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Abstract 15 

In recent years, nitrate aerosols have emerged as a dominant component of atmospheric 16 

composition, surpassing sulfate aerosols in both concentration and climatic impact. However, 17 

accurately simulating nitrate aerosols remains a significant challenge for global atmospheric 18 

models due to the complexity of their formation and regional variability. This study investigates 19 

key factors influencing nitrate aerosol formation to improve simulation accuracy in highly polluted 20 

regions. Using the advanced EMAC climate and chemistry model, we assess the effects of grid 21 

resolution, emission inventories, and thermodynamic, chemical, and aerosol scavenging processes. 22 

The ISORROPIA II thermodynamic model is employed to simulate the formation of inorganic 23 

aerosols. Model predictions are compared with surface observations of particulate nitrate in PM1 24 

and PM2.5 size fractions, including PM2.5 data from filter-based observational networks and PM1 25 

data from aerosol mass spectrometer field campaigns across Europe, North America, East Asia, 26 

and India. Results show that the model overestimates PM2.5 nitrate concentrations, especially in 27 

East Asia, with biases up to a factor of three. Increasing grid resolution, adjusting N2O5 hydrolysis 28 

uptake coefficient, and utilizing an appropriate emission database (e.g., CMIP6) improve 29 

performance. However, these adjustments do not necessarily enhance PM1 predictions, which 30 

remain underestimated, especially in urban downwind sites. Seasonal variations and diurnal trends 31 

reveal discrepancies in model performance, especially in Europe and urban downwind locations. 32 

In Europe, model bias is driven by an unrealistically sharp decrease in nitrate aerosol levels from 33 

morning maxima to evening minima. Sensitivity tests show relatively small impact on total 34 

tropospheric nitrate burden, with variations within 25%. 35 
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1. Introduction 36 

Aerosols are a critical and complex component of the Earth's climate system, due to the 37 

complexity of their chemical composition and the many changes they undergo during their 38 

atmospheric lifetime. The composition of anthropogenic aerosols, influenced by the diverse 39 

precursor gases emitted by anthropogenic activities, plays a pivotal role in shaping climate and air 40 

quality. Of particular concern are aerosols with a diameter of less than 2.5 μm (PM2.5), which have 41 

been linked to a significant global mortality rate, estimated to exceed four million deaths per year 42 

(Chowdhury et al., 2022; Im et al., 2023). Furthermore, anthropogenic aerosols have a significant 43 

impact on the Earth's energy balance by causing a net cooling effect that tends to mask the warming 44 

induced by greenhouse gases (Storelvmo et al., 2016; Glantz et al., 2022; Nair et al., 2023). Among 45 

the various types of anthropogenic aerosols, sulfates (SO4
2-) have become the dominant type in 46 

terms of mass concentrations, with a tropospheric burden that is more than twice as high than that 47 

of nitrates (NO3
-) (Bellouin et al., 2011; Myhre et al., 2013; Karydis et al., 2016). However, 48 

numerous studies have indicated a shift in this regime, with nitrates challenging the dominance of 49 

sulfates in several key regions of the polluted northern hemisphere (Tsimpidi et al., 2024), 50 

including Europe (Lanz et al., 2010; Aksoyoglu et al., 2017), the USA (Walker et al., 2012), and 51 

East Asia (Wang et al., 2013; Li et al., 2020). This phenomenon can be attributed to the strict 52 

restrictions on sulfur dioxide (SO2) emissions worldwide, which have not always been 53 

accompanied by a corresponding reduction in nitrogen oxide (NOx) emissions, and particularly 54 

ammonia (NH3), which has increased in recent decades (Bellouin et al., 2011; Hauglustaine et al., 55 

2014). Nitrate aerosols are of particular importance because they can influence atmospheric 56 

chemistry through heterogeneous reactions with dust and sea salt (Karydis et al., 2016; Kok et al., 57 

2023), which also lead to more acidic conditions in aerosols (Karydis et al., 2021). Additionally, 58 

nitrate aerosols have been shown to affect climate through a direct radiative effect that leads to 59 

cooling (Myhre et al., 2013; Hauglustaine et al., 2014; Klingmuller et al., 2019; Milousis et al., 60 

