001     1040930
005     20250411203140.0
037 _ _ |a FZJ-2025-02060
100 1 _ |a Fischer, Kirsten
|0 P:(DE-Juel1)180150
|b 0
|e Corresponding author
|u fzj
111 2 _ |a DPG Spring Meeting of the Condensed Matter Section
|c Regensburg
|d 2025-03-16 - 2025-03-21
|w Germany
245 _ _ |a Response functions in residual networks as a measure for signal propagation
260 _ _ |c 2025
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1744375014_4023
|2 PUB:(DE-HGF)
|x After Call
520 _ _ |a Residual networks (ResNets) demonstrate superior trainability and performance compared to feed-forward networks, particularly at greater depths, due to the introduction of skip connections that enhance signal propagation to deeper layers. Prior studies have shown that incorporating a scaling parameter into the residual branch can further improve generalization performance. However, the underlying mechanisms behind these effects and their robustness across network hyperparameters remain unclear.For feed-forward networks, finite-size theories have proven valuable in understanding signal propagation and optimizing hyperparameters. Extending this approach to ResNets, we develop a finite-size field theory to systematically analyze signal propagation and its dependence on the residual branch's scaling parameter. Through this framework, we derive analytical expressions for the response function, which measures the network's sensitivity to varying inputs. We obtain a formula for the optimal scaling parameter, revealing that it depends minimally on other hyperparameters, such as weight variance, thereby explaining its universality across hyperparameter configurations.
536 _ _ |a 5232 - Computational Principles (POF4-523)
|0 G:(DE-HGF)POF4-5232
|c POF4-523
|f POF IV
|x 0
536 _ _ |a 5234 - Emerging NC Architectures (POF4-523)
|0 G:(DE-HGF)POF4-5234
|c POF4-523
|f POF IV
|x 1
536 _ _ |a MSNN - Theory of multi-scale neuronal networks (HGF-SMHB-2014-2018)
|0 G:(DE-Juel1)HGF-SMHB-2014-2018
|c HGF-SMHB-2014-2018
|f MSNN
|x 2
536 _ _ |a RenormalizedFlows - Transparent Deep Learning with Renormalized Flows (BMBF-01IS19077A)
|0 G:(DE-Juel-1)BMBF-01IS19077A
|c BMBF-01IS19077A
|x 3
536 _ _ |a ACA - Advanced Computing Architectures (SO-092)
|0 G:(DE-HGF)SO-092
|c SO-092
|x 4
536 _ _ |a neuroIC002 - Recurrence and stochasticity for neuro-inspired computation (EXS-SF-neuroIC002)
|0 G:(DE-82)EXS-SF-neuroIC002
|c EXS-SF-neuroIC002
|x 5
536 _ _ |a GRK 2416 - GRK 2416: MultiSenses-MultiScales: Neue Ansätze zur Aufklärung neuronaler multisensorischer Integration (368482240)
|0 G:(GEPRIS)368482240
|c 368482240
|x 6
700 1 _ |a Dahmen, David
|0 P:(DE-Juel1)156459
|b 1
|u fzj
700 1 _ |a Helias, Moritz
|0 P:(DE-Juel1)144806
|b 2
|u fzj
856 4 _ |u https://www.dpg-verhandlungen.de/year/2025/conference/regensburg/part/soe/session/7/contribution/4
909 C O |o oai:juser.fz-juelich.de:1040930
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180150
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156459
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144806
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5232
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-523
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Neuromorphic Computing and Network Dynamics
|9 G:(DE-HGF)POF4-5234
|x 1
914 1 _ |y 2025
920 1 _ |0 I:(DE-Juel1)IAS-6-20130828
|k IAS-6
|l Computational and Systems Neuroscience
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IAS-6-20130828
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21