
Future Generation Computer Systems 169 (2025) 107802

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Effect of implementations of the N-body problem on the performance and

portability across GPU vendors
Rodrigo A.C. Bartolomeu a , René Halver a , Jan H. Meinke a ,∗, Godehard Sutmann a,b
a Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, Forschungszentrum Jülich, 52425, Jülich, Germany
b ICAMS, Ruhr-Universität Bochum, 44801, Bochum, Germany

A R T I C L E I N F O

Keywords:
GPU
High Performance Computing
N-body problem
Programming models
Performance portability

 A B S T R A C T

Since Aurora entered the TOP500 list in November 2023, the top ten systems saw some shifts in the ratio
of GPU vendors represented. With each vendor supplying their own preferred programming models for their
hardware, it becomes relevant to compare the portability of these models on other hardware platforms. For
the present paper we implemented the N-body problem with different optimizations using native and portable
programming frameworks. For each of those we determined the best performing optimized version on one
target architecture and compared the performance achieved for each platform.
1. Introduction

About 20 years ago Nvidia introduced CUDA for programming
their general-purpose graphics processing units (GPGPU). Since then
many simulation codes have included support for offloading either
parts or even all of their work to GPUs. For many years, Nvidia
dominated the GPGPU and especially the high-performance computing
(HPC) GPU market and a majority of developers used CUDA to write
their GPU programs. Nvidia fostered this development with its tools,
support, documentation and user community events. Those developers
that wanted to use a single code base for their CPU and their GPU
code were encouraged by Nvidia to use OpenACC (a pragma-based
model) and more recently standard-based programming of GPUs using,
e.g., Fortran’s ‘‘do concurrent’’ or the parallel algorithms introduced
with C++17. There were cross-vendor attempts to establish alternatives
such as OpenCL, but they never became strong competitors.

At the same time, developers needed both flexible and portable, in
particular performance portable, solutions [1] to avoid vendor lock-in.
Several C++ frameworks, e.g., Alpaka [2], Kokkos [3], Phalanx [4],
Raja [5], Thrust [6], and UPC [7] were developed to provide abstrac-
tions. They can be compiled for different GPUs and CPUs and promise
not only functional portability but also performance portability across
CPUs and GPUs from different vendors.

When the Department of Energy announced1 that the first exascale
system Frontier, hosted at Oak Ridge National Laboratory, would use
AMD MI250 GPUs, vendor-portable solutions took on a new impor-
tance. AMD’s GPUs need to be programmed with HIP or OpenMP. To

∗ Corresponding author.
E-mail addresses: r.bartolomeu@fz-juelich.de (R.A.C. Bartolomeu), r.halver@fz-juelich.de (R. Halver), j.meinke@fz-juelich.de (J.H. Meinke),

g.sutmann@fz-juelich.de (G. Sutmann).
1 U.S. Department of Energy and Cray to Deliver Record-Setting Frontier Supercomputer at ORNL, May 7, 2019.

take advantage of Frontier, codes that had previously been ported to
GPUs using CUDA or OpenACC needed to be adapted. In November
2023, Argonne National Laboratory’s new system, Aurora, entered the
TOP500 list as number 2. It is based on Intel GPU Max and CPUs and
uses SYCL as its preferred programming model. Again, developers that
used CUDA or HIP before, needed to modify their code to run it on the
new machine. Developers that used a portable programming model, on
the other hand, had to wait until the model became available on the
new machine, but ideally did not have to modify their own codes. With
the TOP500 list published in November 2024, the majority of GPU-
accelerated systems in the top 10 systems contain GPUs from AMD. This
underlines the importance of portable code solutions to avoid a vendor
lock-in and to be ready for changes in the HPC accelerator landscape
in the future.

With the development of new GPUs from different vendors, it is an
ongoing monitoring process, how well portable frameworks perform
and how versatile they can be applied. The initial question is, whether
a portable framework is already available and functional on a given ar-
chitecture. While the notion of portability between different platforms
is based on successful program execution (and therefore easy to define),
the definition of performance portability and a metric to measure it, is
more involved.

A common approach to assess the performance and capabilities
of portable programming models is to use mini-apps or even full
applications to gather relevant information [1,8] either by porting one
vailable online 12 March 2025
167-739X/© 2025 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2025.107802
Received 6 December 2024; Received in revised form 13 February 2025; Accepted
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1 March 2025

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs
https://orcid.org/0000-0002-2066-2824
https://orcid.org/0000-0002-4895-3762
https://orcid.org/0000-0003-2831-9761
https://orcid.org/0000-0002-9004-604X
https://www.top500.org
mailto:r.bartolomeu@fz-juelich.de
mailto:r.halver@fz-juelich.de
mailto:j.meinke@fz-juelich.de
mailto:g.sutmann@fz-juelich.de
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://www.energy.gov/articles/us-department-energy-and-cray-deliver-record-setting-frontier-supercomputer-ornl
https://doi.org/10.1016/j.future.2025.107802
https://doi.org/10.1016/j.future.2025.107802
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2025.107802&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.

into various performance portable programming models [9–12] or by
porting many mini-apps into one performance portable programming
model and compare the findings to other available versions [13]. In
this paper we focus on the N-body problem.

The N-body problem has been popular on GPUs from the begin-
ning [14]. It has been included with the examples in the CUDA SDK
since version 1.1 and there are implementations available in other
programming models as well emphasizing different features of the N-
Body problem [15,16]. In the present paper we implement an N-body
particle dynamics code with gravitational interactions with different
portability solutions. In contrast to miniBUDE, e.g., used in [8,16] that
focuses on docking and calculates the energy of the configuration, the
codes used in this paper compute the force on each particle and perform
an integration of the equation of motion. The programs are written in
a straightforward manner as might be used by a scientific programmer,
for example, a Ph.D. student in physics. Our goal is to provide scientist
with some guidance and answer questions such as which programming
model can be used on which platform? What does code written in this
model look like? How much performance do I loose in comparison to
the same code written in a less portable programming model?

The present work is a continuation of our work presented in [17].
We include results for additional programming models and GPU plat-
form combinations. We added an implementation for HIP that uses
shared memory and two implementations for SYCL that allow us to
control the distribution of work (SYCL (nd)) and also let us take
advantage of shared memory (SYCL (s)). Furthermore, we investigate
the effect of typical algorithmic choices in the implementation of the
N-body force calculation on performance and present some results
running the programs on CPUs where possible. It presents a first step
towards a more general portability benchmark framework.

2. The N-body problem

The N-body problem is an important problem class and has been
listed as one of the seven original dwarfs in Ref. [18] each of which rep-
resents a compelling use case worth studying with its own challenges.

Many scientific fields require the computation of forces between
pairs of interacting particles, e.g., gravitational forces in astrophysics,
electrostatic forces in charged systems, van der Waals forces for mod-
eling atomic systems, etc.

In this paper, we use the gravitational potential between particles,

𝑈 (𝑑𝑖𝑗) = −𝐺
𝑚𝑖𝑚𝑗

𝑑𝑖𝑗
, (1)

where 𝐺 = 6.6743 ⋅ 10−11 m3

kg s2
 is the gravitational constant 𝑑𝑖𝑗 = |𝐫𝑖𝑗 | is

the distance between the two particles 𝑖 and 𝑗, 𝐫𝑖𝑗 = 𝐫𝑖 − 𝐫𝑗 and 𝑚𝑖 and
𝑚𝑗 are the masses of the respective particles. Given a potential 𝑈 (𝑑𝑖𝑗),
the force 𝐅𝑖𝑗 between the particles 𝑖 and 𝑗 is given as

𝐅𝑖𝑗 = −∇𝑈 (𝑑𝑖𝑗) = −𝐺
𝑚𝑖𝑚𝑗

𝑑3𝑖𝑗
𝐫𝑖𝑗 . (2)

The total force acting on particle 𝑖 is then given by the sum over all
other particles
𝐅𝑖 =

∑

𝑗≠𝑖
𝐅𝑖𝑗 . (3)

To obtain the trajectory of each particle, Newton’s equations of motion

𝐱̇𝑖 = 𝐯𝑖 , 𝐯̇𝑖 = 𝐚𝑖 =
𝐅𝑖
𝑚𝑖

, (4)

are integrated, where the dot-notation means the time derivative, 𝐚𝑖 is
the acceleration and 𝑚𝑖 the mass of particle 𝑖.

The gravitational N-body problem (the 4th dwarf in Ref. [18])
is a representative of an algorithmic method which includes long-
range interactions in open-boundaries and includes summation over all
particle pairs in the system to compute the forces on each particle,
2

which makes the natural computational complexity (𝑁2). To avoid
the quadratic complexity, more efficient methods, like the Barnes–Hut
tree method or the fast multipole method (FMM), which reduce the
complexity to (𝑁 log(𝑁)) or (𝑁) can be used. Since these methods
have a high level of complexity and their performance strongly depends
on the implementation and optimization, we focus here on a simple im-
plementation, based on the all-pairs computation of energies and forces,
which isolates the performance outcome from algorithmic issues.

