head motion before 
they were submitted to further processing. A spin-echo echo-planar 
imaging sequence with multiband acceleration was used to obtain 
diffusion-weighted imaging (DWI) data, consisting of three shells 

with b values of 300, 700 and 2,000 s mm−2 and 10, 40 and 90 diffu-
sion weighting directions per shell, respectively (1.6-mm isotropic 
voxels, TR = 3,500 ms, TE = 64.40 ms, flip angle = 90°, refocusing flip 
angle = 180°, FOV = 224 × 224 mm2, slice thickness =1.6 mm, multiband 
factor = 3, echo spacing = 0.76 ms, number of b0 images = 3). One 
7-min rs-fMRI scan was acquired using multiband accelerated 2D-BOLD 
echo-planar imaging (3-mm isotropic voxels, TR = 600 ms, TE = 30 ms, 
flip angle = 52°, FOV = 240 × 240 mm2, slice thickness = 3 mm, multi-
band factor = 6, echo spacing = 0.54 ms). Participants were instructed 
to keep their eyes open, look at a fixation cross and not fall asleep. Two 
spin-echo images with reverse-phase encoding were also acquired for 
distortion correction of the rs-fMRI scans (phase encoding = AP/PA, 
3-mm isotropic voxels, FOV = 240 × 240 mm2, slice thickness = 3 mm, 
TR = 4,029 ms, TE = 48 ms, flip angle = 90°, echo spacing = 0.54 ms, 
bandwidth = 2,084 Hz per pixel).

An open-access tool was used for multimodal data processing108. 
Each T1w scan was deobliqued and reoriented. Both scans were then 
linearly coregistered and averaged, automatically corrected for inten-
sity nonuniformity109 and intensity normalized. Resulting images were 
skull-stripped, and nonisocortical structures were segmented using 
FSL FIRST110. Different tissue types (cortical and subcortical gray mat-
ter, white matter, cerebrospinal fluid) were segmented to perform 
anatomically constrained tractography111. Cortical surface segmen-
tations were generated from native T1w scans using FreeSurfer v.6.0 
(refs. 99,112,113). DWI data were preprocessed using MRtrix114,115. DWI 
data underwent b0 intensity normalization, and were corrected for 
susceptibility distortion, head motion and eddy currents. Required 
anatomical features for tractography processing (for example, tissue 
type segmentations, parcellations) were nonlinearly coregistered to 
native DWI space using the deformable SyN approach implemented 
in Advanced Neuroimaging Tools (ANTs)116. Diffusion processing and 
tractography were performed in native DWI space. We performed 
anatomically constrained tractography using tissue types segmented 
from each participant’s preprocessed T1w images registered to native 
DWI space111. We estimated multishell and multitissue response func-
tions117 and performed constrained spherical deconvolution and 
intensity normalization118. We initiated the tractogram with 40 million 
streamlines (maximum tract length, 250; fractional anisotropy cutoff, 
0.06). We applied spherical deconvolution informed filtering of trac-
tograms (SIFT2) to reconstruct whole-brain streamlines weighted by 
cross-sectional multipliers119. The reconstructed cross-section stream-
lines were averaged within 400 spatially contiguous, functionally 
defined parcels120, also warped to DWI space. The rs-fMRI images were 
preprocessed using AFNI121 and FSL110. The first five volumes were dis-
carded to ensure magnetic field saturation. Images were reoriented, 
motion corrected and distortion corrected. Nuisance variable signal 
was removed using an ICA-FIX classifier122 and by performing spike 
regression. Native timeseries were mapped to individual surface mod-
els using a boundary-based registration123 and smoothed using a Gauss-
ian kernel (full-width at half-maximum = 10 mm, smoothing performed 
on native midsurface mesh) using workbench124. For isocortical regions, 
timeseries were sampled on native surfaces and averaged within 400 
spatially contiguous, functionally defined parcels120. For nonisocorti-
cal regions, timeseries were averaged within native parcellations of 
the nucleus accumbens, amygdala, caudate nucleus, hippocampus, 
pallidum, putamen and thalamus110.

