001     1040868
005     20250414120452.0
024 7 _ |a 10.1016/j.jeurceramsoc.2024.116709
|2 doi
024 7 _ |a 0955-2219
|2 ISSN
024 7 _ |a 1873-619X
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02028
|2 datacite_doi
024 7 _ |a WOS:001275754400001
|2 WOS
037 _ _ |a FZJ-2025-02028
082 _ _ |a 660
100 1 _ |a Wang, Jiayue
|0 P:(DE-Juel1)171262
|b 0
|e Corresponding author
245 _ _ |a Recommended strategies for quantifying oxygen vacancies with X-ray photoelectron spectroscopy
260 _ _ |a Amsterdam [u.a.]
|c 2024
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1742883768_23217
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Oxygen vacancies play a crucial role in shaping the properties of metal oxides for diverse applications such as catalysis, ferroelectricity, magnetism, and superconductivity. Although X-ray photoelectron spectroscopy (XPS) is a robust tool, accurate quantification of oxygen vacancies remains a challenge. A common mistake in XPS analysis is associating the 531–532 eV feature in O 1s spectra with oxygen vacancies. This is incorrect because a vacant oxygen site does not emit photoelectrons and therefore does not generate a direct XPS spectral feature. To address this issue, we propose three alternative approaches for oxygen vacancy analysis with XPS through indirect features: (1) quantifying cation valence state variations, (2) assessing oxygen nonstoichiometry via normalized oxygen spectral intensity, and (3) evaluating Fermi energy changes from electrostatic shifts in the binding energy. The recommended strategies will facilitate precise XPS analysis of oxygen vacancies, promoting future studies in understanding and manipulating oxygen vacancies for advanced material development.
536 _ _ |a 632 - Materials – Quantum, Complex and Functional Materials (POF4-632)
|0 G:(DE-HGF)POF4-632
|c POF4-632
|f POF IV
|x 0
536 _ _ |a DFG project G:(GEPRIS)319443528 - Magnetfeldunterstützte chemische Gasphasenabscheidung von Übergansmetalloxiden und in situ Untersuchungen der elektronischen Struktur mit Hilfe von Roentgenabsorptionsspektroskopie (MagSpec) (319443528)
|0 G:(GEPRIS)319443528
|c 319443528
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Müller, David
|0 P:(DE-Juel1)166093
|b 1
|u fzj
700 1 _ |a Crumlin, Ethan J.
|b 2
773 _ _ |a 10.1016/j.jeurceramsoc.2024.116709
|g Vol. 44, no. 15, p. 116709 -
|0 PERI:(DE-600)2013983-4
|n 15
|p 116709
|t Journal of the European Ceramic Society
|v 44
|y 2024
|x 0955-2219
856 4 _ |u https://juser.fz-juelich.de/record/1040868/files/1-s2.0-S095522192400582X-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1040868
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)166093
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF4-630
|0 G:(DE-HGF)POF4-632
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Materials – Quantum, Complex and Functional Materials
|x 0
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2025-01-01
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-01
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J EUR CERAM SOC : 2022
|d 2025-01-01
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-01
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2025-01-01
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J EUR CERAM SOC : 2022
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-01
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-01
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-7-20110106
|k PGI-7
|l Elektronische Materialien
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21