001040868 001__ 1040868
001040868 005__ 20250414120452.0
001040868 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2024.116709
001040868 0247_ $$2ISSN$$a0955-2219
001040868 0247_ $$2ISSN$$a1873-619X
001040868 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02028
001040868 0247_ $$2WOS$$aWOS:001275754400001
001040868 037__ $$aFZJ-2025-02028
001040868 082__ $$a660
001040868 1001_ $$0P:(DE-Juel1)171262$$aWang, Jiayue$$b0$$eCorresponding author
001040868 245__ $$aRecommended strategies for quantifying oxygen vacancies with X-ray photoelectron spectroscopy
001040868 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2024
001040868 3367_ $$2DRIVER$$aarticle
001040868 3367_ $$2DataCite$$aOutput Types/Journal article
001040868 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1742883768_23217
001040868 3367_ $$2BibTeX$$aARTICLE
001040868 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040868 3367_ $$00$$2EndNote$$aJournal Article
001040868 520__ $$aOxygen vacancies play a crucial role in shaping the properties of metal oxides for diverse applications such as catalysis, ferroelectricity, magnetism, and superconductivity. Although X-ray photoelectron spectroscopy (XPS) is a robust tool, accurate quantification of oxygen vacancies remains a challenge. A common mistake in XPS analysis is associating the 531–532 eV feature in O 1s spectra with oxygen vacancies. This is incorrect because a vacant oxygen site does not emit photoelectrons and therefore does not generate a direct XPS spectral feature. To address this issue, we propose three alternative approaches for oxygen vacancy analysis with XPS through indirect features: (1) quantifying cation valence state variations, (2) assessing oxygen nonstoichiometry via normalized oxygen spectral intensity, and (3) evaluating Fermi energy changes from electrostatic shifts in the binding energy. The recommended strategies will facilitate precise XPS analysis of oxygen vacancies, promoting future studies in understanding and manipulating oxygen vacancies for advanced material development.
001040868 536__ $$0G:(DE-HGF)POF4-632$$a632 - Materials – Quantum, Complex and Functional Materials (POF4-632)$$cPOF4-632$$fPOF IV$$x0
001040868 536__ $$0G:(GEPRIS)319443528$$aDFG project G:(GEPRIS)319443528 - Magnetfeldunterstützte chemische Gasphasenabscheidung von Übergansmetalloxiden und in situ Untersuchungen der elektronischen Struktur mit Hilfe von Roentgenabsorptionsspektroskopie (MagSpec) (319443528)$$c319443528$$x1
001040868 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040868 7001_ $$0P:(DE-Juel1)166093$$aMüller, David$$b1$$ufzj
001040868 7001_ $$aCrumlin, Ethan J.$$b2
001040868 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2024.116709$$gVol. 44, no. 15, p. 116709 -$$n15$$p116709$$tJournal of the European Ceramic Society$$v44$$x0955-2219$$y2024
001040868 8564_ $$uhttps://juser.fz-juelich.de/record/1040868/files/1-s2.0-S095522192400582X-main.pdf$$yOpenAccess
001040868 909CO $$ooai:juser.fz-juelich.de:1040868$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001040868 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166093$$aForschungszentrum Jülich$$b1$$kFZJ
001040868 9131_ $$0G:(DE-HGF)POF4-632$$1G:(DE-HGF)POF4-630$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vMaterials – Quantum, Complex and Functional Materials$$x0
001040868 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-01
001040868 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2025-01-01
001040868 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2025-01-01
001040868 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2025-01-01
001040868 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
001040868 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2025-01-01
001040868 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ EUR CERAM SOC : 2022$$d2025-01-01
001040868 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-01
001040868 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-01
001040868 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040868 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2025-01-01
001040868 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ EUR CERAM SOC : 2022$$d2025-01-01
001040868 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-01
001040868 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-01
001040868 920__ $$lno
001040868 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$kPGI-6$$lElektronische Eigenschaften$$x0
001040868 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x1
001040868 980__ $$ajournal
001040868 980__ $$aVDB
001040868 980__ $$aUNRESTRICTED
001040868 980__ $$aI:(DE-Juel1)PGI-6-20110106
001040868 980__ $$aI:(DE-Juel1)PGI-7-20110106
001040868 9801_ $$aFullTexts