001040944 001__ 1040944
001040944 005__ 20250325202233.0
001040944 0247_ $$2doi$$a10.18420/SE2025-WS-24
001040944 0247_ $$2doi$$a10.18420/se2025-ws-24
001040944 037__ $$aFZJ-2025-02066
001040944 041__ $$aEnglish
001040944 1001_ $$0P:(DE-Juel1)198911$$aWadewitz, Victoria$$b0$$eCorresponding author$$ufzj
001040944 1112_ $$a2nd Quantum Software Engineering Meetup (QSE’25)$$cKarlsruhe$$d2025-02-22 - 2025-02-28$$wGermany
001040944 245__ $$aDiagrammatic Quantum Circuit Compression for Hamiltonian Simulation
001040944 260__ $$bGesellschaft für Informatik, Bonn$$c2025
001040944 29510 $$aSoftware Engineering 2025 – Companion Proceedings
001040944 300__ $$a223-255
001040944 3367_ $$2ORCID$$aCONFERENCE_PAPER
001040944 3367_ $$033$$2EndNote$$aConference Paper
001040944 3367_ $$2BibTeX$$aINPROCEEDINGS
001040944 3367_ $$2DRIVER$$aconferenceObject
001040944 3367_ $$2DataCite$$aOutput Types/Conference Paper
001040944 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1742896038_26419
001040944 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
001040944 520__ $$aOne of the promising applications for early quantum computers is the simulation of of dynamical quantum systems. Due to the limited coherence time of such devices, the depth-compression of quantum circuits is crucial to facilitate useful results. It has been shown that certain quantum models can even be compressed to constant depth, meaning it is only linearly dependent on the number of qubits, but independent of the simulation time and the number of Trotter steps. This has been done by extracting the circuit structure derived from the model characteristics via Hamiltonian simulation. Based on these results, we present a diagrammatic approach to circuit compression utilizing a powerful technique for reasoning about quantum circuits called ZX-calculus. We demonstrate our approach by deriving constant-depth circuit compressions for quantum models known to be constant-depth, as well as novel models previously unstudied. Our method could serve as a first step toward the development of more advanced circuit compression methods, that could be employed to enable Hamiltonian simulation of a larger variety of quantum models, and beyond.
001040944 536__ $$0G:(DE-HGF)POF4-5215$$a5215 - Towards Quantum and Neuromorphic Computing Functionalities (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001040944 588__ $$aDataset connected to DataCite
001040944 650_7 $$2Other$$aQuantum Computing
001040944 650_7 $$2Other$$aCircuit Compression
001040944 650_7 $$2Other$$aHamiltonian Simulation
001040944 650_7 $$2Other$$aNISQ
001040944 650_7 $$2Other$$aPhase Gadgets
001040944 650_7 $$2Other$$aZX-calculus
001040944 7001_ $$0P:(DE-HGF)0$$aSzasz, Aaron$$b1
001040944 7001_ $$0P:(DE-HGF)0$$aCamps, Daan$$b2
001040944 7001_ $$0P:(DE-HGF)0$$aKlymko, Katherine$$b3
001040944 7001_ $$0P:(DE-Juel1)194697$$aStollenwerk, Tobias$$b4$$ufzj
001040944 773__ $$a10.18420/se2025-ws-24
001040944 909CO $$ooai:juser.fz-juelich.de:1040944$$pVDB
001040944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)198911$$aForschungszentrum Jülich$$b0$$kFZJ
001040944 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194697$$aForschungszentrum Jülich$$b4$$kFZJ
001040944 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5215$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001040944 9141_ $$y2025
001040944 920__ $$lyes
001040944 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001040944 980__ $$acontrib
001040944 980__ $$aVDB
001040944 980__ $$acontb
001040944 980__ $$aI:(DE-Juel1)PGI-12-20200716
001040944 980__ $$aUNRESTRICTED