2025). Furthermore, nitrate aerosols influence the properties of clouds and other aerosol species, 61 

resulting in a complex indirect radiative effect (Klingmuller et al., 2020; Milousis et al., 2025). 62 

Consequently, the precise representation of nitrate aerosols in global chemistry climate models 63 

(CCM) becomes increasingly important, as they are projected to have the most substantial impact 64 

on climate and air quality by the end of the century. 65 

However, this task presents a number of challenges. Nitrate aerosol formation is highly sensitive 66 

to the levels of its precursors (Karydis et al., 2011), therefore, their accurate representation in 67 

models is an essential starting point for realistic simulation of nitrate aerosols. Furthermore, nitrate 68 

aerosols are inherently semi-volatile, which means that partitioning between the gas and particle 69 

phases is a complicated process as equilibrium conditions must be met, which in turn complicates 70 

the calculations (Seinfeld and Pandis, 2016). To ensure the reliability of model predictions, it is 71 

imperative that they accurately represent the equilibrium between the gas and particle phases, 72 

which depends on various atmospheric conditions. Humidity and temperature have been identified 73 

as key factors in determining this equilibrium, while atmospheric acidity has been shown to play 74 

a crucial role in regulating partitioning processes (Ansari and Pandis, 2000; Guo et al., 2016; Pye 75 

et al., 2020). The complexity of the system is further increased by the interaction of nitrate aerosols 76 

with other important aerosol species, such as sea salt and mineral dust. The inclusion of these 77 

pathways can be critical for accurate predictions (Karydis et al., 2010; Karydis et al., 2016; 78 

Kakavas and Pandis, 2021). The complex nature of nitrate aerosols often leads to discrepancies 79 

between model estimates and observations, with models frequently predicting higher mass 80 

concentrations. For instance, overestimations of approximately 2 µg/m3 have been found in Europe 81 
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(Jones et al., 2021; Milousis et al., 2024), with biases reaching a factor of 5 or more in some cases 82 

(Chen et al., 2018). Analogous findings have been documented in the US (Walker et al., 2012; 83 

Zakoura and Pandis, 2018, 2019; Jones et al., 2021), while model simulations in East Asia have 84 

exhibited even greater biases (Miao et al., 2020; Milousis et al., 2024), with Xie et al. (2022) noting 85 

that approximately 60% of studies modeling particle concentrations in China overpredicted 86 

particulate nitrate levels. The potential causes of such biases can be categorized into several 87 

groups, covering a range of physicochemical processes and model characteristics. 88 

A fundamental reason for discrepancies between model predictions and observations, as well 89 

as between predictions made by different models, is the grid resolution employed. A high spatial 90 

resolution (i.e., a substantial number of simulated grid cells with reduced size) facilitates the 91 

capture of chemical interactions that precursors undergo and their various removal processes with 92 

a high degree of precision. Conversely, a low spatial resolution may result in oversimplifications. 93 

It is important to note that the increased complexity of the representation is associated with higher 94 

computational costs. However, the use of high spatial resolution has been shown to reduce biases 95 

in predicted nitrate aerosol concentrations by 60-80% (Metzger et al., 2002; Zakoura and Pandis, 96 

2018, 2019). Furthermore, Schaap et al. (2004) and Heald et al. (2012) note that in certain cases, 97 

the use of high resolution is essential to ensure the accurate representation of observational data 98 

by the model.  99 

Another source of discrepancies between model and measurement results is the accuracy of the 100 

emission inventories in the model. Specifically in the case of nitrate aerosols, the presence of 101 

ammonia (NH3) emissions is critical in determining their concentrations. In regions where there is 102 

an excess of ammonia, it forms ammonium nitrate (NH4NO3) after having neutralized sulfuric acid 103 

(H2SO4) and reacting with nitric acid (HNO3) (Seinfeld and Pandis 2016). The main sources of 104 

NH3 emissions are associated with agricultural activities, and the accuracy of their representation 105 

in emission inventories is not always ensured (Nair and Yu, 2020). This is due to the influence of 106 

various factors. These include the variety of agricultural practices and management techniques 107 

used, as well as the land changes induced by agricultural activities in general (Sutton et al., 2013; 108 