MRI acquisition and processing—secondary analyses
Secondary MRI analyses were conducted in 100 unrelated healthy 
adults (66 female, mean ± s.d. age = 28.8 ± 3.8 years) from the mini-
mally preprocessed S900 release of the Human Connectome Project 
(HCP)124,125. MRI data were acquired on the HCP’s custom 3-T Siemens 
Skyra equipped with a 32-channel head coil. Two T1w images with 
identical parameters were acquired using a 3D-MPRAGE sequence 
(0.7-mm isotropic voxels, TE = 2.14 ms, TI = 1,000 ms, flip angle = 8°, 
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iPAT = 2, matrix = 320 × 320, 256 sagittal slices; TR = 2,400 ms). 
Two T2w images were acquired using a 3D T2-SPACE sequence with 
identical geometry (TR = 3,200 ms, TE = 565 ms, variable flip angle, 
iPAT = 2). A spin-echo echo-planar imaging sequence was used to 
obtain diffusion-weighted images, consisting of three shells with 
b values 1,000; 2,000 and 3,000 s mm−2 and up to 90 diffusion weight-
ing directions per shell (TR = 5,520 ms, TE = 89.5 ms, flip angle = 78°, 
refocusing flip angle = 160°, FOV = 210 × 180, matrix = 178 × 144, slice 
thickness = 1.25 mm, mb factor = 3, echo spacing = 0.78 ms). Four 
rs-fMRI scans were acquired using multiband accelerated 2D-BOLD 
echo-planar imaging (2-mm isotropic voxels, TR = 720 ms, TE = 33 ms, 
flip angle = 52°, matrix = 104 × 90, 72 sagittal slices, multiband fac-
tor = 8, 1,200 volumes per scan, 3,456 s). Only the first session was 
investigated in the present study. Participants were instructed to keep 
their eyes open, look at a fixation cross and not fall asleep. Neverthe-
less, some subjects were drowsy and may have fallen asleep126, and the 
group-averages investigated in the present study do not address these 
interindividual differences.

MRI data underwent HCP’s minimal preprocessing124. Cortical 
surface models were constructed using Freesurfer v.5.3-HCP99,112,113, 
with minor modifications to incorporate both T1w and T2w127. Diffu-
sion MRI data underwent correction for geometric distortions and 
head motion124. Tractographic analysis was based on MRtrix3 (refs. 
114,115). Response functions for each tissue type were estimated using 
the dhollander algorithm128. Fiber orientation distributions (that is, 
the apparent density of fibers as a function of orientation) were mod-
eled from the diffusion-weighted MRI with multishell multitissue 
spherical deconvolution118, then values were normalized in the log 
domain to optimize the sum of all tissue compartments toward 1, 
under constraints of spatial smoothness. Anatomically constrained 
tractography was performed systematically by generating stream-
lines using second-order integration over fiber orientation distribu-
tions with dynamic seeding119,129. Streamline generation was aborted 
when 40 million streamlines had been accepted. We applied spherical 
deconvolution informed filtering of tractograms (SIFT2) to reconstruct 
whole-brain streamlines weighted by cross-sectional multipliers. The 
reconstructed cross-section streamlines were averaged within 400 
spatially contiguous, functionally defined parcels120, also warped to 
DWI space. The rs-fMRI timeseries were corrected for gradient nonlin-
earity, head motion, bias field and scanner drifts, then structured noise 
components were removed using ICA-FIX, further reducing the influ-
ence of motion, non-neuronal physiology, scanner artefacts and other 
nuisance sources122. The rs-fMRI data were resampled from volume to 
MSMAll functionally aligned surface space130,131 and averaged within 
400 spatially contiguous, functionally defined parcels120.

Modeling structural connectivity with Enav

Connectivity of DMN subunits was mapped using structural connec-
tomes, derived from diffusion-based tractography. Edge weights of 
the structural connectomes (W), representing number of stream-
lines, were remapped using a log-based transformation: (−log10(W/
(max(W) + min(W > 0))). This log-based transformation attenuates 
extreme weights and ensures the maximum edge weight is mapped 
to a positive value. Euclidean distances were calculated between the 
centroid coordinate of each parcel. Communication in the structural 
connectome was modeled using navigation56, also known as greedy 
routing132. Navigation combines the structural connectome with 
physical distances, providing a routing strategy that recapitulates 
invasive, tract-tracing measures of communication39. In brief, naviga-
tion involves identifying a single, efficient path between two nodes, 
where each step is determined by spatial proximity to target node. 
Specifically, the next node in the path is the neighbor of the current 
node (that is, sharing a structural connection) that is closest to the 
final target node. Navigation is the sum distances of the selected path 
and Enav its inverse; providing an intuitive metric of communication 

efficiency between two regions. Enav was calculated within each hemi-
sphere separately, then concatenated for analyses.