3. Programming models

In this section we provide brief summaries of the programming
models used in this study.

CUDA (Compute Unified Device Architecture) is an application pro-
gramming interface (API) for programming GPU devices from Nvidia.
CUDA is based on C++ with Fortran support provided by the NVHPC
SDK. It provides functions for allocating data on the GPU and transfer-
ring data between the GPU and the host. This data can be processed
with kernels, which are executed on the GPU.

For kernel execution, threads are organized in blocks, and blocks
are organized in a grid. The maximum number of threads in a block
and blocks in a grid is determined by the specific hardware. GPUs
provide a hierarchical memory layout that can be utilized with CUDA,
distinguishing between global and shared memory. Global memory is
the main memory of the device, while shared memory is similar to a
programmable L1 cache shared between threads of the same block.

CUDA kernels are void functions starting with the __global__ key-
word. Kernels are launched with a special syntax that passes the launch
configuration (shape of the grid and shape of a thread block) within
triple chevrons (<<<...,...>>>). The launch configuration determines the
number of threads (total number of threads is equal to the number
of blocks in a grid multiplied by the number of threads in a block).
Threads are characterized by their lightness and a GPU can efficiently
manage millions of threads.

Within a kernel the built-in variables threadIdx, blockIdx and blockDim
allow each thread to determine its global and local (within a thread
block) position in up to three dimensions. Each thread in a launch
executes the same kernel, but may follow different paths depending on
its position. Additionally, CUDA kernels can call functions having the
__device__ attribute in the function declaration. Often such functions
are marked also with the __host__ attribute to indicate that they can
be called from the host program as well.

HIP is a C++ API closely mimicking the CUDA API, but replacing
the cuda prefix with hip. Kernels are defined and called in the same
way as in CUDA. A program using the HIP API can be compiled for
Nvidia GPUs using nvcc and for AMD GPUs using hipcc. In addition,
efforts are on the way to enable compilation of HIP programs for Intel
GPUs using the Intel Level Zero API [19].

Kokkos [3,20] is a C++ based API for writing performance-portable
code for HPC hardware architectures. It introduces abstraction layers
for code execution and data management, enabling code execution on
diverse hardware platforms. For this purpose, it utilizes backends, such
as CUDA, HIP, OpenMP, or SYCL, which allow for the compilation and
execution of the code on various architectures without the need for
source code alterations.

The Kokkos programming model allows for multiple execution and
memory spaces in a single program in addition to the default execu-
tion space and default host execution space that are defined during
initialization based on the enabled and available spaces. This makes
it possible to distribute work across different parallel devices, for
example, CPUs and GPUs. It is fairly straightforward to use compile
time switches to use different execution spaces, e.g.,
/ / de f in i t ions for Kokkos spaces
using HostSpace = Kokkos : : HostSpace ;

i f de f PPBS_KOKKOS_CUDA

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.

q

using ExecutionSpace = Kokkos : : Cuda ;
using DeviceSpace = Kokkos : : CudaSpace ;
const std : : s t r ing KOKKOSTYPE = "Cuda" ;
e l i f PPBS_KOKKOS_HIP
using ExecutionSpace = Kokkos : : HIP ;
using DeviceSpace = Kokkos : : HIPSpace ;
const std : : s t r ing KOKKOSTYPE = "HIP " ;
. . .

Kokkos introduces a parallel_for loop. The loop takes a range in-
cluding an execution space and a function object usually implemented
using a KOKKOS_LAMBDA that contains the code to be executed for
each element of the range as arguments:
Kokkos : : pa ra l l e l _ fo r (

Kokkos : : RangePolicy<ExecutionSpace>
(0 , pa r t i c l es . n) ,
KOKKOS_LAMBDA(const int &i) {

/ / Perform calcu la t ion . . .
}) ;

In addition it provides specialized implementations for reductions
(parallel_reduce) and scans (parallel_scan).

The macro KOKKOS_LAMBDA maps to a host-device lambda func-
tion for CUDA and HIP backends
__host__ __device__ [] () { } ;

and to a regular C++ lambda function for other backends.
SYCL is a C++ API developed as an open standard by the Khronos

Group. SYCL programs can run on CPUs, GPUs, FPGAs, and other
accelerators. It can launch basic data parallel kernels similar to Kokkos
or the pSTL or explicit nd-range kernels, where each item belongs to an
execution group comparable to thread blocks in CUDA and HIP. Each
kernel is submitted to a queue, and data dependencies between kernels
determine the order of execution. If there are no dependencies, they
may run in parallel. A program using SYCL can have multiple queues,
e.g., for different devices. The call for a basic data-parallel kernel is
very similar to the one in Kokkos:
. submit ([&] (handler& h) {
/ / Request access to data
accessor x (x_buf , h , read_only) ;
. . .
h . pa ra l l e l _ fo r (N, [=] (auto id) {

/ / Perform calcu la t ion
}) ;

}) ;

The basic data-parallel kernel leaves the distribution of work items
to the runtime. Work items can be executed in any order and no
communication between work items is possible. A second version of
the parallel_for statement takes an nd-range, which provides a work-
groups size in addition to the problem size. The problem size must be an
integer multiple of the work group size. A work group is equivalent to
a thread block in CUDA. Threads within a work group can synchronize
easily and make use of local memory (shared memory in CUDA).

OpenACC provides a set of compiler directives and an API to map
parallelizable code regions to accelerators, such as GPUs or multi-
core CPUs for C, C++, and Fortran. It was first released in 2011
combining ideas from CAPS, Cray, PGI, and NVIDIA to port exist-
ing CPU codes to GPUs with minimal changes to the code base. It
provides high-level directives, for example, #pragma acc kernel and
#pragma acc parallel loop, to indicate such regions:
#pragma acc kernels
for (auto i = 0 ; i < N; ++ i) {

for (auto j = 0 ; j < N; ++ j) {
i f (i != j) {
. . . / / do some work
}

}
}

3

The compiler is free to generate GPU kernels from the two nested
loops in any way it sees fit. A compiler that does not support OpenACC
will just ignore the pragmas and compile the code as a regular C++
program.

OpenACC also provides directives and clauses to manage the data
flow between the host and the device, which is often essential to
achieve good performance. OpenACC’s approach is considered more
descriptive than prescriptive compared to OpenMP.

OpenMP was the inspiration for OpenACC. Since its first release,
in 1997, OpenMP has been one of the most popular ways to provide
parallelism for shared memory CPU codes. Just like OpenACC it pro-
vides compiler directives that can be ignored by a compiler that does
not know about them, an API, and libraries to generate parallel regions
of a code as well as directives for managing the data flow between
host and device. It is available for C, C++, and Fortran. Support for
accelerators was included with the 4.0 release in 2013 [21]. While it
took a long time to implement all of the features in the 4.0 standard,
OpenMP offload to target devices is by now fully supported by different
compilers. In GCC this is achieved using libgomp, in LLVM, libomptarget,
and NVHPC internally uses the Thrust library, which leads to the
linking of OpenACC libraries. Using OpenMP, the above code can be
written as
#pragma omp target teams d is t r ibu te pa ra l l e l for
for (auto i = 0 ; i < N; ++ i) {

for (auto j = 0 ; j < N; ++ j) {
i f (i != j) {
. . . / / do some work
}

}
}

An OpenMP capable compiler can offload this code block to a device
and distribute the work of the outer loop over multiple teams and
multiple threads within a team.

pSTL. C++17 introduced execution policies and made them an
optional argument for several standard library algorithms. Execution
policies provide hints to the compiler and the runtime if an algorithm
can run in parallel. The set of algorithms that supports execution
policies comprises the parallel Standard Template Library (pSTL). As of
C++23, there is no standard way to specify where the algorithm should
run. The default assumption is that it runs on the same device as the
rest of the program.

With its release of the HPC SDK in 2020, Nvidia introduced a flag
−stdpar to its compiler, that allows it to take pSTL algorithms with
a parallel execution policy and run them on a CUDA capable GPU.
For many C++ containers, data management can be handled similarly
to the way we describe for our CUDA implementation. If you use
−stdpar the default allocator is changed to one that uses managed
memory making the data of many standard containers accessible on
the GPU. For systems that use an A100 or newer Nvidia GPU and a
kernel with heterogeneous memory management (HMM) enabled, all
memory allocated by the system becomes accessible on the GPU. This
makes even more data structures and pSTL algorithms available for
execution on a GPU. With Grace Hopper Nvidia enables this feature
in hardware [22].

Intel chose a different way to bring pSTL algorithms to devices.
In addition to its regular implementation of the STL, Intel supports a
second implementation of the STL with oneDPL. A vendor implement-
ing the STL is allowed to define additional execution policies. oneDPL
introduces a way to create execution policies that incorporate SYCL
queues. A parallel algorithm using such an execution policy will offload
the work to the device associated with the queue. For convenience,
oneDPL also provides dpcpp_default, which executes the algorithm
using the default queue on the default device. The device chosen can be
controlled using environment variables. The Intel compiler provides the

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.

d
Figure 1. Sequence of operations and program flow within the N-body problem. The
main phase of the program is repeated for 𝑁𝑡 iterations, each computing a discrete time
step of size 𝑑𝑡. P.I.: particle initialization; F.C.: force computation; 𝛥𝑟: propagation of
positions in Velocity Verlet; 𝛥𝑣: propagation of half step velocities in Velocity Verlet
integrator.

