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Practicable model for phonon spectroscopy at atomic resolution in scanning
transmission electron microscopy for thick crystalline specimens
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We generalize a recently proposed theory for atomic resolution phonon spectroscopy in scanning transmission
electron microscopy, which explicitly includes the dependence of the spectrum on probe position, to apply to
thick specimens, where probe channeling is important. We also take into account anisotropy due to atoms of the
same species exhibiting different vibrational modes. This approach considers the contribution from individual
atoms to the spectrum. Simulations to explore the dependence of the spectrum, in particular of its shape, on the
probe position and thickness are carried out for the perovskite SrTiO;, which has recently been experimentally
investigated, and computational efficiency is discussed.
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I. INTRODUCTION

The characterization of the vibrational states of ma-
terials at the atomic scale using electron energy-loss
spectroscopy (EELS) in scanning transmission electron mi-
croscopy (STEM) has been made possible by advances in
monochromation [1]. As pointed out in the recent review
by Haas et al. [2], there have been relatively few demon-
strations to date of the exploitation of a combination of
atomic-scale spatial resolution and sub-10 meV energy reso-
lution to observe variations in the vibrational EELS spectrum
atom column by atom column, such as in Refs. [3—7]. Atomic
resolution along one direction was also exploited to study
vibrational modes at interfaces, e.g., in Refs. [8,9].

Several approaches, starting at the atomic level, have been
employed to model the physics underlying the experimental
results [5,10-25]. In this paper we will make comparisons
with the frequency-resolved frozen phonon multislice (FRF-
PMS) method [21-23], first proposed by Zeiger and Rusz,
in which the inelastic signal is computed as the difference
between the incoherent and the coherent averages of exit
wave functions computed over structure snapshots, consid-
ering only displacements due to vibrational modes within
a narrow range of frequencies when calculating energy-loss
spectra.

Another approach to simulating spectra, that explicitly
includes the dependence on probe position in the inelastic
scattering cross section itself and considers the contribution
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to the spectrum from individual atoms, was recently pro-
posed by the present authors [25]. This approach allows for
a change of shape in the spectrum as a function of probe posi-
tion for specimens containing different atomic species, each
making a specific contribution to the vibrational spectrum.
As a demonstration of its utility, the approach was applied
to the case of single-layer graphene containing Si and N
impurities, and compared to experimental data obtained by
Xu et al. [7], addressing single-atom vibrational spectroscopy
with chemical-bonding sensitivity.

In the present paper we explicitly extend the theory de-
veloped in [25] to the case of thicker specimens, where
channeling (multiple elastic scattering of the probing elec-
trons) is important [23] and also to take into account
anisotropy due to atoms of the same species exhibiting dif-
ferent vibrational modes in projection, the last point having
recently been addressed in Refs. [26,27]. The anisotropy in
the EELS signal arises due to the anisotropy of the vibrational
modes of the material and due to the nonsymmetric collection
geometry associated with an off-axis detector. Simulations
to explore the dependence of the spectrum, in particular
its shape, on the probe position and on specimen thickness
are carried out for the perovskite SrTiOs;, which allows a
comparison not only with the FRFPMS results in Ref. [26]
but also with the high-quality experimental results presented
there.

II. THEORY

We start with an expression for the contributions of single-
phonon excitations to the intensity in the electron energy-loss
spectrum measured in an off-axis detector D for the probe
position R; cf. Eq. (18) in Ref. [25]. In the single-phonon scat-
tering approximation, the energy loss E is equal to the phonon
energy. Taking the temperature dependence into account, the
contribution from a slice i at depth z; in the specimen reads as
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follows:
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Here h is Planck’s constant, ky is the wave number of the
incident electron, kg is Boltzmann’s constant, and T is the
temperature. The atoms in the slice i, enumerated by «, are
also assumed to contribute independently and with a weight-
ing given by the intensity of the probe |¥y(R, z;, R;, )| at the
atomic position R; .. The elastic wave function Wy(R, z;, r) in
the slice plane at z; for a given incident probe position R can
be obtained by multislice calculations that include channeling
effects due to multiple scattering [28]. The term