By integrating both topological as well as geometric information 
in the routing strategy, navigation achieves a topological balance 
between regularity and randomness that is common for small-world 
networks such as the human brain133. Thus, the approach addresses 
distance bias in group-representative structural connectomes134.  
In previous evaluations39,56, navigation was found to both promote a 
resource-efficient distribution of network information traffic and to 
explain variation in resting-state functional connectivity. Unlike other 
commonly studied communication strategies in connectomics (for 
example, shortest path routing), navigation does not involve global 
knowledge of network topology during the node-to-node propagation 
but simply follows a greedy routing strategy that can be implemented 
locally, supporting its biological plausibility.

Modeling functional input and output with effective 
connectivity
The position of the DMN in large-scale cortical dynamics was explored 
with rDCM40—a scalable generative model of effective connectivity that 
allows inferences on the directionality of signal flow, openly available 
as part of the TAPAS software package135. Effective connectivity aims 
to describe directed interactions among brain regions, with estimates 
describing how different regions influence each other’s timeseries. 
Typically, effective connectivity parameters are estimated in a Bayesian 
framework by solving a set of differential equations in the time domain 
(that is, classic DCM), but computational cost of model inversion limits 
the number of regions that can be included. rDCM overcomes this 
limitation by converting the equations into an efficiently solvable 
Bayesian linear regression in the frequency domain. In doing so, rDCM 
allows computation of effective connectivity parameters for hundreds 
of brain regions. In previous work, the face and construct validity of 
rDCM for inferring effective connectivity parameters during resting 
state has been established using comprehensive simulations and by 
comparing rDCM against alternative generative models of rs‐fMRI 
data for small networks136.

The rDCM was implemented using individual rs-fMRI timeseries. 
Additionally, an extended version of the rDCM was generated with 
nonisocortical regions, specifically the nucleus accumbens, amygdala, 
caudate nucleus, hippocampus, pallidum, putamen and thalamus.

Influence of cytoarchitecture on connectivity
Each parcel was labeled according to functional network, modal cor-
tical type and, if part of the DMN, average E1 value. Parcel-average E1 
values were calculated by transforming the parcellation scheme to the 
BigBrain surface and averaging within each parcel44,48. The following 
analyses were repeated for Enav, effective connectivity derived input 
and effective connectivity derived output.

First, we selected DMN rows and non-DMN columns of the con-
nectivity matrix. Then, we performed product–moment correla-
tions between E1 and average connectivity to assess the association 
of the cytoarchitectural axis with connectivity. Next, we stratified 
the non-DMN columns by cortical type, averaged within type and 
calculated product–moment correlation between type-average con-
nectivity and E1, providing more specific insight into the relation of 
the cytoarchitectural axis with connectivity of certain cortical types. 
For each modality, the correlations were compared with 10,000 spin 
permutations. P values were Bonferroni corrected for seven compari-
sons, resulting in significance threshold of P < 0.004 (two-sided test 
with alpha value of 0.05).

Finally, we estimated the imbalance in connectivity to each cortical 
type by calculating average connectivity to each type, then calculating 
the Kullback–Leibler (KL) divergence from a null model with equal aver-
age connectivity to each type. The imbalance analysis was repeated for 
each functional network. In each case, only internetwork connections 
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were included in the calculations. For each modality and each network, 
we tested whether the KL divergence value was lower than 10,000 spin 
permutations. P values were Bonferroni corrected for seven compari-
sons, resulting in significance threshold of P < 0.007 (one-sided test 
with alpha value of 0.05).

Individual-level replication with high-field MRI
In the replication, we sought to address two key limitations of the pri-
mary analyses. First, due to the unique nature of the BigBrain dataset, 
cytoarchitectural mapping was based on a single person, limiting our 
knowledge of the generalizability of the discovered patterns. Second, 
structural and functional connectivity measurements represented 
population averages, thus we were not able to conclude whether the 
discovered correspondences between cytoarchitecture and con-
nectivity are evident within an individual. To overcome these limita-
tions, we sought to replicate key findings at an individual level using 
high-resolution, ultrahigh-field MRI.