Figure 2. Snapshots from the simulation. The panels show six equally spaced (in time)
snapshots of the system. We start by placing masses on the vertices of a cubic lattice
with a lattice spacing of one meter. The cube contains 16 × 16 × 16 point masses.

command line flag −fsycl−pstl−offload, which maps all algorithms us-
ing the execution policy std ::execution::par_unseq to the corresponding
oneDPL algorithms with the dpcpp_default execution policy.

Starting with ROCm 6.1 AMD added HIPSTDPAR (aka roc-stdpar)
to its stack. Similarly to −stdpar for Nvidia and −fsycl−pstl−offload,
the flag −−hipstdpar offloads all algorithms with an execution policy
set to par_unseq to the GPU. Unfortunately, ROCm 6.1 is not available
on our MI250 test nodes, yet, and we were therefore unable to test it.
Instead we used AdpativeCpp as a vendor independent solution.

AdaptiveCpp maps the pSTL algorithms to one or more calls to SYCL
kernels with a tight integration between compiler and runtime [23]. It
supports offloading to AMD, Intel, and Nvidia GPUs in a single binary.

4. Implementations

The studied implementations calculate explicitly the pair-wise in-
teractions between 𝑁 particles in the system, resulting in an (𝑁2)
complexity. Fig. 1 shows the functions that need to be implemented:
force calculation, position propagation, and velocity propagation. Compact,
self-contained functions like this are the first candidates for porting to
GPU kernels.

The first computation of the force is no different from the rest but
needs to be done before entering the loop since it is required by the
Velocity Verlet method, which is used here, to integrate the equations
of motion [24].

The simulation setup starts by arranging particles on a regular
cubic grid of length 𝐿 (c.f. Fig. 2). The total number of particles is
𝑁 = 𝐿3. Most of our implementations perform the initialization on the
GPU. All of our implementations offload the force calculation, position
4

propagation, and velocity propagation to the GPU. After the initial
force calculation, the data usually resides in GPU memory, i.e., memory
transfer does not play a critical role in our measurements.

Keeping the data on the GPU as long as possible is, in general,
an important factor for an efficient GPU implementation. The force
calculation includes a double-loop over all particles and is compute
intensive with a very high arithmetic intensity (operations per loaded
byte), while the two propagation kernels consist of single loops with
a low arithmetic intensity. Nevertheless, there is still a benefit for the
performance of the application when executing these functions on the
GPU since data transfer is avoided.

We use C++ and various frameworks. Other language choices,
e.g., Fortran, Julia, or Python, are possible, but beyond the scope of
the present paper. For an overview of the support of various vendors
of the most popular frameworks see [25].

In the following, we briefly describe the common and unique fea-
tures of the different implementations.

Our CUDA implementation uses CUDA’s managed memory and C++
allocators. They define the way memory is assigned to a data structure
when it requests memory via new. Our allocator uses cudaMallocManage
to reserve memory that can be accessed from the CPU and the GPU. To
use it, we define CudaVector with the using keyword:
template <typename T>
using CudaVector = std : : vector <T ,

CudaAllocator<T>>;

Now we can use CudaVector just like any other std ::vector.
The particle initialization kernel computes the location of the par-

ticles and stores them in the respective buffers. Masses and velocities
are directly initialized during instantiation using our CudaVector. The
following line allocates memory for 𝑁 elements and sets their value to
MASS:

CudaVector<fp> m(N, MASS) ;

Using allocators with standard containers instead of the frequently
encountered direct use of pointers with cudaMalloc and cudaFree frees
the programmer from dealing with the memory management avoiding
many common pitfalls and security issues.

Each of the kernels works on the data stored in the managed mem-
ory, which, since it is not accessed from the host, resides on the devices.
The managed memory is only accessed from the host, whenever the
total sum of forces is computed to check for correctness of the results.

Function calls require the passing of the launch configuration within
triple chevrons (<<<...,...>>>). The call to compute the forces is as
follows

forceComputation<<<forceGridSize ,
FORCE_THREAD_SIZE>>>(

N,
x . data () , y . data () , z . data () , m. data () ,
fx . data () , fy . data () , f z . data ()) ;

We implemented two variants for the force computation kernel.
Each thread calculates the force on a particle (c.f. Eq. (3)). In the
base implementation, positions and masses of the interaction partners
are loaded directly from global memory.

The advanced implementation uses shared memory. Instead of loading
the data directly from global memory, each thread in a thread block
copies data from the global memory into buffers residing in shared
memory. This utilizes coalesced memory access and minimizes memory
loads from global memory. Since shared memory size is limited, we
split the loop depending on the size of the shared memory. For each
loaded chunk of data, the force contributions of the particles stored in
shared memory are added to the current total. This is repeated until all
interactions are computed.

Our HIP implementation does not take advantage of the allocator
implemented for the CUDA version, yet, but uses pointers directly.

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.
The kernels of our HIP implementation are equivalent to the CUDA
implementation.

Our Kokkos code uses a structure of arrays to store positions,
velocities, masses, and forces containing for each parameter a
Kokkos::View<T∗, DeviceType> element. Depending on the DeviceType,
defined as
using
DeviceType = Kokkos : : Device<ExecutionSpace ,

DeviceSpace >;

the data will be allocated using host or device memory. A Kokkos::View
also adjusts its data layout to optimize data access for a particular type
of device.

All operations on the data are performed in the same memory space,
so that no data transfer is necessary.

For SYCL we have three different implementations: the first one
uses a basic data-parallel kernel. The runtime determines how and in
which order the operations are performed. The second implementation
uses an nd-range kernel, where we specify the size of a work group
instead of leaving it to the runtime. While this may hinder performance
portability, it also gives us more control and allows us to tune the
distribution of work in the same way we can do using CUDA or HIP.
The third implementation uses local memory (called shared memory
for CUDA) to improve data reuse.

Our OpenACC and OpenMP implementations are nearly identical.
All compute-specific calculations reside inside a data directive-scope
reducing communication between host and device. Parallel loop regions
are marked for offloading with #pragma acc parallel loop gang vector
for OpenACC and #pragma omp target teams distribute parallel for for
OpenMP.

For our implementation using C++’s parallel STL (pSTL) we used
std :: for_each_n to implement the force calculation loop:
std : : for_each_n (EP , i t e r a to r . begin () ,

i t e r a to r . s i ze () ,
[= , pa r t i c l e L i s t = pa r t i c l e L i s t . get ()] (auto i)
{ /∗ Perform calcu la t ion ∗ / }) ;

5. Optimizations

To compute the total force acting on a single particle 𝑖, as shown
in Eq. (3) the most basic way to implement is to use two nested loops
with a condition, that the summation only takes place if 𝑖 is not equal
to 𝑗 to avoid zero distances. A straightforward implementation in C++
could look like this:
for (auto i {0u } ; i < N; ++ i) {

for (auto j {0u } ; j < N; ++ j)
{

i f (i != j)
{

/ / force computation here
}

}
}

This implementation performs a comparison for each pair of atoms 𝑖
and 𝑗 and causes branch divergence on massively parallel architectures.
Therefore ways to avoid the branching should result in improved
performance. In this paper we present two ways to tame the result-
ing division by zero without explicit if-condition, i.e., introducing a
smoothing term to the necessary 𝑑𝑖𝑗 -division

𝐅𝑖𝑗 = −𝐺
𝑚𝑖𝑚𝑗

𝑑3𝑖𝑗 + 𝜀
𝐫𝑖𝑗 , 𝜀 ≪ min(𝑑𝑖𝑗),

where the value of the smoothing factor needs to be both suffi-
ciently small for not impacting the correctness of the results and being
large enough to be different from zero in the machine representation,
5

i.e., close to the machine accuracy of the chosen data type. The second
alternative is adding the Kronecker delta 𝛿𝑖𝑗 defined as:

𝛿𝑖𝑗 =

{

1 ∶ i = j
0 ∶ 𝑖 ≠ 𝑗

to the partial forces:

𝐅𝑖𝑗 = −𝐺
𝑚𝑖𝑚𝑗

𝑑3𝑖𝑗 + 𝛿𝑖𝑗
𝐫𝑖𝑗

This avoids the division by zero and is negated by the subsequent
multiplication with the distance, being 0 in the case, where 𝑖 equals 𝑗.
While the latter alternative ensures the correctness of the results, there
might be a runtime impact since it requires the comparison of 𝑖 and 𝑗
to compute 𝛿𝑖𝑗 , even if directly cast into an integer type.