¢HE.G4,) = SE—Ep(G, &) ©)
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is the phonon density of states (PDOS) projected onto the
atom « in slice i along the direction of the unit vector q,,,
where the sum is over Vibrational modes j' with energies
E; and polarization vectors & for the atoms. In Eq. (2),
the dependence on the direction of projection of the PDOS
g*(E,q,) is given by the unit vector §, = q,/|q,|, with
q, =/ p 4dq, where the integration is over all scattering vec-
tors q into the detector D and, in contrast to Eq. (18) in
Ref. [25], isotropy is not assumed here. We do not indicate
this directional dependence explicitly on the left-hand side
of Eq. (1), as it is a fixed parameter of the off-axis detector
setup and this also keeps the notation more compact. The final
term in Eq. (1) also involves integration up over all q into the
off-axis detector D. The function £ (q) is given by

@ = £ (@exp (= 27°q" U @)/ ymiie. ()

with fj" (q) the electron scattering factor and m; , the mass of
atom « in the slice at z;. In this formulation, the exponential
Debye-Waller factor depends on anisotropic mean-squared
displacements (MSDs) described by the components of
the matrix U’T" [29]. The diagonal components Uy iy ; with
j € {1,2,3} correspond to the MSDs along one of the three
spatial dimension for a particular temperature, denoted by the
subscript T. Off-diagonal terms are zero in our calculations.
It is useful to write Eq. (1) in the form
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a™(R) = |Wy(R, z;, R;,0)| /D [/ @]’d*da.  (6)

Note that Eq. (5) has a different energy dependence for sim-
ulating energy gain [24]. In the summation over « in Eq. (4),
some of the atoms of the same type (isotopes) may have a
similar projected PDOS. We label such a set as t; , and refer

to the subscript n as a class of atoms. Then Eq. (4) may be
rewritten as

IR, z, E) _
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The above definition of classes as sets of atoms of the
same type and the same projected PDOS is not specific for
a particular slice of a thick specimen. This allows us to relabel
the projected PDOS as g,(E, q,) and factor out the PDOS
shared by all atoms of one class when accumulating the con-
tributions from all slices. This last step is possible due to the
assumption that the effect of further elastic scattering after the
inelastic scattering event is the same, irrespective of the slice
in which the transition occurs. This is reasonable to assume for
an EELS detector with a sufficiently large acceptance angle
[30]. Swapping the sequence of summation, we obtain the
expression
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for the accumulated EELS signal into the off-axis detector,

where
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Calculations using this sequence of summations are efficient
for (while not being limited to) periodic structures since the
number of classes is usually much lower than the number of
slices for a thick crystal. In the case of defects or interface
structures with reduced periodicity, many classes containing
just one or a few atoms are required. The original summation
sequence in Eq. (4) may then be more computationally effi-
cient in terms of memory consumption. The form of Eq. (8)
allows us to separate out the contributions of each class of
atoms to the energy-loss spectrum and investigate how they
vary as a function of probe position, specimen thickness, and
other experimental parameters.

The factor Fy (E) in Eq. (8), as given by Eq. (5), modulates
the shape of the energy-loss spectrum relative to the shape of
the PDOS and, in general, intensities at low energy losses are
amplified. The quantity

sn,T(Ev qD)zFT(E)gn(E1 qD)v (10)

represents the spectral contribution for each class n and de-
termines the dependence on energy loss E. The dependence
on probe position R and specimen thickness, due to variations
in channeling, is given by the respective weighting function
o, (R), wherein the dependence on specimen thickness is im-
plicit in the sum over slices i in Eq. (9). Therefore, since the
atoms contribute incoherently, we will refer to the approach
presented here as the channeling incoherent spectral contri-
butions (CHISCO) model in what follows.

III. EXAMPLE

Now let us demonstrate the application of Eq. (8) for sim-
ulations of STEM EELS that explore the dependence of the

054119-2



PRACTICABLE MODEL FOR PHONON SPECTROSCOPY AT ...