Ge et al., 2020). These factors make it difficult to ensure consistent accuracy regarding NH3 109 

emissions. Additionally, the distinct characteristics of soil types and climates across different 110 

regions can substantially influence emission factors (Reis et al., 2009; Nair and Yu, 2020), a 111 

critical consideration in the development of a global inventory. For instance, Zhang et al. (2017) 112 

have highlighted that numerous prior NH3 emission inventories in China employed emission 113 

factors determined for Europe. In addition, the diurnal and seasonal variability of NH3 emissions 114 

must be considered in global inventories to ensure representability (Pinder et al., 2006; Hendriks 115 

et al., 2016). These considerations are equally relevant to the representation of other precursor 116 

gases, such as NOx and SO2, which are also crucial for particulate nitrate formation (Tsimpidi et 117 

al., 2007; 2008; 2012). 118 

The thermodynamic state of the aerosol is another factor that plays an important role in the 119 

accuracy of model predictions. Typically, thermodynamic equilibrium models can assume that the 120 

particle can only exist as a supersaturated aqueous solution throughout its lifetime (metastable 121 

conditions), or they can calculate its deliquescence into a solid state as the ambient relative 122 

humidity decreases (stable conditions). The choice of the thermodynamic state can lead to 123 

differences in the acidity of the aerosol, which, in turn, can affect the prediction of concentrations 124 

for species such as nitrate, as less acidic conditions favor its partitioning into the aerosol phase and 125 

vice versa (Nenes et al., 2020). Previous studies have examined the impact of the thermodynamic 126 

state assumption on aerosol concentration predictions and have demonstrated that the choice is 127 
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region dependent.  For instance, a stable state has been shown to yield more realistic predictions 128 

when simulating arid and desert regions (Karydis et al., 2016). Furthermore, Fountoukis et al. 129 

(2009) and Karydis et al. (2010) found that stable thermodynamic conditions are more consistent 130 

with observations when the ambient relative humidity (RH) is below 50%. Conversely, Ansari and 131 

Pandis (2000) found that metastable thermodynamic conditions are more suitable for regions with 132 

intermediate relative humidity (RH) and low aerosol concentrations. However, no significant 133 

differences were observed between these two assumptions for high aerosol concentrations. Guo et 134 

al. (2016) determined that metastable thermodynamic conditions are more representative of areas 135 

exhibiting characteristics analogous to those observed in the Northeastern US. In contrast, 136 

Milousis et al. (2024) found minimal differences between the two assumptions for major inorganic 137 

pollutant concentrations (i.e., nitrate, sulfate, and ammonium aerosols, as well as mineral cations) 138 

on a global scale. 139 

Another factor influencing model predictions of nitrate aerosols is the chemistry of dinitrogen 140 

pentoxide (N2O5), which is particularly important for the nocturnal production of nitrate particles. 141 

Specifically, N2O5, a compound derived from the oxidation of NOx species, undergoes 142 

heterogeneous hydrolysis on particle surfaces in the presence of sufficient amounts of water, 143 

resulting in the formation of HNO3, a pivotal precursor of nitrate aerosols. This heterogeneous 144 

pathway has been shown to dominate the nighttime production of HNO3, potentially accounting 145 

for up to 50% of particulate nitrate production in polluted areas during both winter (Liu et al., 146 

2020) and summer (Qu et al., 2019). The hydrolysis reaction is predominantly governed by a 147 

corresponding uptake coefficient, with numerous models employing a single average value. 148 

However, the reaction exhibits a strong dependence on environmental quantities such as 149 

temperature and relative humidity. Consequently, some studies suggest the utilization of different 150 

values in models depending on the prevalent ambient conditions of the examined region. For 151 

instance, Wang et al. (2020) proposed a significantly lower value than the conventional value 152 

utilized in CCMs (0.02) to better align with conditions observed in Beijing. A similarly suggestion 153 

was made by Phillips et al. (2016) for semi-rural regions in Germany, with the intent of providing 154 

more precise estimates of particulate nitrate, and this is supported by a number of studies in various 155 

parts of the US as well (Bertram et al., 2009; Brown et al., 2009; Chang et al., 2011; Chang et al., 156 