In physics texts the formula for the partial forces is often written as:

𝐅𝑖𝑗 = −𝐺
𝑚𝑖𝑚𝑗

𝑑2𝑖𝑗

𝐫𝑖𝑗
‖𝐫𝑖𝑗‖2

,

to emphasize that the vector 𝐫𝑖𝑗 is divided by its length to create a unit
vector pointing in the right direction. ‖𝐫𝑖𝑗‖2 is the Euclidean norm of
the distance vector between the particles, i.e., the distance 𝑑𝑖𝑗 . Thus a
first implementation of the force computation in C++ might look like
this:

for (auto i {0u } ; i < N; ++ i) {
double ftmp [i] [0] = 0 . 0 ;
double ftmp [i] [0] = 0 . 0 ;
double ftmp [i] [0] = 0 . 0 ;
for (auto j {0u } ; j < N; ++ j) {

i f (i == j) continue ;
double d[0] = r [i] [0] − r [j] [0] ;
double d[1] = r [i] [1] − r [j] [1] ;
double d[2] = r [i] [2] − r [j] [2] ;
double d is t = sqrt (d [0] ∗ d[0]

+ d [1] ∗ d[1]
+ d [2] ∗ d [2]) ;

double F_ i j = −G ∗ m[i] ∗ m[j]
/ (d i s t ∗ d is t) / d i s t ;

ftmp [i] [0] += d [0] ∗ F_ i j ;
ftmp [i] [1] += d [1] ∗ F_ i j ;
ftmp [i] [2] += d [2] ∗ F_ i j ;

}
f [i] [0] += ftmp [i] [0] ;
f [i] [1] += ftmp [i] [1] ;
f [i] [2] += ftmp [i] [2] ;

}

Alternatively using a smoothing factor 𝜀 leads to the following code
(only showing changes):
for (auto i {0u } ; i < N; ++ i) {

[. . .]
for (auto j {0u } ; j < N; ++ j) {

/ / remove the i f−statement
[. . .]
double d is t = sqrt (d [0] ∗ d[0]

+ d [1] ∗ d[1]
+ d [2] ∗ d[2])
+ epsilon ;

double F_ i j = −G ∗ m[i] ∗ m[j]
/ (d i s t ∗ d is t) / (d i s t) ;

[. . .]
}
[. . .]

}

The use of the Kronecker delta 𝛿𝑖𝑗 would lead to this code:
for (auto i {0u } ; i < N; ++ i) {

[. . .]
for (auto j {0u } ; j < N; ++ j) {

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.
/ / remove the i f−statement
[. . .]
double d is t = sqrt (d [0] ∗ d[0]

+ d [1] ∗ d[1]
+ d [2] ∗ d[2])
+ (double) (i == j) ;

double F_ i j = −G ∗ m[i] ∗ m[j]
/ (d i s t ∗ d is t) / (d i s t) ;

[. . .]
}
[. . .]

}

This computation will be executed within the nested loop, which
might use any of the previously mentioned ways to avoid the compu-
tation of the self-force (𝑖 equals 𝑗). It can be seen that there are simple
ways to improve the performance of this code. The most direct one is
to take the multiplication with −𝐺 ∗ 𝑚𝑖 out of the inner loop, since that
factor is invariant within the inner loop, e.g.
for (auto i {0u } ; i < N; ++ i) {

[. . .]
for (auto j {0u } ; j < N; ++ j) {

[. . .]
ftmp [i] [0] += d [0] ∗ F_ i j ;
ftmp [i] [1] += d [1] ∗ F_ i j ;
ftmp [i] [2] += d [2] ∗ F_ i j ;

}
f [i] [0] += −G ∗ m[i] ∗ ftmp [i] [0] ;
f [i] [1] += −G ∗ m[i] ∗ ftmp [i] [1] ;
f [i] [2] += −G ∗ m[i] ∗ ftmp [i] [2] ;

}

Since divisions are expensive instructions, a further optimization
consists of reducing the number of required divisions as much as
possible. Reformulating the problem leads to

𝐅𝑖𝑗 = −𝐺𝑚𝑖
𝑚𝑗

𝑑2 ⋅ 𝑑
𝐫𝑖𝑗 ,

which can be formulated in the code as follows:
for (auto i {0u } ; i < N; ++ i) {

[. . .]
for (auto j {0u } ; j < N; ++ j) {

[. . .]
double d2 = d[0] ∗ d[0]

+ d [1] ∗ d[1]
+ d [2] ∗ d [2] ;

double F_ i j = m[j] / (d2 ∗ sqrt (d2)) ;
[. . .]

}
[. . .]

}

Some architectures offer implementations for a fast computation
of an inverse square root (1∕√𝑥), which can make the following
formulation of the code advantageous
for (auto i {0u } ; i < N; ++ i) {

[. . .]
for (auto j { 0 } ; j < N; ++ j) {

[. . .]
double d2 = d[0] ∗ d[0]

+ d [1] ∗ d[1]
+ d [2] ∗ d [2] ;

double invD = 1.0 / sqrt (d2) ;
double F_ i j = m[j] ∗ invD ∗ invD ∗ invD ;
[. . .]

}
[. . .]

}

Both optimization, i.e., how to avoid division by zero and improving
the calculation of the force contribution are independent and can
6

be combined. The impact of these implementation details is depen-
dent on both the compiler and the platform the code is executed on,
since compiler optimizations and hardware instruction sets impact their
benefit.

Further possibilities for improvement could be found in the way
variables are declared or minimization of load/store operations by,
e.g., not storing results of pre-computations. Since these are more
influenced by compiler optimizations and hardware capabilities and
would result in an increasing number of possible combinations of
optimizations, they are not discussed in the present paper. Furthermore,
hardware-specific optimizations are not considered here since one goal
of the present work is to have a single code base for all available
platforms.

6. Baseline for efficiency

To determine the efficiency of an implementation we need a base-
line. Architectural efficiency is measured relative to the theoretical
peak performance or the practical peak performance based on the archi-
tecture specific throughput of the required operations [26], e.g., multi-
plications, divisions, and square roots or alternatively a roofline anal-
ysis. The application efficiency on the other hand is relative to the
problem specific performance measure of the fastest available imple-
mentation [27].

In our previous paper [17], we presented both architectural and
application efficiencies, but since users are mostly interested in the
time to solution, we focus on application efficiency in this paper based
on the achieved computation rate of pairwise interactions per second
(throughput), given as GInts = 109 Int

s . In contrast to runtime, through-
put can be compared independently of system size. All measurements
presented are calculated from the average runtime of a time step
taken from 20 consecutive time steps for each system size. Standard
deviations are omitted from the plots as they are smaller than the
symbols.

We compare the best achieved throughput of each implementation
across all system sizes to the best achieved throughput between all
programming models capable of running on that platform. Since the
Nvidia platforms are currently the only ones on which all programming
models can run, we chose the GH200 as the reference point to decide
which set of optimizations described in Section 5 are used in each
programming model. The reasoning behind this is that it allows a
choice of implementation for each programming model and then use
the same code across all of the different platforms for comparison. By
deciding to use the best achieved performance on a given platform
the resulting relative performance is limited to 100%, i.e., the fastest
measured performance.

Defining a good baseline for performance portability is not a trivial
task and several metrics have been used in the literature [28–31].

To compare the portability quality of the programming models we
use % (c.f. (5)), which represents the mean application efficiency, with
respect to the application throughput achieved by the best implemen-
tation performance measured in GInts . To account for the fact that two
Nvidia platforms were tested, while only one platform by AMD and
Intel were used, we introduced a weighted average to balance the
vendor based results. If an implementation cannot be executed on a
platform, its throughput is zero.

% =

%A100 + %GH200
2 + %MI250 + %Max1100

3 . (5)

As pointed out in Ref. [28] using % as a portability metric has
several issues. We therefore include P̄P̄ introduced in [27] and first used
in [32] defined as

P̄P̄ (𝑎, 𝑝,𝐻) =

⎧

⎪

⎨

⎪

⎩

∑

𝑖∈𝐻 𝑒𝑖(𝑎,𝑝)
|𝐻|

if 𝑖 is supported ∀𝑖 ∈ 𝐻

NA otherwise,
(6)

where 𝑒𝑖(𝑎, 𝑝) is the efficiency of application 𝑎 implementing problem 𝑝
on platform 𝑖 and 𝐻 is the set of investigated platforms.

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.
Table 1
Target architecture details. Cores are streaming multiprocessors (SMs) on Nvidia, Compute Units (CUs) on AMD, and X𝑒 cores
on Intel GPUs. The bandwidth (Bw) is given for the high-bandwidth memory internal to the GPUs. References for the values
can be found in footnotes2–5.
 Architecture Cores Clock FP64 Bw Memory
 [GHz] [TFLOP/s] [GB/s] [GB]
 Nvidia A100 108 0.76 / 1.41 9.7 1555 40
 Nvidia GH200 132 1.66 / 1.84 34 4000 96
 AMD MI250 208 1.00 / 1.70 45.3 3200 128
 Intel GPU Max 1100 56 1.00 / 1.55 22 1229 48
Table 2
Overview of implementations on investigated architectures. 3 indicates that benchmarks were performed. 7 indicates that the
implementation was not supported on that architecture at the time of the benchmark.
 Architecture OpenMP pSTL Kokkos CUDA HIP SYCL OpenACC
 Nvidia A100 3 3 3 3 3 3 3
 Nvidia GH200 3 3 3 3 3 3 3
 AMD MI250 3 3 3 7 3 3 3
 Intel GPU Max 1100 3 3 3 7 7 3 7
7. Benchmark setup

The benchmarks presented in this work were conducted on four
different platforms: Nvidia Ampere 100 (A100), Nvidia Grace Hopper
(GH200), AMD MI 250, and Intel GPU MAX 1100 (formerly known as
Ponte Vecchio (PVC)). Information about relevant aspects of each GPU
used in this study can be found in Table 1.