PHYSICAL REVIEW B 111, 054119 (2025)

FIG. 1. Weighting functions «,(R) for n = Sr, Ti, O1, O2, and
03 in SrTiO; crystals of different thickness in [001] orientation. The
maps correspond to scans over 2 x 2 projected unit cells and the
projected structure of a unit cell is shown on the leftmost panels.
The atomic columns on the corners of the unit cell contain Sr atoms
(green). The column at the center of the unit cell contains Ti atoms
(blue) and O1 type oxygen atoms (red) with an out-of-plane bond.
Halfway between the Sr columns there are either pure O2 atomic
columns (purple) at bottom and top or pure O3 columns (orange) on
the left and right. White lines indicate the in-plane Ti-O2 and Ti-O3
bonds. Maps in each column are for the same specimen thickness,
noted above, and share the same color scaling. In the linear color
scale, black is at a value of ¢, (R) = 0 and the brightest color (yel-
low) is at the maximum value for each thickness. Numbers given in
the Ti maps show the relative maximum intensity as a function of
thickness.

energy-loss spectrum on probe position and specimen thick-
ness. We apply conditions similar to those used in Ref. [26],
where experimental data were taken for a 50 unit cell thick
specimen of SrTiOsz in the [001] orientation with the aim
of investigating frequency-dependent vibrational anisotropies
in a centrosymmetric crystalline lattice. We assume incident
electrons with a kinetic energy of 60 keV and a probe forming
aperture defining a semiconvergence angle of 33 mrad. The
EELS detector has an aperture of 25 mrad and is centered
62 mrad off axis. In Ref. [26] one set of measurements had
the detector off axis along the [100] crystal direction and a
second data set was obtained with the detector offset along the
[010] direction. For our purposes it suffices to consider only
one of these, and we choose the first case here, i.e., the offset
along the [100] direction, which is along the horizontal axis in
the relevant two-dimensional plots that follow. A finite source
size with a FWHM of 2 A is included in the calculations to
take into account limitations on the spatial resolution of the
experimental results.

TABLE 1. Atomic mean-squared displacements (MSDs) of
SrTiO; in A? units at around 7 = 300K from calculations and
experiment. Isotropic MSDs (iso) are given for all atom types, and
directional MSDs are given for O atoms parallel (]|) and perpendicu-
lar (L) to the Ti-O bond. More detail is in the text.

MSD MD traj. [26] PDOS [26] X-rays [31]
(i3)e 0.00690 0.00572 0.00785
2) 0.00373 0.00313 0.00556
(), 0.00282 0.00463
(), 0.01203 0.01205
(i)’ 0.00850 0.00896 0.00958

Figure 1 shows weighting functions «,(R), as given by
Eq. (9), for n = Sr, Ti, and three classes of O atoms for
different specimen thicknesses. The three classes of O atoms
arise not only due to their differences in position but also in
the projection of bonding to the adjacent Sr and Ti atoms. This
can be understood from the insets in the leftmost panels of
Fig. 1, which show the projected structure of one SrTiO; unit
cell. For each O atom, the vibrational properties are different
parallel to the Ti-O bond compared to the two perpendicular
directions [26,31]. In the present scenario, with the detector
off-axis position along the horizontal direction, Ol and O2
share the same projected PDOS because, for those atoms, the
projection of the PDOS along q,,, which is horizontal, takes
the components of all vibrational modes perpendicular to the
bond, while O3 has a different projected PDOS determined by
the components of the vibrational modes parallel to the bond.
This is also reflected by different directional MSDs as listed
in Table I. Specifically, the pertinent components of the matrix
U} in Eq. (3), for an in-plane q, are U;9; = Uy} = (u3)})
and US| = Up9) = UpQ} = Up9; = (u3)§ in any atomic
plane at z; where these atoms are located and with U}A’y'(lz =
U;";] = 0 for all atoms in the structure. The MSDs for Sr and
Ti atoms are isotropic.

For the calculation of weighting functions o,(R) we
applied anisotropic MSDs via the matrix UiT’K in Eq. (3)
and also within the quantum excitation of phonons (QEP)
model [12,14] to calculate the elastic probe intensities
|Wo(R, z;, R« )|?> used in Eq. (6) via the multislice algorithm
[32]. Yan et al. [26] used isotropic Debye-Waller factors based
on isotropic MSDs, the values listed in the left-most column
of Table I, which were calculated directly from the trajectories
obtained using molecular dynamics (MD). In our simulations,
we applied the MSDs listed in the rightmost column of Table I,
which were obtained from x-ray diffraction dataat 7 = 296 K
by Abramov et al. [31] for electron scattering factors of neu-
tral atoms (also used here). These and very similar MSDs have
been successfully applied (albeit in an isotropic approxima-
tion) to provide excellent quantitative fits between simulations
and experiments in high-resolution STEM and TEM imaging
[33,34]. It should be noted that MSDs applied in these two
investigations were calculated by Peng [35] by averaging the
two sets of values obtained by Abramov et al. [31] for atomic
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and ionic scattering factors. We note, in passing, that an incor-
rect reference was mistakenly given in Ref. [33] for the source
of the MSDs used there. In the middle column of Table I we
also list MSDs that we calculated from the projected PDOSs
provided in Ref. [26] for T = 300 K using the formula