2016). The significance of N2O5 chemistry is particularly pronounced in regions exhibiting 157 

activities that contribute to elevated NOx concentrations. This effect is further exacerbated in areas 158 

characterized by intrusions of particles, such as mineral dust and/or sea salt, which facilitate 159 

heterogeneous reactions.  160 

Furthermore, model predictions of nitrate aerosols can be strongly influenced by the model 161 

treatment of their wet deposition and, specifically, the manner in which cloud acidity affects the 162 

dissolution of HNO3. Specifically, in less acidic conditions, elevated in-cloud dissolution of HNO3 163 

is observed to achieve overall electroneutrality, leading to increased particulate nitrate production 164 

(Seinfeld and Pandis, 2016; Tilgner et al., 2021). Therefore, it is essential that a model accurately 165 

represents in-cloud properties, as the pH conditions in regions with different characteristics will 166 

be more accurately captured. This, in turn, will facilitate a more comprehensive understanding of 167 

nitrate formation processes. 168 

This study aims to investigate the sensitivity of the simulated nitrate aerosol concentration to a 169 

number of parameters on a global scale. For this purpose, the global atmospheric chemistry-climate 170 

model EMAC was used, with different configurations and parameterizations covering all the 171 

aspects mentioned above that influence the prediction of particulate nitrate concentrations. The 172 

model performance was evaluated against network and station observations of NO3
- in the PM2.5 173 
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and PM1 size ranges, with the aim of identifying the parameters that are most relevant over specific 174 

regions. 175 

2. Methodology 176 

2.1 Model setup 177 

 The model utilized in this study is the EMAC global chemistry and climate model (Jöckel 178 

et al., 2006). EMAC comprises a series of submodels, which are interconnected via the Modular 179 

Earth Submodel System (MESSy) (Jöckel et al., 2005) to the base (core) model, namely the fifth 180 

generation European Center Hamburg general circulation model (ECHAM5) (Roeckner et al., 181 

2006). The gas phase chemistry is simulated by the submodel MECCA (Sander et al., 2019) with 182 

a simplified scheme similar to that used in the Chemistry Climate Model Initiative (CCMI), as 183 

described by Jöckel et al. (2016). The liquid phase chemistry is simulated by the submodel SCAV 184 

(Tost et al., 2006), which is also responsible for the wet deposition treatment of trace gases and 185 

aerosols. The submodel DRYDEP (Kerkweg et al., 2006b) addresses the dry deposition of trace 186 

gases and aerosols, while the submodel SEDI (Kerkweg et al., 2006b) handles the gravitational 187 

sedimentation of aerosols. The GMXe submodel (Pringle et al., 2010a; Pringle et al., 2010b) 188 

simulates aerosol microphysical processes and the gas-to-particle partitioning of inorganic species. 189 

For more detailed information on these particular processes, the reader is referred to Section 2.2. 190 

The ORACLE submodel (Tsimpidi et al., 2014; 2018) is responsible for simulating the 191 

composition and chemical evolution of all organic aerosol species. The microphysical processes 192 

of clouds are simulated by the CLOUD submodel (Roeckner et al., 2006), using the two-moment 193 

microphysical scheme for liquid and ice clouds of Lohmann and Ferrachat (2010), while 194 

considering a physically based treatment for the processes related to the activation of liquid 195 

droplets (Karydis et al., 2017) and ice crystals (Bacer et al., 2018). In this study, all simulations 196 

performed were nudged towards the actual meteorology using ERAI data (Dee et al., 2011), and 197 

concern the period 2009-2018, with the first year being used as the model spin-up period.  198 