All implementations were compiled with the optimization level
set to -O3. Relevant tuning and platform parameters (e.g., -march
and -mtune for GCC) were applied where needed. For each system
and implementation, an appropriate compiler was used. Below are the
details of the nodes used for this work:

Benchmarks of Nvidia A1002 were conducted on a node featuring
an AMD EPYC Rome 7402 CPU, 512 GB of memory, and four 40 GB
Nvidia A100 GPUs. We used NVHPC SDK version 23.7 to compile the
pSTL, openACC, and OpenMP offload implementations, nvcc version
12 for CUDA, Kokkos, and HIP implementations, and icpx version
2024.1 for the SYCL implementation. As for GH200,3 benchmarks were
executed on a node with a 72-core Nvidia Grace CPU, 480 GB LPDDR5x
memory, and a 96 GB HBM3 Nvidia H100 GPU. The compiler versions
are the same as those used on the A100, except that the NVHPC SDK
version is 23.11. For SYCL we build oneAPI DPC++ from the sources
available on GitHub.

MI2504 benchmarks were run on an experimental test node, with
an AMD EPYC 7443 CPU, 512 GB memory, and 4 MI250 GPUs with
128 GB. We used the Clang 17.0 compiler provided as part of ROCm
for HIP, Kokkos with HIP backend, and the OpenMP offloading imple-
mentations. For SYCL and pSTL we used AdaptiveCpp [23] and for
OpenACC we used clacc [33]. For OpenMP offloading, we included
−fopenmp−target−fast to enable the generation of specialized kernels.
The optimization level remains at −O3.

Our benchmarks for Intel GPU Max 11005 were run on the free
partition of the Intel Development Cloud. Each node is equipped with
an Intel Xeon Platinum 8480+ processor, 512 GB of RAM, and 4 Intel
GPU Max 1100 with 48 GB. The programs were compiled using the Intel
compilers version 2024.1. We used the experimental SYCL backend for
Kokkos.

2 https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf

3 https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper?ncid=
no-ncid

4 https://www.amd.com/en/support/downloads/drivers.html/
accelerators/instinct/instinct-mi200-series/amd-instinct-mi250.html

5 https://www.intel.com/content/www/us/en/products/sku/232876/intel-
data-center-gpu-max-1100/specifications.html
7

We used only one GPU for the benchmarks and each architecture
used a custom installation of Kokkos 4.3.0 with the above-mentioned
backends. Table 2 has an overview of the status of the implementations
on each system. The code is available publicly at Zenodo [34] and
includes a set of JUBE [35] scripts that can be used to reproduce our
benchmarks.

8. Results and discussion

The implementations that showed the best performance on the
GH200, picked as the target platform, were used as analysis cases.
Underlying measurements can be found in Fig. 3. The GH200 was
chosen as the more modern architecture on which all programming
models could be executed.

To evaluate the utilization of the hardware architectures in our
benchmarks, we compared the throughput of particle–particle compu-
tations, where the number of interactions scales as 𝑁2. As shown in
Fig. 4, more powerful GPUs require larger system sizes to saturate the
processor, indicated by the flattening of the lines in the plots.

It can be observed that the variants using shared memory generally
perform better than the ones not using it. Especially on the GH200
this can be seen, as the three shared-memory variants group together
at the top of the graph, while the remaining variants are closely
grouped together below. Considering this grouping, results show that
the achieved performance within each group is not diverging a lot.
There are some exceptions, e.g., OpenACC on MI250 or Kokkos on the
MI250 and GPU Max. These need to be investigated further.

Notably, the only native programming model to achieve the best
measured results on its platform was CUDA on the GH200 when em-
ploying shared memory. On the MI250 SYCL outperformed HIP, while
being outperformed on the Intel platform by OpenMP and pSTL. Sur-
prisingly OpenACC, OpenMP and pSTL achieved higher performance on
the A100 card in comparison to the CUDA version using shared memory
as shown in Table 3. These results are in agreement with the study by
Davis et al. [8], where recent improvements of SYCL’s software stack
led its implementations to outperform native programming models on
compute bound kernels.

Memory transfer analysis revealed that OpenMP offloading and
pSTL models use different strategies on Nvidia GPUs: asynchronous
transfers for OpenMP and page faults for pSTL. However, for larger sys-
tems, this impact is minimal since the compute kernel is not memory-
bound. For a thorough assessment of pSTL’s backend implementations
the reader may refer to the work of Lin et al. [13].

When comparing some of the other implementations across the
different platforms a special case was encountered: using the overall
slowest optimization variant (the if-based one) on A100 produced
expected performance results, i.e., slower than the other optimization

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper?ncid=no-ncid
https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-hopper?ncid=no-ncid
https://www.amd.com/en/support/downloads/drivers.html/accelerators/instinct/instinct-mi200-series/amd-instinct-mi250.html
https://www.amd.com/en/support/downloads/drivers.html/accelerators/instinct/instinct-mi200-series/amd-instinct-mi250.html
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html
https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.
Figure 3. Benchmarks comparing the different types of optimization for the different implementations based on the GH200 architecture for all programming models. SYCL nd_range
kernels are marked with (nd). Implementations using shared memory are indicated with (s). if denotes the basic if-based implementation, 𝜀 the variant using the smoothing factor,
𝛿𝑖,𝑗 using the Kronecker delta and 𝜀, invsqrt using the smoothing factor and a precomputed inverse square root.
Table 3
 Fastest measured performance data across different system sizes, measured in Giga-interactions per second (GInt

s
) on each platform for each

programming model. The fastest overall measured performance is used as reference value for the application efficiency (%) and is indicated
in bold. % (cmp. Eq. (5)) is the weighted mean of % over all architectures, assuming % = 0, when benchmarks could not be performed. The
underlined result is the best achieved value for %. (s) indicates variants using shared memory, while (nd) indicates the SYCL variant using
nd-ranges. The last column shows the performance portability metric P̄P̄ .

 A100 GH200 MI250 GPU Max 1100
 [GInt

s
] % [GInt

s
] % [GInt

s
] % [GInt

s
] % % P̄P̄

 CUDA 165 93 369 87 30 NA
 CUDA (s) 172 97 423 100 33 NA
 HIP 164 92 370 87 182 98 63 NA
 HIP (s) 169 95 398 94 179 97 64 NA
 Kokkos 166 94 366 87 145 78 130 71 80 83
 OpenACC 176 99 371 88 1.5 1 32 NA
 OpenMP 177 100 371 88 142 78 184 100 91 92
 pSTL 174 98 365 86 182 98 181 98 96 95
 SYCL 159 90 370 87 176 95 171 93 92 91
 SYCL (nd) 158 89 368 87 185 100 173 94 94 93
 SYCL (s) 167 94 411 97 185 100 175 95 97 97
choices with one exception: the SYCL implementation showed 40%
better performance on the A100 than the variants chosen based on
the GH200, while showing a similar FLOP rate. This is one of the
reasons, why we decided to focus on the application efficiency instead
8

of architectural efficiency since users will be more often interested in
application performance (i.e., runtime) rather than FLOP rates.

Analyzing the portability quality of the different programming mod-
els using the mean application efficiency % (see Eq. (5)), it can be seen

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.
Figure 4. Interactions per second vs number of particles 𝑁 on the investigated architectures by the different implementations. Note the different scale of the y-axis for GH200
(b). We do not include the results for OpenACC on the MI 250 since they are about a factor of 100 lower than those from the other programming models and nearly independent
of system size.
that the models designed to be portable perform better than those tar-
geted at specific platforms (HIP, CUDA). While this is to be expected, it
is noteworthy that pSTL and SYCL (using shared memory) show the best
portability quality. Kokkos shows comparatively lower performance on
the AMD and Intel platforms. Regarding AMD, our result differs from
recent studies, where Kokkos showed excellent performance on AMD-
based systems [8,36]. This may be due to the variant chosen for its
performance on the GH200.

The respective results for P̄P̄ (Tables 3 and 5) show little deviation
from the results for % for the portable programming model, but make
it clear that CUDA, HIP, and OpenACC are not portable since they
are not applicable (NA) per definition for programming models that
cannot be executed on one or more of the investigated architectures.
The deviation in the percentages for the portable programming models
comes from the different ways of averaging (see. Eq. (5) and (6)).