B E W(E
f coth &E) e an
2mn 0 2kBT E

The MSDs obtained in this way are lower than those calcu-
lated from MD trajectories, an inconsistency that is yet to
be accounted for. Furthermore, both sets of MSDs associated
with Ref. [26] are lower than those consistent with x-ray
diffraction [31] and, as just discussed, used successfully in
quantitative microscopy.

A supercell of 12 x 12 x 1 unit cells was used in accu-
mulating the «,(R) as a function of specimen thickness. The
supercell was partitioned into two slices of ~2 A thickness
along [001], the incident probe direction, and the projected po-
tentials were sampled on a grid of 576 x 576 pixels. Atomic
scattering factors for electrons, as tabulated by Weickenmeier
and Kohl [36], were used to calculate 400 projected potentials
for random configurations of the atoms in each slice con-
sistent with the MSDs in the rightmost column of Table I.
An Einstein model was assumed, i.e., the thermal displace-
ments of individual atoms were uncorrelated. These sets of
projected potentials were stacked in random permutations
out to a specimen thickness of 391 A (100 unit cells). The
distributions of the elastic probe intensity |Wo(R, z;, r)|?, as
the probe was propagated through each atomic plane z;, were
obtained by coherently averaging over repeated multislice
passes, as usually done in the QEP model [12]. In order to
ensure convergence of the elastic probe images, the multislice
passes were repeated 600 times for each probe position, each
time with a random selection of stacked projected potentials.
The calculations were performed for a set of 12 x 12 probe
positions R, uniformly spaced over one projected unit cell
(satisfying the Nyquist sampling requirement). The calcula-
tions were carried out with the DR. PROBE software [37]. The
subsequent accumulation of the «,(R) as a function of probe
position, specimen thickness, and atom class from the elastic
probe images and the atomic structure model of SrTiO3; was
performed using PYTHON scripts.

It is clear in Fig. 1 that the relative contributions from each
class of atoms change as a function of thickness. In particular,
the contributions for O atoms become more prominent as
the thickness increases. The maps for each class of atoms
are clearly peaked at the respective atomic positions, and the
weights for the Ti contribution reach the highest value for
all thicknesses. The Sr atoms are the strongest scatterers in
this compound. However, the (elastically scattered) electron
probe stays more tightly bound to the Ti-O1 column. With
increasing specimen thickness, all maps build up a nonzero
background, which means that each class also contributes to
the spectrum for probe positions that are away from the pro-
jected atomic sites. In addition, the weights increase overall
as a function of thickness, as indicated by the numbers given
in the Ti maps, which express the maximum in each column
as a fraction of that at 391 A thickness.
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FIG. 2. (a) Projected PDOS for each atom class n in SrTiO;,
reproduced from Figs. 1 and 3 in Ref. [26] and normalized such
that the area under each curve is 1. The projection is for an off-axis
position of the EELS detector along the [100] direction. (b) Spectral
contribution of each class n calculated from the projected PDOSs in
(a) for an incident beam energy of 60 keV and at a specimen tem-
perature of 7 = 300 K. The functions are smoothed by a Gaussian
of 10 meV FWHM to simulate the limited energy resolution of the
spectrometer.