The spatial resolution used in all simulations, except for two sensitivity cases (see Section 2.3), 199 

corresponds to T63L31, which has a grid resolution of 1.875𝑜 𝑥 1.875𝑜 and covers vertical 200 

altitudes up to 25 km, divided into 31 layers. The database of anthropogenic emissions in terms of 201 

aerosols and their precursors, utilized by all simulations with the exception of the related sensitivity 202 

cases (see Section 2.3), was derived from the CAMS inventory (Inness et al., 2019). Biomass 203 

burning emissions were taken from the GFEDv4.1 database (Randerson et al., 2017). The natural 204 

emissions of NH3, originating from soil and oceanic volatilization, were obtained from the GEIA 205 

database (Bouwman et al., 1997). The biogenic soil emissions of NO were calculated online during 206 

runtime using the algorithm of Yienger and Levy (1995). Lightning production of NOx is also 207 

calculated online by the LNOx submodel (Tost et al., 2007a) based on the parameterization of 208 

Grewe et al. (2001). The emissions of SO2 from volcanic eruptions are obtained from the 209 

AEROCOM database (Dentener et al., 2006). Sea salt emissions are calculated online according 210 

to the parameterization of Guelle et al. (2001), which utilizes precalculated lookup tables to 211 

determine the wind speed-dependent mass and particle number fluxes for the accumulation and 212 

coarse mode sizes, which applies for sea salt aerosols. For more detailed information on the 213 

calculation of the lookup tables, the reader is referred to Stier et al. (2005) and Kerkweg et al. 214 

(2006a). The AIRSEA submodel (Pozzer et al., 2006) calculates oceanic emissions of dimethyl 215 

sulfide (DMS) online. Additionally, dust emission fluxes are calculated online using the 216 

parameterization of Astitha et al. (2012). This method considers both the meteorological 217 
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information of each grid cell (temperature and relative humidity) and the various friction velocity 218 

thresholds above which dust particle suspension occurs. The mineral dust composition is 219 

determined by the bulk composition, and the mineral ions Na+, Ca2+, K+ and Mg2+ are estimated 220 

as a fraction of the total dust emission flux based on the chemical composition of the soil in each 221 

grid cell (Karydis et al., 2016; Klingmüller et al., 2018).  222 

2.2 Inorganic aerosol partitioning 223 

In this study, all calculations related to the thermodynamics of inorganic aerosols, as well as 224 

their phase partitioning process, are performed by ISORROPIA II v2.3 (Fountoukis and Nenes, 225 

2007), which is a thermodynamic module integrated into the GMXe submodel. ISORROPIA II 226 

v2.3 treats the chemical system of K+–Ca2+–Mg2+–NH4
+–Na+–SO4

2−–NO3
−–Cl−–H2O aerosols and 227 

has the ability to simulate either a stable thermodynamic state, where aerosols are allowed to 228 

precipitate into solid salts, or a metastable state, where aerosols remain in a supersaturated aqueous 229 

solution even at low relative humidities. The first case is used for the base case assumption of this 230 

study, along with all other sensitivity simulations, with the exception of one (Section 2.3). 231 

ISORROPIA II v2.3 is a slightly updated version of ISORROPIA II that concerns more accurate 232 

predictions of aerosol pH near neutral conditions (Song et al., 2018). However, this affects only a 233 

small number of calculations in the different compositional sub-regimes of ISORROPIA II. 234 

Specifically, in some cases, NH3 evaporation was not taken into account in the aerosol pH 235 

calculations, resulting in values that approached neutrality. However, this had a negligible effect 236 

on both the predicted NH3 and the inorganic aerosol concentrations. The ISORROPIA II v2.3 237 

model utilizes Bromley's formula (Bromley, 1973) to calculate the binary activity coefficients for 238 

multicomponent mixtures. For specific component pairs, it employs the Kusik-Meissner 239 

relationship (Kusik and Meissner, 1978), which incorporates the temperature dependence of 240 

Meissner and Peppas (1973). Further insights can be found in Fountoukis and Nenes (2007). 241 