For a more detailed analysis of performance portability the number
of taken measurements as well as the number of targeted platforms
would need to be increased. Despite this, the performed analysis on
the presented data already indicates that using an optimized version
of a code on a given architecture (in this case the GH200) might not
be optimally suited for other architectures but still perform satisfactory
well.
9

8.1. Effect of block size

Some models, e.g., CUDA, HIP, and SYCL nd_range take an explicit
thread block (work group) size as parameter. Threads (work items) in
this block can take advantage of shared (local) memory if available and
can be more easily synchronized. On GPUs a thread block is usually
pinned to a processing unit. To fill a GPU, we therefore need at least
as many blocks as processing units. Requested hardware resources,
e.g., registers, can limit the number of blocks that can be kept in flight.

We use 512 threads per block for CUDA and HIP and 256 threads
per block for SYCL (nd) and SYCL (s). In Fig. 5 we show the effect
of changing the number of threads per block with respect to our
benchmark results for each of the 4 GPUs. Choosing a block size that is
less than the size of a warp (or wave front) is obviously detrimental to
the performance of the kernel. Setting the block size to 16 threads, for
example, leaves half of the hardware on an Nvidia GPU and 3/4 of the
hardware of an AMD GPU without work. If we choose our block size in
the interval [64, 512] the effect on performance is usually within 5%
of the optimum.

Keeping the block size fixed across all platforms our choice is
optimal except for CUDA without shared memory (see Table 4). A small
gain of about 0.5% on average could have been achieved by using 64
or 128 threads per block.

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.
Figure 5. Performance impact of deviating from the block size used in the benchmark. We used a block size of 512 threads for HIP and CUDA and 256 threads for SYCL. In this
figure, we show the impact of changing the block size for the different architectures. All platforms show reasonable elasticity for block sizes between the minimum thread number
required by the hardware and 512 threads. In this range the loss in performance is limited to less than 10% with respect to the maximum.
Table 4
Average effect of choice of block size across all platforms with respect to the block size used in our benchmarks. The table shows that the
block size used (512 for CUDA and HIP and 256 for SYCL) is near optimal for all models. It also indicates that choosing a different block size
from the interval [64,512] would have had little effect on the performance.
 Block size CUDA CUDA (s) HIP HIP (s) SYCL (nd) SYCL (s)
 16 −46.44 −48.83 −54.18 −57.42 −46.14 −47.60
 32 −0.47 −1.41 −15.04 −18.14 −10.75 −11.08
 64 0.52 −0.64 −1.38 −4.15 −1.00 −1.84
 128 0.51 −0.21 −0.43 −3.27 −0.80 −0.95
 256 −1.40 −2.26 −0.52 −1.90 0.00 0.00
 512 0.00 0.00 0.00 0.00 −2.81 −2.30
 1024 −7.72 −7.96 −9.18 −8.89 −10.30 −9.75
For the pSTL and simple data-parallel kernels in SYCL the distribu-
tion of work is determined exclusively by the runtime. The pragma-
based models OpenMP and OpenACC also allow the runtime to deter-
mine the block size, but contain clauses that let the developer influence
the distribution of work over threads and blocks.

8.2. Consumer GPUs

While the focus of this paper is performance and portability across
GPUs used in HPC environments, development and early simulations
are often performed on consumer cards or even CPUs. We therefore
decided to share our experience.

Any Nvidia consumer card since the GeForce 8 series released in
2006 has included support for CUDA. Available features are categorized
by compute capability and usually cards with a higher compute capa-
bility include the features supported by a lower compute capability.
This and the easy availability of the CUDA SDK have enabled scientists
and hobbyists to learn about and develop CUDA code.

The list of consumer devices supported officially by ROCm, AMD
GPU software stack, is fairly small,6 but also deceiving. A much larger
set of devices is supported by Clang7 to compile HIP code for AMD
devices. SYCL code can be compiled using, e.g., AdaptiveCpp or Intel’s
fork of LLVM.

Intel’s support for SYCL on consumer devices includes integrated
and discrete GPUs and can be used, for example, with AdaptiveCpp,
Intel’s fork of LLVM oneAPI DPC++, or Intel’s icpx compiler. Intel’s
icpx compiler also includes support for OpenMP offloading.

Consumer devices usually have a much smaller ratio of double to
single precision performance than devices meant for HPC applications
and it can be especially beneficial to implement single-or mixed pre-
cision algorithms, which would benefit the performance on the HPC
cards as well.

6 https://rocm.docs.amd.com/projects/radeon/en/latest/docs/
compatibility/native_linux/native_linux_compatibility.html#gpu-support-
matrix

7 https://llvm.org/docs/AMDGPUUsage.html#processors
10
8.3. CPUs

GPUs and CPUs have different characteristics and a program that
has been written with a GPU in mind will not necessarily perform
well on CPUs. Since several of the programming models provide CPU
backends, we benchmarked the following selection of CPUs. As an
AMD CPU we used an EPYC Rome 7743, for Intel a Xeon Platinum
8168 and the Nvidia Grace CPU that has Arm Neoverse-V2 cores.
Compiler and options used for the CPU benchmark are the same as
presented in Section 7 with the exception of pSTL, here GCC 13.3.0
with Intel’s Thread Building Blocks (TBB) library and for SYCL on the
Grace chip AdaptiveCPP are used. In Table 5 we show the results of
this benchmark.

For brevity in the CPU results we present only the standard version
of the SYCL implementation. All SYCL variants have shown similar
results with deviations of less then 4%. In contrast to the GPU findings
presented in Table 3 pSTL does not perform as well on CPU as on GPU.
OpenMP and OpenACC show good portability across all CPU platforms,
with OpenMP being one of the best performing programming models
on all architectures.

9. Conclusion and outlook

There has never been a better time for using portable programming
models for writing GPU code. Our results show that OpenMP, pSTL,
and SYCL are well suited for portable implementations of the N-body
problem across various GPU vendors, while Kokkos showed slightly
reduced performance on the non-Nvidia platforms. Kokkos might show
better performance, when using algorithms more dependent on com-
plex memory access patterns, e.g., short-range interactions as described
below. In addition, OpenMP shows close to perfect portability behavior
in the performed CPU benchmarks. For Nvidia and AMD GPUs, HIP also
provides a competitive framework for writing portable code.

Future analyses could also include other portable solutions (e.g.,
RAJA [5] or Alpaka [2]) to provide a more comprehensive comparison.
Also, where applicable the impact of using different compilers and/or
optimization flags on the used models should be analyzed in more
detail.

https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html#gpu-support-matrix
https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html#gpu-support-matrix
https://rocm.docs.amd.com/projects/radeon/en/latest/docs/compatibility/native_linux/native_linux_compatibility.html#gpu-support-matrix
https://llvm.org/docs/AMDGPUUsage.html#processors

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.
Table 5
Fastest measured performance data across different system sizes, measured in Giga-interactions per second GInt

s
on different CPUs. The fastest

overall measured performance is used as reference value for the application efficiency (%) and is indicated in bold. % (cmp. Eq. (5)) is the
weighted mean of % over all architectures, assuming % = 0, when benchmarks could not be performed. The underlined result is the best
achieved value for %. For comparison in the last column the results for the performance metric P̄P̄ is presented.
 AMD Intel Grace
 [GInt

s
] % [GInt

s
] % [GInt

s
] % % P̄P̄

 Kokkos 25 42 9 68 26 77 62 62
 OpenACC 58 100 14 100 32 94 98 98
 OpenMP 58 100 14 100 34 100 100 100
 pSTL 14 24 5 36 30 92 51 51
 SYCL 55 97 14 100 23 68 88 88
A more in-depth analysis of the impact of using code optimized
for one architecture on the performance on other platforms to deter-
mine the performance portability [37] would be beneficial to users
and developers for choosing a programming model, depending on
their individual aims (portability vs. high performance on a single
architecture).

While the N-body problem and its reduction to the force calcu-
lation is a fundamental method for computing interactions between
particles and is integral to more advanced algorithms, extending this
analysis to more sophisticated algorithms is essential, which includes
splitting methods (e.g., Ewald summation) or hierarchical methods
(e.g., Barnes–Hut).

Another area to investigate is algorithms for the computation of
short-range interactions. Unlike the gravitational interaction used in
this paper, short-range interactions exclude some neighbor compu-
tations and introduce steps to determine neighbor pairs based on
proximity. This additional sorting step significantly changes memory
access patterns and impacts performance.

Finally, we plan to make these and implementations for other
problem classes representing different algorithmic methods publicly
available.

CRediT authorship contribution statement

Rodrigo A.C. Bartolomeu: Writing – review & editing, Writing –
original draft, Validation, Software, Methodology, Investigation, Con-
ceptualization. René Halver: Writing – review & editing, Writing –
original draft, Visualization, Validation, Software, Methodology, In-
vestigation, Conceptualization. Jan H. Meinke: Writing – review &
editing, Writing – original draft, Visualization, Validation, Software,
Methodology, Investigation, Conceptualization. Godehard Sutmann:
Writing – review & editing, Methodology, Investigation, Conceptual-
ization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

We thank the Jülich Supercomputing Centre, Forschungszentrum
Jülich for access to the JURECA-DC Evaluation Platform, JUWELS
Booster and JEDI. This work has received funding from the European
High Performance Computing Joint Undertaking under the grant agree-
ment 101093169 and was supported by the German Federal Ministry
of Education and Research (BMBF) and the Ministry of Culture and
Science (MKW) of the state of North-Rhine-Westphalia through funding
of the Gauss Centre for Supercomputing (GCS).