To calculate energy loss spectra from the weighting factors
a,(R) via Eq. (8) one requires PDOSs g,(E, q,) projected
onto the different atom classes n. We used the projected
PDOSs calculated in Ref. [26]. However, here they have
been smoothed over an energy window of 1 meV and then
normalized such that their integration over phonon energy is
unity, as shown in Fig. 2(a). As noted before, for the off-axis
detector position along the horizontal direction in Fig. 1, the
projected directional PDOSs for O1 and O2 atoms are equal
and determined by the vibrational modes perpendicular to
their respective bond with the Ti atoms. In contrast, the O3
PDOS is different and determined by the vibrational modes
parallel to the bond. These PDOSs have been used to calculate
spectral contributions by applying Eq. (10) for each class n of
atoms shown in Fig. 2(b), assuming an incident beam energy
of 60 keV and a specimen temperature 7 = 300 K. The neg-
ative part of the energy-loss axis corresponds to energy gain
of the probing electron. In addition, the spectral contributions
are smoothed by a Gaussian of 10 meV FWHM to simulate
the limitations on energy resolution in the experiment [26].

In Fig. 3 we show phonon EELS maps for 60 keV elec-
trons incident on SrTiO3; with the detector off axis along the
horizontal [100] direction by 62 mrad. In Fig. 3(a) experimen-
tal, background-subtracted EELS maps are reproduced from

054119-4



PRACTICABLE MODEL FOR PHONON SPECTROSCOPY AT ...

PHYSICAL REVIEW B 111, 054119 (2025)

10-20 meV 20-30 meV 30-40 meV 40-50 meV 50-60 m

—~
[y
-

Experiment

60-70 meV 90-100 meV  100-110 meV ) single-phonon

!EH]IHF?._,_-HH |-

(b) 12.4 meV 24.8 meV 37.2 meV 49.6 meV 57.9 meV 66.2 meV 95.1 meV 103.4 meV (e) QEP
3 THz) (6 THz) (9 THz) (12 THz) (14 THz) (16 THz) (23 THz) (25 THz) aII-phonon
£
@ FE " 3
2 -
o
i FE = 3
= - -
(c) 12.4 meV 24.8 meV 37 2 meV 49.6 meV 57 9 meV 66.2 meV 95 1 meV 103 4 meV
(3 THz) (6 THz) 12T 4 THz) (16 THz) elastic x10-3

CHISCO sim.

ummmm—nn [ |

fract. int.

FIG. 3. EELS maps for SrTiO; in [001] orientation with the detector off axis along the horizontal [100] direction by 62 mrad. (a) Ex-
perimental EELS maps (after background subtraction) for the set of energy-loss ranges indicated above each map. These are reproduced
from Fig. 2(e) in Ref. [26]. (b) Maps simulated using the FRFPMS model integrating over a window of £0.5 THz (= £2 meV) about the
representative energy losses indicated. These are reproduced from Fig. 2(f) in Ref. [26]. (c) Simulations using the CHISCO model in this paper
for bins centered as indicated in (b) and with a range of &2 meV. (d) Single phonon integrated EELS map. Intensity scattered into the off-axis
detector (e) due to phonon excitation and (f) for elastically scattered electrons, both calculated in the QEP model. (d), (e), and (f) are plotted

on the same intensity scale in fractions of the incident beam intensity.

Fig. 2(e) in Ref. [26]. The simulations from Ref. [26] that
were calculated with the FRFPMS approach for comparison
with these experimental results are reproduced in Fig. 3(b).
These maps take into account single-phonon excitations and
were integrated over bins centered as indicated and with a
range of 0.5 THz (=+2 meV). In Fig. 3(c) we show re-
sults from simulations using the CHISCO model discussed in
this paper and integrated over the same energy bins used in
Fig. 3(b). The two theoretical approaches mostly agree, with
notable differences in the scan patterns around 14 and 16 THz.
Although the patterns are peaked at the same probe positions,
they differ slightly between the peaks. Around 14 THz, the
FRFPMS calculation predicts higher intensity at O2 and O3
column positions than the CHISCO calculation, and is more
consistent with experiment. Around 16 THz, the CHISCO
result predicts higher intensity at Ti-O1 positions, producing
horizontal stripe features similar to the experimental pattern.
For the patterns at 23 and 25 THz, the CHISCO result predicts
noticeably more intensity than the FRFPMS calculation at Sr
positions, also arguably in somewhat better agreement with
the experiment.

In Fig. 3(d) we show the integrated intensity obtained by
summing the theoretical calculations in Fig. 3(c) together with
further maps covering the complete range of energy losses and
gains to include all single-phonon contributions to the spec-
trum. This integrated result is depicted using the color scale
shown to the right of Fig. 3(f), which now provides an absolute
scale as a fraction of the incident beam intensity. We note
that patterns for energy losses and gains taken symmetrically
around the zero loss are similar up to a Boltzmann factor, i.e.,
they do look similar if each is plotted on its own scale.