In the GMXe submodel, aerosol size is described by seven lognormal size modes, four of which 242 

are assigned to a soluble fraction and the remaining three to an insoluble fraction. The soluble 243 

fraction includes the nucleation, Aitken, accumulation, and coarse size modes, while the insoluble 244 

fraction includes only the latter three (Pringle et al., 2010a, 2010b). In the aerosol partitioning 245 

process, kinetic limitations must be considered, as only sizes smaller than coarse mode can reach 246 

equilibrium within the timeframe of one model time step (10 minutes for this study). Consequently, 247 

the partitioning calculations are performed in two stages. Initially, the amount of gas phase species 248 

that can kinetically condense to the particle phase within this timeframe is calculated according to 249 

the diffusion limited condensation theory of Vignati et al. (2004). Subsequently, the partitioning 250 

between the gas and particle phases is estimated by assuming instantaneous equilibrium for all 251 

aerosol size modes, as the ISORROPIA II v2.3 routines are called separately for each one. Finally, 252 

the transfer of material between the soluble and insoluble modes is calculated by GMXe after the 253 

partitioning calculations have been completed. This transfer can occur in two ways: by 254 

coagulation, where two particles of different modes collide and the resulting particle is in the 255 

soluble mode; or if substantial soluble material has condensed onto an insoluble particle, the latter 256 

is transferred to the soluble mode (Pringle et al., 2010a, 2010b).  257 

2.3 Sensitivity configuration details 258 

A total of eight simulations were performed (base case and seven sensitivity cases) in an attempt 259 

to cover all aspects that influence the model predictions of particulate nitrate concentrations, as 260 

discussed in Section 1, and whose configurations are summarized in Table 1. The objective is to 261 

ascertain whether a specific configuration can most accurately reproduce the measurements of 262 
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PM2.5 and PM1 concentrations in the most heavily polluted regions of the globe. The base case 263 

simulation was performed using the following combination of configurations. A T63L31 spatial 264 

resolution (1.875𝑜 𝑥 1.875𝑜  grid) with anthropogenic emissions provided by the CAMS database 265 

is used. The aerosols' thermodynamic state was assumed to be stable, i.e., it was permitted to 266 

precipitate into solid salts at low relative humidity (RH). Aerosol scavenging is addressed by a 267 

comprehensive mechanism encompassing over 150 chemical reactions for the liquid phase, in 268 

addition to the online calculation of the in-cloud and precipitation pH (Tost et al., 2006, 2007b). 269 

The uptake coefficient of N2O5 hydrolysis is 0.02 according to the parameterization proposed by 270 

Evans and Jacob (2005).  271 

In the first two sensitivity model runs (RES_low and RES_high), only the spatial grid resolution 272 

was changed. The change involved the adoption of a lower resolution, characterized by a reduction 273 

in the number of grid cells, and a higher resolution, marked by an increase in the number of grid 274 

cells. Notably, the vertical resolution was maintained at 31 layers, consistent with the base case. 275 

The lower spatial resolution is the T42L31 resolution, which corresponds to a 2.813𝑜 𝑥 2.813𝑜  276 

grid and the higher spatial resolution is the T106L31 resolution, which corresponds to a 277 

1.125𝑜 𝑥 1.125𝑜  grid. The other two sensitivity model runs (‘CMIP’ and ‘HTAP’) employed 278 

distinct emission inventories with regard to anthropogenic emissions of aerosols and trace gases, 279 

yet utilized the grid resolution of the base case. Specifically, the CMIP6 model run utilized the 280 

CMIP6 database (O'Neill et al., 2016), while the HTAP model run employed the HTAPv3 database 281 

(Crippa et al., 2023). 282 

An additional sensitivity model run was performed in which the thermodynamic state of the 283 

aerosol was altered (‘THERM’). In this run, the metastable assumption was implemented, meaning 284 

aerosols are prevented from forming solids, even at extremely low RH values, allowing them to 285 

persist in a supersaturated aqueous phase. Additionally, a sensitivity model run was conducted in 286 

which the scavenging treatment was modified (‘SCAV’), employing a simplified mechanism 287 

where the gas-to-particle phase partitioning follows the effective Henry's Law coefficients 288 

approach. Furthermore, no aqueous phase chemistry was considered in the calculation of cloud 289 

acidity, as a constant value of 5 was assumed for in-cloud and precipitation pH (Tost et al., 2007b). 290 

Another sensitivity model run (‘HYDRO’) concerns the treatment of the uptake of N2O5 291 

hydrolysis, and more specifically the uptake coefficient considered. Specifically, an uptake 292 

coefficient for hydrolysis of 0.002 was employed (one order of magnitude lower than in the base 293 

case) in an attempt to obtain more accurate predictions in certain regions (Section 1). 294 