Data availability

Data will be made available on request.
11
References

[1] T. Deakin, S. McIntosh-Smith, J. Price, A. Poenaru, P. Atkinson, C. Popa, J.
Salmon, Performance portability across diverse computer architectures, in: 2019
IEEE/ACM International Workshop on Performance, Portability and Productivity
in HPC (P3HPC), IEEE, 2019, pp. 1–13, http://dx.doi.org/10.1109/P3HPC49587.
2019.00006.

[2] E. Zenker, B. Worpitz, R. Widera, A. Huebl, G. Juckeland, A. Knüpfer, W.E. Nagel,
M. Bussmann, Alpaka–an abstraction library for parallel kernel acceleration, in:
2016 IEEE International Parallel and Distributed Processing Symposium Work-
shops, IPDPSW, IEEE, 2016, pp. 631–640, http://dx.doi.org/10.1109/IPDPSW.
2016.50.

[3] C.R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Ellingwood, R.
Gayatri, E. Harvey, D.S. Hollman, D. Ibanez, N. Liber, J. Madsen, J. Miles, D.
Poliakoff, A. Powell, S. Rajamanickam, M. Simberg, D. Sunderland, B. Turcksin,
J. Wilke, Kokkos 3: Programming model extensions for the exascale era, IEEE
Trans. Parallel Distrib. Syst. 33 (2022) 805–817, http://dx.doi.org/10.1109/
TPDS.2021.3097283.

[4] M. Garland, M. Kudlur, Y. Zheng, Designing a unified programming model for
heterogeneous machines, in: 2012 International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, Salt Lake City, UT, 2012,
pp. 1–11, http://dx.doi.org/10.1109/SC.2012.48.

[5] D.A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A.J. Kunen, O.
Pearce, P. Robinson, B.S. Ryujin, T.R. Scogland, RAJA: Portable performance for
large-scale scientific applications, in: 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC), 2019, pp. 71–81,
http://dx.doi.org/10.1109/P3HPC49587.2019.00012.

[6] N. Bell, J. Hoberock, C. Rodrigues, THRUST: A productivity-oriented library
for CUDA, in: Programming Massively Parallel Processors, Elsevier, 2017, pp.
475–491, http://dx.doi.org/10.1016/B978-0-12-811986-0.00033-9.

[7] L. Chen, L. Liu, S. Tang, L. Huang, Z. Jing, S. Xu, D. Zhang, B. Shou, Unified
parallel C for GPU clusters: Language extensions and compiler implementation,
in: K. Cooper, J. Mellor-Crummey, V. Sarkar (Eds.), Languages and Compilers
for Parallel Computing, Springer, Berlin, Heidelberg, 2011, pp. 151–165, http:
//dx.doi.org/10.1007/978-3-642-19595-2_11.

[8] J.H. Davis, P. Sivaraman, I. Minn, K. Parasyris, H. Menon, G. Georgakoudis, A.
Bhatele, Taking gpu programming models to task for performance portability,
2024, arXiv preprint arXiv:2402.08950.

[9] C. Phuong, N. Saied, C. Tanis, Assessing Kokkos performance on selected
architectures, in: Latin American High Performance Computing Conference,
Springer, 2019, pp. 170–184, http://dx.doi.org/10.1007/978-3-030-41005-6_12.

[10] A.S. Dufek, R. Gayatri, N. Mehta, D. Doerfler, B. Cook, Y. Ghadar, C. DeTar,
Case study of using Kokkos and SYCL as performance-portable frameworks for
Milc-Dslash benchmark on NVIDIA, AMD and Intel GPUs, in: 2021 International
Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2021,
2021, pp. 57–67, http://dx.doi.org/10.1109/P3HPC54578.2021.00009.

[11] M. Breyer, A. Van Craen, D. Pflüger, A comparison of SYCL, OpenCL, CUDA, and
OpenMP for massively parallel support vector machine classification on multi-
vendor hardware, in: Proceedings of the 10th International Workshop on OpenCL,
IWOCL ’22, Association for Computing Machinery, New York, NY, USA, 2022,
pp. 1–12, http://dx.doi.org/10.1145/3529538.3529980.

[12] Y. Ding, C. Xu, H. Qiu, Q. Wang, W. Dai, Y. Lin, Y. Che, Evaluating per-
formance portability of SYCL and Kokkos: A case study on LBM simulations,
in: 2023 IEEE Intl Conf on Parallel & Distributed Processing with Applica-
tions, Big Data & Cloud Computing, Sustainable Computing & Communica-
tions, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom),
2023, 2023, pp. 328–335, http://dx.doi.org/10.1109/ISPA-BDCloud-SocialCom-
SustainCom59178.2023.00075.

[13] W.-C. Lin, T. Deakin, S. McIntosh-Smith, Evaluating ISO C++ parallel algorithms
on heterogeneous HPC systems, in: 2022 IEEE/ACM International Workshop
on Performance Modeling, Benchmarking and Simulation of High Performance
Computer Systems, PMBS, IEEE, 2022, pp. 36–47, http://dx.doi.org/10.1109/
PMBS56514.2022.00009.

[14] L. Nylons, Mark. Harris, Jan. Prins, Chapter 31. fast n-body simulation with
CUDA, in: GPU Gems 3, 2007, pp. 62–66.

http://dx.doi.org/10.1109/P3HPC49587.2019.00006
http://dx.doi.org/10.1109/P3HPC49587.2019.00006
http://dx.doi.org/10.1109/P3HPC49587.2019.00006
http://dx.doi.org/10.1109/IPDPSW.2016.50
http://dx.doi.org/10.1109/IPDPSW.2016.50
http://dx.doi.org/10.1109/IPDPSW.2016.50
http://dx.doi.org/10.1109/TPDS.2021.3097283
http://dx.doi.org/10.1109/TPDS.2021.3097283
http://dx.doi.org/10.1109/TPDS.2021.3097283
http://dx.doi.org/10.1109/SC.2012.48
http://dx.doi.org/10.1109/P3HPC49587.2019.00012
http://dx.doi.org/10.1016/B978-0-12-811986-0.00033-9
http://dx.doi.org/10.1007/978-3-642-19595-2_11
http://dx.doi.org/10.1007/978-3-642-19595-2_11
http://dx.doi.org/10.1007/978-3-642-19595-2_11
http://arxiv.org/abs/2402.08950
http://dx.doi.org/10.1007/978-3-030-41005-6_12
http://dx.doi.org/10.1109/P3HPC54578.2021.00009
http://dx.doi.org/10.1145/3529538.3529980
http://dx.doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom59178.2023.00075
http://dx.doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom59178.2023.00075
http://dx.doi.org/10.1109/ISPA-BDCloud-SocialCom-SustainCom59178.2023.00075
http://dx.doi.org/10.1109/PMBS56514.2022.00009
http://dx.doi.org/10.1109/PMBS56514.2022.00009
http://dx.doi.org/10.1109/PMBS56514.2022.00009
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb14
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb14
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb14

Future Generation Computer Systems 169 (2025) 107802R.A.C. Bartolomeu et al.
[15] T. Thüring, M. Breyer, D. Pflüger, Comparing a naive and a tree-based n-body
algorithm using different standard SYCL implementations on various hardware,
in: Proceedings of the SC ’23 Workshops of the International Conference on High
Performance Computing, Network, Storage, and Analysis, SC-W ’23, Association
for Computing Machinery, New York, NY, USA, 2023, pp. 1906–1917, http:
//dx.doi.org/10.1145/3624062.3624604.

[16] A. Poenaru, W.-C. Lin, S. McIntosh-Smith, A performance analysis of modern par-
allel programming models using a compute-bound application, in: International
Conference on High Performance Computing, Springer, 2021, pp. 332–350.

[17] R.A.C. Bartolomeu, R. Halver, J.H. Meinke, G. Sutmann, Assessing performance
of programming models across GPU vendors, in: Parallel Processing and Applied
Mathematics, 2025, in press.

[18] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A.
Patterson, W.L. Plishker, J. Shalf, S.W. Williams, K.A. Yelick, The landscape of
parallel computing research: A view from Berkeley, in: Electrical Engineering
and Computer Sciences, University of California at Berkeley, Technical Report
No. UCB/EECS-2006-183, 2006.

[19] J. Zhao, C. Bertoni, J. Young, K. Harms, V. Sarkar, B. Videau, HIPLZ: Enabling
performance portability for exascale systems, Concurr. Computation: Pr. Exp. 35
(2023) e7866, http://dx.doi.org/10.1002/cpe.7866.

[20] H.C. Edwards, C.R. Trott, D. Sunderland, Kokkos: Enabling manycore perfor-
mance portability through polymorphic memory access patterns, J. Parallel
Distrib. Comput. 74 (2014) 3202–3216, http://dx.doi.org/10.1016/j.jpdc.2014.
07.003.

