001040907 001__ 1040907
001040907 005__ 20250804202236.0
001040907 0247_ $$2doi$$a10.1016/j.future.2025.107802
001040907 0247_ $$2ISSN$$a0167-739X
001040907 0247_ $$2ISSN$$a1872-7115
001040907 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02051
001040907 0247_ $$2WOS$$aWOS:001453111900001
001040907 037__ $$aFZJ-2025-02051
001040907 041__ $$aEnglish
001040907 082__ $$a004
001040907 1001_ $$0P:(DE-Juel1)201930$$aBartolomeu, Rodrigo$$b0
001040907 245__ $$aEffect of implementations of the N-body problem on the performance and portability across GPU vendors
001040907 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2025
001040907 3367_ $$2DRIVER$$aarticle
001040907 3367_ $$2DataCite$$aOutput Types/Journal article
001040907 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745843736_9743
001040907 3367_ $$2BibTeX$$aARTICLE
001040907 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040907 3367_ $$00$$2EndNote$$aJournal Article
001040907 520__ $$aSince Aurora entered the TOP500 list in November 2023, the top ten systems saw some shifts in the ratio of GPU vendors represented. With each vendor supplying their own preferred programming models for their hardware, it becomes relevant to compare the portability of these models on other hardware platforms. For the present paper we implemented the N-body problem with different optimizations using native and portable programming frameworks. For each of those we determined the best performing optimized version on one target architecture and compared the performance achieved for each platform.
001040907 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001040907 536__ $$0G:(EU-Grant)101093169$$aMultiXscale - Centre of Excellence in exascale-oriented application co-design and delivery for multiscale simulations (101093169)$$c101093169$$fHORIZON-EUROHPC-JU-2021-COE-01$$x1
001040907 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040907 7001_ $$0P:(DE-Juel1)132124$$aHalver, René$$b1
001040907 7001_ $$0P:(DE-Juel1)132189$$aMeinke, Jan H.$$b2$$eCorresponding author
001040907 7001_ $$0P:(DE-Juel1)132274$$aSutmann, Godehard$$b3
001040907 773__ $$0PERI:(DE-600)2020551-X$$a10.1016/j.future.2025.107802$$gp. 107802 -$$p107802$$tFuture generation computer systems$$v169$$x0167-739X$$y2025
001040907 8564_ $$uhttps://juser.fz-juelich.de/record/1040907/files/Bartolomeu2025_Effect.pdf$$yOpenAccess
001040907 8767_ $$d2025-08-04$$eHybrid-OA$$jDEAL
001040907 909CO $$ooai:juser.fz-juelich.de:1040907$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
001040907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201930$$aForschungszentrum Jülich$$b0$$kFZJ
001040907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132124$$aForschungszentrum Jülich$$b1$$kFZJ
001040907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132189$$aForschungszentrum Jülich$$b2$$kFZJ
001040907 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132274$$aForschungszentrum Jülich$$b3$$kFZJ
001040907 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001040907 9141_ $$y2025
001040907 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-17
001040907 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-17
001040907 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-17
001040907 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040907 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFUTURE GENER COMP SY : 2022$$d2024-12-17
001040907 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-17
001040907 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-17
001040907 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040907 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bFUTURE GENER COMP SY : 2022$$d2024-12-17
001040907 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-17
001040907 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-17
001040907 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001040907 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001040907 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001040907 915pc $$0PC:(DE-HGF)0125$$2APC$$aDEAL: Elsevier 09/01/2023
001040907 920__ $$lyes
001040907 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001040907 9801_ $$aFullTexts
001040907 980__ $$ajournal
001040907 980__ $$aVDB
001040907 980__ $$aUNRESTRICTED
001040907 980__ $$aI:(DE-Juel1)JSC-20090406
001040907 980__ $$aAPC