  295 
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Table 1: Configurations used in the base case and all sensitivity simulations. 296 

3. Evaluation of the Base Case Predictions for particulate NO3
- 297 

3.1 Surface concentrations and PM2.5 size fraction 298 

The mean surface concentrations of PM2.5 NO3
-, and the size fraction of PM2.5 NO3

- (i.e., the 299 

fraction of PM2.5 NO3
- mass in respect to the total aerosol NO3

- mass) are shown in Figure 1 for 300 

the entire period from 2010 to 2018. The maximum values of 14 µg/m3 are predicted over the 301 

Indian subcontinent and the East Asian region, with Central Europe showing concentrations of ~5 302 

µg/m3 for the period average, while Turkey and Eastern USA show mostly concentrations of ~3 303 

µg/m3 (Fig. 1a). With respect to the size fraction, PM2.5 accounts for more than 80% of the total 304 

particle concentration over the polluted northern hemisphere and up to 70% over South America, 305 

the southern part of Africa and Australia (Fig. 1b). The interaction of nitric acid with coarse 306 

mineral dust and sea salt particles results in smaller PM2.5 size fractions. A 30% contribution is 307 

observed over the Southern Ocean, while the Arabian Peninsula region has the lowest predicted 308 

NO3
- PM2.5 fraction, with a value of less than 20%. Over the Western Sahara and the dust outflow 309 

directed towards South America, the PM2.5 nitrate size fraction is around 60%. 310 

 311 

Simulation 

Name 

Spatial Resolution Anthropogenic 

Emissions 

Thermodynamic 

State 

Scavenging 

Treatment 

N2O5 

Uptake 

Coefficient 

 

T4
2

 

T6
3

 

T1
06

 

C
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M
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C
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IP
6

 

H
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et
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Si
m

p
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m
p
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0
.0

2
 

0
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0
2

 

Base Case  X  X   X   X X  

RES_low X   X   X   X X  

RES_high   X X   X   X X  

CMIP6  X   X  X   X X  

HTAP  X    X X   X X  

THERM  X  X    X  X X  

SCAV  X  X   X  X  X  

HYDRO  X  X   X   X  X 
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 312 

 313 

Figure 1: Annual mean (a) surface concentrations and (b) size fraction of PM2.5 NO3
- for the period 314 

2010 – 2018 as simulated with EMAC from the base case. 315 

 316 

3.2 Comparison of base case model results with PM2.5 observations 317 

The PM2.5 aerosol observations are obtained from four networks that cover regions with the 318 

highest levels of anthropogenic activity in the polluted northern hemisphere. These networks 319 

include the EPA CASTNET network (U.S. Environmental Protection Agency Clean Air Status 320 

and Trends Network) and the IMPROVE network (Interagency Monitoring of Protected Visual 321 

Environments), which collectively encompass 152 stations for particulate nitrate across the United 322 

States. Notably, IMPROVE predominantly focuses on rural and remote regions, while EPA 323 

primarily covers urban areas. The EMEP network (European Monitoring and Evaluation 324 

Programme Air Pollutant Monitoring Data) includes nine stations for particulate nitrate, covering 325 

the European region. Additionally, the EANET network (The Acid Deposition Monitoring 326 

Network in East Asia) covers parts of East Asia with 33 stations. The locations of all stations can 327 

be found in Figure S1a. The above networks provide monthly measurements for the entire period 328 

under consideration in this study. Given the continuous nature of PM2.5 measurements, a 329 

comparison with model predictions is presented in the form of surface concentration maps, where 330 

the observations from each station are overlaid on the model concentration maps (see Figure 2). A 331 

comparison in the form of scatter plots of seasonal means can be found in Figure S2. The seasonal 332 

statistical evaluation for the comparison of PM2.5 nitrate is shown in Table 2. The metrics employed 333 

include Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), 334 

Normalized Mean Bias (NMB), and Root Mean Square Error (RMSE). 335 

As illustrated in Figure 2a, the model can well reproduce the measurements with a high 336 

agreement for most stations in the USA, particularly those situated in the Midwestern region and 337 

along the Southern East Coast. However, discrepancies of approximately 1 µg/m3 (model 338 

overprediction) are evident over the Central East stations, and discrepancies of approximately 2 339 