Individual-level replication analyses were conducted on eight 
healthy adults (five female, mean ± s.d. age = 28 ± 6.3, one left-handed). 
The MRI data acquisition protocols were approved by the Research 
Ethics Board of McGill University. All participants provided written 
informed consent, which included a provision for openly sharing all 
data in anonymized form. Scans were completed at the Brain Imag-
ing Center of the Montreal Neurological Institute and Hospital on a 
7-T Siemens Magnetom Terra System equipped with a 32/8 channel 
receive/transmit head coil. Two qT1 scans were acquired across two 
scanning sessions with identical 3D-MP2RAGE sequences (0.5-mm 
isotropic voxels, TR = 5,170 ms, TE = 2.44 ms, T11/2 = 1,000/3,200 ms, 
flip angles = 4°, matrix = 488 × 488, slice thickness = 0.5 mm, partial 
Fourier = 0.75). qT1 maps from the second session were registered lin-
early to the qT1 maps from the first session, then averaged to enhanced 
the signal to noise ratio. A spin-echo echo-planar imaging sequence 
with multiband acceleration was used to obtain DWI data, consisting of 
three shells with b values 300, 700 and 2,000s mm−2 and 10, 40 and 90 
diffusion weighting directions per shell, respectively (1.1-mm isotropic 
voxels, TR = 7,383 ms, TE = 70.6 ms, flip angle = 90°, matrix = 192 × 192, 
slice thickness = 1.1 mm, multiband factor = 2, echo spacing = 0.26 ms, 
number of b0 images = 3, partial Fourier = 0.75). One 6-min rs-fMRI 
scan was acquired using multi-echo, multiband accelerated 2D-BOLD 
echo-planar imaging (1.9-mm isotropic voxels, TR = 1,690 ms, 
TE1/2/3 = 10.8/27.3/43.8 ms, flip angle = 67°, matrix = 118 × 118, multiband 
factor = 3, echo spacing = 0.54 ms, partial Fourier = 0.75). Participants 
were instructed to keep their eyes open, look at a fixation cross and 
not fall asleep. Two multiband accelerated spin-echo images with 
reverse-phase encoding were also acquired for distortion correction 
of the rs-fMRI scans.

The 7 T dataset was processed in the same manner as the primary 
MRI dataset, with two exceptions. qT1 maps were used, rather than T1w 
images, to construct cortical surfaces, and nuisance variable signal 
was removed from rs-fMRI using an approach that is specially tailored 
to multi-echo fMRI (tedana)137, instead of ICA-FIX, which is optimized 
for single-echo data. Subsequently, we extracted intracortical profiles 
from qT1 volumes and determined E1 of microstructural differentiation 
for each individual using the same procedure as for the histological 
data. In addition, we used the preprocessed resting-state timeseries 
to produce individual-specific parcellations for each subject, via a 
pretrained hierarchical Bayesian model138. We subsequently used these 
parcellations to obtain individual-specific DMNs.

The replication focused on three key results from the primary 
analysis: (1) DMN subregions differ in terms of the topography of micro-
architectural differentiation, which is evident in the roughness of E1. In 
particular, subregions vary from a gradient in the mesiotemporal lobe 
to a fluctuating landscape in the prefrontal cortex. (2) Enav decreases 
along E1, and this effect is especially pronounced for perceptually 
coupled cortical types (koniocortical and Eu-III). (3) Functional input 

decreases along E1. For each result, we compared statistical outcomes 
of the primary analysis, derived from BigBrain and population-average 
connectivity, with individual-level statistical outcomes, derived from 
the 7-T dataset, using product–moment correlations. We report rho 
and P values averaged across individual participants.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data that support the findings of this study are openly available. 
BigBrain is available with LORIS (https://bigbrain.loris.ca/main.php)55 
with preprocessed BigBrain data available in through the BigBrainWarp 
GitHub repository (https://github.com/caseypaquola/BigBrainWarp)56. 
The MICS dataset is available with CONP Portal (https://portal.conp.
ca/dataset?id=projects/mica-mics)130 and the HCP dataset is available 
with Connectome DB (https://db.humanconnectome.org/)124.

Code availability
Custom MATLAB (v.2022b)96 code for this study, as well as data neces-
sary for reproduction, are openly available via GitHub at https://github.
com/caseypaquola/DMN and Zenodo at https://doi.org/10.5281/
zenodo.14034720 (ref. 139).
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Extended Data Fig. 1 | Meta-analytic functional decoding of the cortical type 
atlas. Meta-analytic functional decoding of the cortical type atlas supports the 
association, described in literature reviews43, between the gradient of cortical 
types and a shift in function from primary sensory to unimodal to heteromodal to 
memory-related processes. Using meta-analytic maps of thousands of functional 
MRI140, we extracted terms that were consistently associated with increased 
activity within the specific cortical type (threshold z-statistic>2). The size of 