For comparison, we show the result of calculations in the
QEP model in Fig. 3(e) on the same scale. Single-phonon

and multi-phonon excitations as well as multiple inelastic
scattering, which is becoming important for a specimen that
is 200 A thick [33], are implicit in these calculations. These
results are rather similar in pattern with maxima at the Sr
column position. As expected, the QEP calculation predicts
larger inelastic scattering intensity, because it includes the
single-phonon excitations as one component.

With the detector placed just outside the bright field, there
is also a significant elastic intensity scattered into the off-axis
detector. According to our calculations using the QEP model,
as shown in Fig. 3(f), the intensity scattered elastically into
the off-axis detector is only slightly smaller than that due
to phonon excitations and produces a pattern that is peaked
at the Ti-O1 column positions. Since SrTiO;3 has ionic char-
acter, this suggests that electrons scattered elastically in the
direction of the detector and subsequently scattered through
small angles may contribute a dipole contribution. However,
dipole inelastic scattering components were not included in
this calculation.

Let us now take a more specific and detailed look at simu-
lated energy-loss spectra, some implicit in Fig. 3. Figure 4(a)
shows energy-loss spectra for four specific probe positions
covered by the maps in Fig. 3. There is a strong shape de-
pendence in the spectra when the probe is placed above the
four different atomic columns. What is clearly seen in 4(a) is
the change of shape of the spectrum and not just the variation
in intensity. In Fig. 4(b) we explore the changes in shape of the
spectrum for thicknesses considerably thinner and thicker than
that for the experimental data in Ref. [26], with only subtle
variations in shape being evident in this example with the
probe placed on the Ti-O1 column. Figure 4(c) illustrates the
utility of the formalism presented here to explore the relative
contributions from different classes of atoms. The example
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FIG. 4. Simulated energy-loss spectra (a) with the electron probe
placed over the four different atomic columns of a 195 A thick
SrTiO3 crystal in [001] orientation, (b) for different specimen
thicknesses and the probe placed over a Ti-O1 column, and (c) con-
tributions to the spectrum for each class of atoms with the probe
placed over a Ti-O1 column and at 195 A thickness. Spectrometer
energy-loss bins of 1 meV width are assumed for the calculation of
fractional intensities.

shows that the spectrum for the probe placed over a Ti-Ol
column of 195 A thick SrTiOs3 has contributions from all
classes of atoms, each with its particular energy dependence.
That all classes contribute to such a spectrum and that the
shape of the spectrum shows only subtle changes as a function
of thickness, as noted in Fig. 4(b), are mostly due to the
relatively large source size assumed here (2 A FWHM).

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have extended a recently proposed theory
for atomic resolution phonon spectroscopy in STEM to the
case of thicker crystalline specimens. This formulation explic-
itly includes the dependence of the spectrum on probe position
and considers the contributions to the spectrum from individ-
ual atoms. Simulations to explore the thickness dependence of
the energy-loss spectra, in particular their shape, are carried
out for the perovskite SrTiOs. The calculations are compared
qualitatively to results of a recent experimental investigation
and to calculations using the FRFPMS approach [26,27].

We reiterate two key assumptions made. We have an EELS
detector accepting a large range of scattering angles and
placed sufficiently far off axis in the dark field that we can
assume incoherent contributions from different atoms [25]. In
this model we do not explicitly consider the details of phonon
modes in the dispersion surfaces, and a PDOS projected onto
each atom is assumed to be sufficient. Nevertheless, unlike in
Ref. [25] where the probe could be assumed, roughly speak-
ing, to be illuminating only one atom at a time, here probe
spreading means that several atoms may be illuminated at a
given slice. In this scenario, the cross-terms between atoms
due to correlated vibration of the atoms may be significant.
Nevertheless, the broad qualitative agreement with the FRF-
PMS model and experiment shown in Fig. 3 suggests that
the approximation of incoherent contributions from different
atoms is a reasonable one. It is likely that the large probe con-
vergence angle and large detector aperture used here lead to
a suppression of any contributions from cross-terms between
atoms.