[21] OpenMP Architecture Review Board, Openmp application program interface ver-
sion 4.0, 2013, URL: https://www.openmp.org/wp-content/uploads/OpenMP4.0.
0.pdf.

[22] J. Hubbard, G. Brito, C. Garg, N. Sakharnykh, F. Oh, Simplifying GPU
application development with heterogeneous memory management, 2023, URL:
https://developer.nvidia.com/blog/simplifying-gpu-application-development-
with-heterogeneous-memory-management/.

[23] A. Alpay, V. Heuveline, AdaptiveCpp stdpar: C++ standard parallelism integrated
into a SYCL compiler, in: Proceedings of the 12th International Workshop on
OpenCL and SYCL, IWOCL ’24, Association for Computing Machinery, New York,
NY, USA, 2024, pp. 1–12, http://dx.doi.org/10.1145/3648115.3648117.

[24] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University
Press, 2017, http://dx.doi.org/10.1093/oso/9780198803195.001.0001.

[25] A. Herten, Many cores, many models: GPU programming model vs. vendor com-
patibility overview, in: Proceedings of the SC ’23 Workshops of the International
Conference on High Performance Computing, Network, Storage, and Analysis,
SC-W ’23, Association for Computing Machinery, New York, NY, USA, 2023, pp.
1019–1026, http://dx.doi.org/10.1145/3624062.3624178.

[26] R. Halver, J.H. Meinke, G. Sutmann, Examining performance portability with
Kokkos for an Ewald sum Coulomb solver, in: International Conference on
Parallel Processing and Applied Mathematics, Springer, 2019, pp. 35–45, http:
//dx.doi.org/10.1007/978-3-030-43222-5_4.

[27] A. Marowka, On the performance portability of OpenACC, OpenMP, Kokkos
and RAJA, in: HPCAsia ’22, Association for Computing Machinery, 2022a, pp.
103–114, http://dx.doi.org/10.1145/3492805.3492806.

[28] A. Marowka, Reformulation of the performance portability metric, Software: Pr.
Exp. 52 (2022) 154–171, http://dx.doi.org/10.1002/spe.3002.

[29] S.J. Pennycook, J.D. Sewall, Revisiting a metric for performance portability,
in: 2021 International Workshop on Performance, Portability and Productivity
in HPC (P3HPC), IEEE, 2021, pp. 1–9, http://dx.doi.org/10.1109/P3HPC54578.
2021.00004.

[30] S.J. Pennycook, J.D. Sewall, V.W. Lee, A metric for performance portability,
2016, http://dx.doi.org/10.48550/arXiv.1611.07409, arXiv preprint arXiv:1611.
07409.

[31] C. Yang, R. Gayatri, T. Kurth, P. Basu, Z. Ronaghi, A. Adetokunbo, B. Friesen,
B. Cook, D. Doerfler, L. Oliker, et al., An empirical roofline methodology for
quantitatively assessing performance portability, in: 2018 IEEE/ACM Interna-
tional Workshop on Performance, Portability and Productivity in HPC (P3HPC),
IEEE, 2018, pp. 14–23, http://dx.doi.org/10.1109/P3HPC.2018.00005.
12
[32] W.F. Godoy, P. Valero-Lara, T.E. Dettling, C. Trefftz, I. Jorquera, T. Sheehy, R.G.
Miller, M. Gonzalez-Tallada, J.S. Vetter, V. Churavy, Evaluating performance
and portability of high-level programming models: Julia, Python/Numba, and
Kokkos on exascale nodes, in: 2023 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2023, pp. 373–382, http://dx.doi.
org/10.1109/IPDPSW59300.2023.00068.

[33] J.E. Denny, S. Lee, P. Valero-Lara, M. Gonzalez-Tallada, K. Teranishi, J.S. Vetter,
Clacc: Openacc for C/C++ in Clang, Int. J. High Perform. Comput. Appl. 38
(2024) 427–446, http://dx.doi.org/10.1177/10943420241261976.

[34] R.A.C. Bartolomeu, R. Halver, J.H. Meinke, G. Sutmann, [DATASET] Effect of
implementations of the N-body problem on the performance and portability
across GPU vendors, 2024, http://dx.doi.org/10.5281/zenodo.14287180.

[35] T. Breuer, J. Wellmann, F. Souza Mendes Guimarães, C. Himmels, S. Luehrs,
JUBE, Zenodo, 2024, http://dx.doi.org/10.5281/zenodo.11235164.

[36] W.-C. Lin, S. McIntosh-Smith, T. Deakin, Preliminary report: Initial evaluation
of StdPar implementations on AMD GPUs for HPC, 2024, http://dx.doi.org/10.
48550/arXiv.2401.02680, arXiv:2401.02680.

[37] A. Marowka, Portability efficiency approach for calculating performance
portability, 2024, http://dx.doi.org/10.48550/arXiv.2407.00232, arXiv:2407.
00232.

Rodrigo A. C. Bartolomeu is a Post Doc staff sci-
entist of the Simulation and Data Laboratory Complex
Particle Systems at the Jülich Supercomputing Centre,
Forschungszentrum Jülich. His research interests include
electrostatics, algorithm optimization, research software en-
gineering, performance portability, statistical mechanics,
and molecular dynamics.

René Halver is a staff scientist of the Simulation and Data
Laboratory Complex Particle Systems at the Jülich Super-
computing Centre, Forschungszentrum Jülich. His research
interests include load balancing algorithms for particle sim-
ulations and performance portability to make efficient use
of HPC hardware for simulations.

Jan H. Meinke is a senior staff scientist of the Simulation
and Data Laboratory Biology at the Jülich Supercomputing
Centre, Forschungszentrum Jülich. His research interests
include protein folding and finding ways to make efficient
use of HPC hardware for solving scientific problems.

Godehard Sutmann is head of the Simulation and Data
Laboratory Complex Particle Systems at Jülich Supercom-
puting Centre, Forschungszentrum Jülich and is Professor
at ICAMS, Ruhr-University Bochum. His research inter-
ests include parallel algorithms for particle simulations,
load balancing, statistical physics and materials science
simulations.

http://dx.doi.org/10.1145/3624062.3624604
http://dx.doi.org/10.1145/3624062.3624604
http://dx.doi.org/10.1145/3624062.3624604
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb16
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb16
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb16
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb16
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb16
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb17
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb17
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb17
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb17
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb17
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb18
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb18
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb18
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb18
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb18
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb18
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb18
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb18
http://refhub.elsevier.com/S0167-739X(25)00097-4/sb18
http://dx.doi.org/10.1002/cpe.7866
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1016/j.jpdc.2014.07.003
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://developer.nvidia.com/blog/simplifying-gpu-application-development-with-heterogeneous-memory-management/
https://developer.nvidia.com/blog/simplifying-gpu-application-development-with-heterogeneous-memory-management/
https://developer.nvidia.com/blog/simplifying-gpu-application-development-with-heterogeneous-memory-management/
http://dx.doi.org/10.1145/3648115.3648117
http://dx.doi.org/10.1093/oso/9780198803195.001.0001
http://dx.doi.org/10.1145/3624062.3624178
http://dx.doi.org/10.1007/978-3-030-43222-5_4
http://dx.doi.org/10.1007/978-3-030-43222-5_4
http://dx.doi.org/10.1007/978-3-030-43222-5_4
http://dx.doi.org/10.1145/3492805.3492806
http://dx.doi.org/10.1002/spe.3002
http://dx.doi.org/10.1109/P3HPC54578.2021.00004
http://dx.doi.org/10.1109/P3HPC54578.2021.00004
http://dx.doi.org/10.1109/P3HPC54578.2021.00004
http://dx.doi.org/10.48550/arXiv.1611.07409
http://arxiv.org/abs/1611.07409
http://arxiv.org/abs/1611.07409
http://arxiv.org/abs/1611.07409
http://dx.doi.org/10.1109/P3HPC.2018.00005
http://dx.doi.org/10.1109/IPDPSW59300.2023.00068
http://dx.doi.org/10.1109/IPDPSW59300.2023.00068
http://dx.doi.org/10.1109/IPDPSW59300.2023.00068
http://dx.doi.org/10.1177/10943420241261976
http://dx.doi.org/10.5281/zenodo.14287180
http://dx.doi.org/10.5281/zenodo.11235164
http://dx.doi.org/10.48550/arXiv.2401.02680
http://dx.doi.org/10.48550/arXiv.2401.02680
http://dx.doi.org/10.48550/arXiv.2401.02680
http://arxiv.org/abs/2401.02680
http://dx.doi.org/10.48550/arXiv.2407.00232
http://arxiv.org/abs/2407.00232
http://arxiv.org/abs/2407.00232
http://arxiv.org/abs/2407.00232

	Effect of implementations of the N-body problem on the performance and portability across GPU vendors
	Introduction
	The N-Body Problem
	Programming Models
	Implementations
	Optimizations
	Baseline for Efficiency
	Benchmark Setup
	Results and Discussion
	Effect of Block Size
	Consumer GPUs
	CPUs

	Conclusion and Outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References