each word reflects the relative strength of its association with the cortical type. 
Only psychological constructs were retained in the term lists (thus excluding 
anatomical terms, for example “V1”, and experiment-related terms, for example 
“healthy controls”). Decoding was performed within spatially contiguous 
subregions for Kon, Eu-III and Eu-II, because no terms exceeded the threshold 
when the subregions were combined, due to the distinctive unimodal functions 
of each subregion.
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Extended Data Fig. 2 | Cortical types and functional networks. A) Bar charts 
illustrate the proportion of cortical types within each functional network (for 
further details, see Supplementary Table 2. B) Matrix illustrating the outcome 
of pair-wise Kolmogorov-Smirnov tests, whereby darker colours reflect greater 
difference in the cortical type make-up of the functional networks. Rows and 

columns of the matrix are ordered according to the first principal component, 
thereby showing that the DMN occupies a middle ground between the functional 
networks skewed towards high granularity and the functional networks 
dominated by eulaminate-II.
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Extended Data Fig. 3 | Cytoarchitectural heterogeneity in the DMN replicated 
with alternative atlases. A) The diverse cytoarchitectural composition of the 
DMN was also evident using alternative atlas definitions. Stacked boxplots 
illustrate the number of vertices assigned to each cortical type within the 
atlas with increasingly conservative thresholds for inclusion in the DMN 
represented along the x-axis. i) DMN based on consistency of deactivation 
during perceptually-driven tasks. Vertex-wise change in the BOLD response 
were calculated across 787 subjects in Human Connectome Project during 
fifteen perceptually-driven tasks. Surface projections show the consistency 
of deactivations (z ≤ -5) across the tasks20. ii) Association (z-statistic) of each 
vertex to the DMN derived from an independent component analysis of 7,342 
task contrasts59. iii) Probability of the DMN at each vertex, calculated across 
1029 individual-specific functional network delineations60. Proportion of 

the DMN assigned to each cortical type, where the DMN is defined variably 
based on different consistency thresholds. B) Using an intersection of the 
three approaches in part A, we created a highly conservative delineation of 
the DMN. Specifically, vertices were included in the conservative atlas if (i) 
deactivations were observed in more than a quarter of perceptually-driven 
tasks, (ii) contribution to the task-ICA exceeded a z-statistic of 1 and (iii) 
assignment to the DMN was observed in more than a quarter of individuals. 
Subsequently, we replicated the procedure in the primary analysis to extract the 
principal cytoarchitectural axis. Notably, similar patterns of cytoarchitectural 
differentiation are evident in this conservative delineation of the DMN. The 
conservative cytoarchitectural axis also captures a variation from peaked to flat 
profiles.
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Extended Data Fig. 4 | Lower-order eigenvectors and comparing E1 to cortical 
types. A) First five eigenvectors projected on the inflated BigBrain surface. 
For line plots on the right, staining intensity profiles were averaged within 100 
bins of the respective eigenvector and coloured by eigenvector position. B) 
i. Raincloud- and box-plots show the distribution of E1 across cortical types 
(n = 109/3785/3982/2913/282/669 for Kon/Eu-III/Eu-II/Eu-I/Dys/Ag). Box plots 
represent minimum, quartile 1, median, quartile 3 and maximum. ii. Cortical 
type assignment (1:6) was rescaled to the range of E1 then subtracted from E1, 

producing a deviation map that highlights where the type-based and data-driven 
depictions of DMN cytoarchitecture differ. Negative values indicate lower E1 
than expected by a linear relationship with cortical type, whereas positive values 
indicate higher than predicted E1. Thus, the E1 pattern is distinct to the gradient 
of laminar elaboration that is captured by the cortical types. Both are anchored 
by koniocortex on one side and agranular cortex on the other, but they differ in 
the ordering of Eu-and dysgranular areas.
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Extended Data Fig. 5 | Landscape simulations of smoothness and waviness. As 
expected, smoothness decreases with noise and increases with slope, whereas 
waviness increases with noise and decreases with slope. A) We simulated 121 
landscapes with varied slopes and bumpiness (noise). x and y values were 
identical in all landscapes, while the z-axis – reflecting E1 topography in the main 
study – was modulated in each simulation. The z-axis value was calculated as “(x 
* slope) + (rand * sigma)”, where slope is a value within [0:0.1:1], rand is a vector 

of normally distributed pseudorandom numbers the length of x and sigma is 
the product of x and a value within [0:0.1:1]. B-C) Left. Each square of the matrix 
represents a simulated landscape, with rows reflecting increasing slope and 
columns reflecting increasing noise. Centre-Right. Line plots show the outcome 
metrics of simulations per row and column, respectively. r-values represent the 
outcome of partial product-moment correlations (for example correlation of 
smoothness with noise, controlling for slope).
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Extended Data Fig. 6 | Intra- and inter-structural connectivity of the DMN 
with respect to the cytoarchitectural axis (E1) and cortical type. Variations in 
navigation efficiency as a function of the cytoarchitectural axis within the DMN, 
DMN subregion and cortical type. Panel A) involves connections from each node 
of the DMN with all nodes outside the DMN (as in the primary analysis), Panel B) 
connections from each node of the DMN to all other nodes of the DMN and Panel 
C) connections from each node of the DMN to all other nodes. Far left. Cortical 