Working in this incoherent approximation, where atoms
contribute independently, makes calculations inherently faster
than methods where this is not assumed [20,21]. The calcu-
lation of the multiple elastic electron scattering in a thick
specimen (or for a range of thicknesses) and for a set of
probe positions, as in the present example, is a matter of a
few hours on a contemporary desktop computer, including
postprocessing into weighting functions «,(R) for each class
of atoms. The main contribution to the computation time is
the large number of multislice calculations within the QEP
model, which are repeated several hundred times per probe
position with different positional configurations of the atoms
to achieve convergence for the calculation of elastically scat-
tered probe intensity distributions. A significant reduction of
computational cost (times down to a few minutes) could be
achieved by applying absorptive potentials for which just one
multislice calculation is sufficient per probe position. While
absorptive form factors for electron scattering are usually
available considering MSDs in an isotropic approximation
[36], they could also be obtained for anisotropic MSDs as
proposed by Peng [35].

A prerequisite to apply the CHISCO approach is that
projected PDOSs are available for each class of atoms. Ide-
ally these would provide consistent MSDs to be used in
multislice calculations and in Eq. (6), and also to calculate
spectral contributions s, r(E, q,) as input to the calculation
of the energy-loss spectra. In the discussion of Table I, we
noted that the MSDs deduced from MD trajectories by Yan
et al. [26] are (i) inconsistent with the MSDs that we have
calculated via Eq. (11) from the projected PDOS, and (ii)
they are also significantly smaller than those determined by
Abramov et al. from x-ray scattering experiments [31]. A
possible contribution to the first inconsistency is that Eq. (11)
applies properties of quantum harmonic oscillators, while the
MSDs are determined from MD calculations that numerically
solve classical equations of motion. Concerning the second
inconsistency with the results of Abramov er al., we found
that using the smaller MSDs, which are consistent with the
PDOSs, leads to an increased inelastic scattering intensity in
the CHISCO model, due to larger Debye-Waller factors in
Eq. (3), and at the same time reduces the total thermal diffuse
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scattering estimated by the QEP model. These two changes
were so strong that the single-phonon scattering estimated
by the CHISCO method became larger than the QEP result,
which should contain single-phonon excitations as one of its
components. As shown in Figs. 3(d) and 3(e), this problem
is not present when using the MSDs determined by Abramov
et al.. The success of quantitative high-resolution STEM and
TEM imaging using these MSDs suggests that they could be
more realistic, a topic which is worth revisiting.

The approach discussed here can simulate the main fea-
tures of energy-loss spectra measured in STEM using an
off-axis detector, given suitable projected PDOSs. How the
electron probe channels through the crystal has a nontrivial ef-
fect on the shape of the energy-loss spectrum. Our simulations
for the example of SrTiO3 suggest that the change of shape of
the spectrum occurs mostly as a function of probe position and
to a lesser extent as a function of thickness. Contributions to
the spectrum from different classes of atoms can be explored,
a feature that is not available with other approaches. A further
advantage of the CHISCO approach is that the simulations
have modest computational requirements and this allows one
to explore the parameter space with the aim of optimizing
the experimental setup for the investigation of a particular
specimen of interest.

As previously discussed [25], deconvolution of the mul-
tiple scattering of the probe to obtain projected PDOSs per
atom is possible in principle, in a similar way to how this was

done for core-loss EELS [38], albeit that the atomic positions
and the mean-squared displacements would need to be known
a priori for each atom in the specimen. The results shown in
Fig. 4(c) indicate that, for phonon EELS of a thick compound
specimen, a spectrum is in general a weighted superposition
of contributions from different atom classes. This suggests
that further investigation is warranted to determine whether
the signal of localized phonon modes occurring for impurity
atoms and at interfaces can be measured by such a decon-
volution approach. As a result of such an analysis, it should
be possible to extract the projected PDOS for a given class
of atoms by inversion of the set of linear equations given
by Eq. (8) from energy-loss spectra taken as a function of
probe position. Assuming that the atomic structure is known,
the quantities Fr(E) and o,(R) can be calculated and the
projected PDOS g,(E, q,) at each E and for each class of
atoms n can be obtained by solving a set of linear equations.
This opens up a new experimental pathway to explore the
vibrational behavior of individual atoms.
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