maps show average navigation efficiency. Centre left. Scatterplots show the 
correlation of the cytoarchitectural axis (E1) with average navigation efficiency, 
with points coloured by the seed parcel’s position within the DMN. Centre right. 
Bar plots show the linear correlation coefficient (r) of E1 with average navigation 
efficiency to each cortical type. Far right. Matrix shows the average navigation 
efficiency between each subregion of the DMN and each cortical type.
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Extended Data Fig. 7 | Overview of key cortical maps. Cortical maps illustrate the key axes of variation in A-B) cytoarchitecture, C) structural connectivity and D-E) 
signal flow. Exact values for each parcel can be found in Supplementary Table 1.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Comparison of functional networks based on inter-
network connectivity to different cortical types. Coloured ridge plots on the 
left of each panel show probability distributions of connectivity between the 
functional networks and non-DMN cortical types. We evaluated the imbalance 
of connectivity across cortical types using the Kullback-Leibler (KL) divergence 
from a null model with equal connectivity to each type. On the right of each 
panel, coloured dots show the empirical KL divergence for each network and the 
grey density plots show the null distribution of KL divergence values based on 
10,000 spin permutations. A) The DMN exhibits the most balanced navigation 
efficiency across cortical types, compared to other functional networks. 

The balance of the DMN did not reach a level of significance relative to spin 
permutations, but spin permutations account for the size and distribution of the 
network, thus we may infer it is the large size and wide distribution of the network 
that enable the DMN to strike a balance in communication across cortical types. 
B) Input to the DMN is not balanced with regards to cortical types. Stronger input 
comes from heteromodal, Eu-I cortex, which aligns with the over-representation 
of this cortical type within the DMN. C) The DMN is unique amongst functional 
networks in exhibiting balanced output to all cortical types, which is further 
supported by the balance of the DMN reaching significance in spin permutation 
testing.
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Extended Data Table 1 | Cortical types by functional network

1Two-sided Kolmogorov-Smirnov tests for independence of samples were calculated between each network and the DMN. Note: entries in the centre of the table are proportions, which are 
provided relative to the functional network (ie: 29% of the visual network is koniocortical), thereby the rows approximately sum to 1 (given rounding errors). Kon=koniocortical. Eu=eulaminate. 
Dys=dysgranular. Ag=agranular. DAN=dorsal attention network. VAN=ventral attention network.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 

in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used to collect data

Data analysis Custom code for data analysis was written using MATLAB2022a. All custom code is provided in an open GitHub repository (https://

github.com/caseypaquola/DMN). 

MRI data were processed using dcm2niix (v1.0.20190902), Freesurfer (v6.0), FSL (v6.0.2), AFNI (v20.3.03), MRtrix (3.0.1) and TAPAS (v6.0.1)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A description of any restrictions on data availability 

- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data that support the findings of this study are openly available. BigBrain is available with LORIS (https://bigbrain.loris.ca/main.php55) with preprocessed 

BigBrain data available in through the BigBrainWarp GitHub repository (https://github.com/caseypaquola/BigBrainWarp56). The MICS dataset is available with 
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CONP Portal (https://portal.conp.ca/dataset?id=projects/mica-mics130) and the HCP dataset is available with Connectome DB (https://

db.humanconnectome.org/)90.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation), 

and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender In the manuscript, we report the proportions of each sex for each cohort. Sexes were relatively balanced in every cohort. Sex 

was self-reported by participants. We did not collect gender information from participants. Due to limitations of sample size, 

we did not perform sex-specific analyses.

Reporting on race, ethnicity, or 

other socially relevant 

groupings

Race, ethnicity or other socially relevant categorical variables were not used in the present study.

Population characteristics Mean±SD age=30.4±6.7 years (primary dataset), 28.8±3.8 years (secondary dataset) and 28±6.3.0 (replication dataset)

Recruitment For the present study, we recruited healthy individuals in the Montreal area via university networks. No self-selection or 

other recruitment biases are relevant to the present results.  

Ethics oversight The Ethics Committee of the Montreal Neurological Institute and Hospital approved the study. Written informed consent, 

including a statement for openly sharing all data in anonymized form, was obtained from all participants. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculations were performed, because the analyses were based on comparison between modalities (rather than between 

individuals). As such the power of our statistical analyses was related to the density of sampling across the cortex. For each analysis, we used 

the maximum number of samples across the cortex, taking into account the spatial resolution of the underlying data.

Data exclusions No participants or data were excluded from the analyses. 

Replication Primary group-level analyses were replicated at an individual-level in a separate cohort (n=8). All replication tests were successful and the full 

statistical outcomes are reported in the manuscript.

Randomization No randomization was implemented in this study, as it was an observational study with no interventions.

Blinding No blinding was implemented in this study, as it was an observational study with no interventions.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Plants

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Magnetic resonance imaging

Experimental design

Design type Structural MRI, diffusion MRI and resting-state fMRI (rsfMRI)

Design specifications For rsfMRI, the length of scan time was 7min, 14.4min and 6min for MICs, HCP and the 7T dataset, respectively.

Behavioral performance measures n/a

Acquisition

Imaging type(s) Structural MRI, diffusion MRI and resting-state fMRI (rsfMRI)

Field strength 3T and 7T

Sequence & imaging parameters Primary MRI analyses were conducted on 40 healthy adults from the microstructure informed connectomics (MICs) 

cohort (14 females, mean±SD age=30.4±6.7, 2 left-handed). Scans were completed at the Brain Imaging Centre of the 

Montreal Neurological Institute and Hospital on a 3T Siemens Magnetom Prisma-Fit equipped with a 64-channel head 

coil. Two T1w scans with identical parameters were acquired with a 3D-MPRAGE sequence (0.8mm isotropic voxels, 

TR=2300ms, TE=3.14ms, TI=900ms, flip angle=9°, iPAT=2, matrix=320×320, 224 sagittal slices, partial Fourier=6/8). T1w 

scans were visually inspected to ensure minimal head motion before they were submitted to further processing. A spin-

echo echo-planar imaging sequence with multi-band acceleration was used to obtain DWI data, consisting of three 

shells with b-values 300, 700, and 2000s/mm2 and 10, 40, and 90 diffusion weighting directions per shell, respectively 

(1.6mm isotropic voxels, TR=3500ms, TE=64.40ms, flip angle=90°, refocusing flip angle=180°, FOV=224×224 mm2, slice 

thickness=1.6mm, multiband factor=3, echo spacing=0.76ms, number of b0 images=3). One 7 min rs-fMRI scan was 

acquired using multiband accelerated 2D-BOLD echo-planar imaging (3mm isotropic voxels, TR=600ms, TE=30ms, flip 

angle=52°, FOV=240×240mm2, slice thickness=3mm, multiband factor=6, echo spacing=0.54ms). Participants were 

instructed to keep their eyes open, look at a fixation cross, and not fall asleep. Two spin-echo images with reverse phase 

encoding were also acquired for distortion correction of the rs-fMRI scans (phase encoding=AP/PA, 3mm isotropic 

voxels, FOV=240×240mm2, slice thickness=3mm, TR=4029 ms, TE=48ms, flip angle=90°, echo spacing=0.54 ms, 

bandwidth= 2084 Hz/Px). 

 

Secondary MRI analyses were conducted in 100 unrelated healthy adults (66 females, mean±SD age=28.8±3.8 years) 

from the minimally preprocessed S900 release of the Human Connectome Project (HCP) . MRI data were acquired on 

the HCP’s custom 3T Siemens Skyra equipped with a 32-channel head coil. Two T1w images with identical parameters 

were acquired using a 3D-MPRAGE sequence (0.7mm isotropic voxels, TE=2.14ms, TI=1000ms, flip angle=8°, iPAT=2, 

matrix=320×320, 256 sagittal slices; TR=2400ms,). Two T2w images were acquired using a 3D T2-SPACE sequence with 

identical geometry (TR=3200ms, TE=565ms, variable flip angle, iPAT=2). A spin-echo EPI sequence was used to obtain 

diffusion weighted images, consisting of three shells with b-values 1000, 2000, and 3000s/mm2 and up to 90 diffusion 

weighting directions per shell (TR=5520ms, TE=89.5ms, flip angle=78°, refocusing flip angle=160°, FOV=210×180, 

matrix=178×144, slice thickness=1.25mm, mb factor=3, echo spacing=0.78ms). Four rs-fMRI scans were acquired using 

multi-band accelerated 2D-BOLD echo-planar imaging (2mm isotropic voxels, TR=720ms, TE=33ms, flip angle=52°, 

matrix=104×90, 72 sagittal slices, multiband factor=8, 1200 volumes/scan, 3456 seconds). Only the first session was 

investigated in the present study. Participants were instructed to keep their eyes open, look at a fixation cross, and not 

fall asleep. Nevertheless, some subjects were drowsy and may have fallen asleep121, and the group-averages 

investigated in the present study do not address these inter-individual differences.  

 

Individual-level replication analyses were conducted on 8 healthy adults (5 females, mean±SD age=28±6.3, 1 left-

handed). Scans were completed at the Brain Imaging Centre of the Montreal Neurological Institute and Hospital on a 7T 

Siemens Magnetom Terra System equipped with a 32/8 channel receive/transmit head coil. Two qT1 scans were 

acquired across two scanning sessions with identical 3D-MP2RAGE sequences (0.5mm isotropic voxels, TR=5170ms, 

TE=2.44ms, T11/2=1000/3200ms, flip angles=4°, matrix=488×488, slice thickness=0.5mm, partial Fourier=0.75). qT1 

maps from the second session were linearly registered to the qT1 maps from the first session, then averaged, to 

enhanced the signal to noise ratio. A spin-echo echo-planar imaging sequence with multi-band acceleration was used to 

obtain DWI data, consisting of three shells with b-values 300, 700, and 2000s/mm2 and 10, 40, and 90 diffusion 

weighting directions per shell, respectively (1.1mm isotropic voxels, TR=7383ms, TE=70.6ms, flip angle=90°, 

matrix=192×192, slice thickness=1.1mm, multiband factor=2, echo spacing=0.26ms, number of b0 images=3, partial 

Fourier=0.75). One 6 min rs-fMRI scan was acquired using multi-echo, multiband accelerated 2D-BOLD echo-planar 
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imaging (1.9mm isotropic voxels, TR=1690ms, TE1/2/3=10.8/27.3/43.8ms, flip angle=67°, matrix=118x118, multiband 

factor=3, echo spacing=0.54ms, partial Fourier=0.75). Participants were instructed to keep their eyes open, look at a 

fixation cross, and not fall asleep. Two multiband accelerated spin-echo images with reverse phase encoding were also 

acquired for distortion correction of the rs-fMRI scans. 

Area of acquisition Whole brain

Diffusion MRI Used Not used

Parameters MICs: b-values 300, 700, and 2000s/mm2 and 10, 40, and 90 diffusion weighting directions per shell 

HCP: three shells with b-values 1000, 2000, and 3000s/mm2 and up to 90 diffusion weighting directions per shell 

7T:  three shells with b-values 1000, 2000, and 3000s/mm2 and up to 90 diffusion weighting directions per shell

Preprocessing

Preprocessing software Preprocessing was conducted with micapipe for the MICs and 7T data and with the HCP minimally-processed pipeline for the 

HCP dataset. These packages furthermore depend on FreeSurfer, ANTs and FSL. 

Normalization Nonlinear transformation matrices were generated between DWI space and native T1w space to align tissue type 

segmentations and parcellations to DWI images. 

Nonlinear surface registrations were used to align structural MRI and rsfMRI to a standard template.

Normalization template We used fsaverage as a standard surface template.

Noise and artifact removal For 3T datasets, rsfMRI timeseries were corrected for gradient nonlinearity, head motion, bias field and scanner drifts, then 

structured noise components were removed using ICA-FIX, further reducing the influence of motion, non-neuronal 

physiology, scanner artefacts and other nuisance sources. A similar procedure was used for the 7T dataset, however, the 

"tedana" software package was used rather than ICA-FIX, because tedana it is optimised for multi-echo data. 

 

All DWI scans underwent b0 intensity normalization and were corrected for susceptibility distortion, head motion, and eddy 

currents.

Volume censoring The first five volumes of each rsfMRI scan were discarded to ensure magnetic field saturation. No further volume censoring 

was employed.

Statistical modeling & inference

Model type and settings Product-moment correlations were performed between cortical maps.

Effect(s) tested The strength of correlation between cortical maps.

Specify type of analysis: Whole brain ROI-based Both

Anatomical location(s) Whole brain as well as analyses focused on the default mode network

Statistic type for inference

(See Eklund et al. 2016)

Significance thresholds were set at p<0.05 for one-sided tests and p<0.025 for two-sided tests.

Correction Spin permutation testing was used to correct the statistical analyses, whereby the correction accounts for the known spatial 

autocorrelation of cortical maps.

Models & analysis

n/a Involved in the study

Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity For functional connectivity analyses, product-moment correlations were used. 

For effective connectivity analyses, regression dynamic causal modelling was used.
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