µg/m3 are observed for the larger areas of New York and Northern California. In Europe, the 340 

model's overprediction of low concentrations is evident in the Iberian Peninsula, the Baltic region, 341 

and Croatia (~3 µg/m3 difference), while it more accurately represents the high concentrations 342 

observed in the UK and the Central and Western regions, with some exceptions in Germany and 343 

Switzerland (Fig. 3b). In East Asia, the discrepancy between model predictions and observations 344 
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is particularly pronounced. The model values for the North China Plain, Japan, Vietnam, and 345 

Thailand exceed the observed concentrations by up to 2 µg/m3, similar to the overprediction 346 

observed in Europe. However, the model values for Korea are three times higher than the observed 347 

concentrations (Fig. 3c). Conversely, the concentrations in the Zhangzhou region were 348 

underpredicted by the model, with discrepancies up to 5 µg/m3.  349 

Statistically, the USA region demonstrates the most optimal model representation exhibiting 350 

differences to observations that are less than 1 µg/m3 across all seasons. However, elevated 351 

normalized error values were observed during the summer and autumn periods. While the model 352 

shows higher overpredictions for East Asia, the mean bias and normalized error values appear to 353 

be relatively unaffected. However, the mean gross error and root mean square error metrics are 354 

notably larger compared to those observed for the USA. Notably, Europe exhibits the most 355 

significant discrepancies between model predictions and observations, with a mean bias exceeding 356 

1 µg/m3 and normalized error values particularly pronounced during the warm spring and summer 357 

periods, which are typically associated with low nitrate concentrations. 358 

 359 

 360 

 361 

 362 

 363 

Figure 2: Average surface concentrations of PM2.5 NO3
- for the period 2010 – 2018 as simulated 364 

by EMAC from the base case (shaded contours) versus observations of the same species from the 365 

(a) EPA-IMPROVE, (b) EMEP and (c) EANET networks (colored circles). 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 
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Table 2: Seasonal statistical evaluation of EMAC simulated PM2.5 NO3
- surface concentrations 375 

from the base case against observations during 2010-2018. The used metrics include the Mean 376 

Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), Normalized 377 

Mean Bias (NMB) and Root Mean Square Error (RMSE). 378 

 379 

3.3 Comparison of base case model results with PM1 observations 380 

The aerosol observations of PM1 are derived from AMS measurements obtained during field 381 

campaigns in the Northern Hemisphere from 2010 to 2018. The measurement durations of these 382 

campaigns ranged from one to six months and included rural, urban, and downwind locations. The 383 

campaign and types of locations can be seen in Figure S1b. Further details regarding the locations 384 

of the field campaigns, including their duration, can be found in Tsimpidi et al. (2016; 2024). As 385 

the field observations (in contrast to the network measurements) are not continuous but rather 386 

fragmented into different time periods for each field campaign location, the comparison is 387 

presented in the form of scatter plots that compare the model and the measured values depending 388 

on the location type (see Figure 3). A scatter plot comparison of the seasonal means is shown in 389 

Figure S3. The statistical evaluation involves the regions of the USA, East Asia, Europe, and India, 390 

using the same metrics as above. The results are presented in Table 3. 391 

As shown in Figure 3a, the model is able to reproduce the average PM1 values over rural and 392 

urban locations in Europe with a high accuracy, although there is considerable variation at specific 393 

locations.  On the other hand, it underpredicts PM1 nitrate in urban downwind locations (up to 394 

 

Network 

 

 

Season 

Number of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

EPA Winter 144 2.8 2.4 1.4 -0.5 50 -16 2.2 

Spring 291 1.4 2.2 1.2 0.8 87 54 1.5 

Summer 280 0.5 0.8 0.5 0.3 103 59 0.9 

Autumn 290 0.7 0.9 0.6 0.2 89 37 0.9 

IMPROVE Winter 116 0.8 1.2 0.7 0.4 80 48 0.9 

Spring 233 0.5 1.1 0.7 0.6 131 112 0.9 

Summer 193 0.2 0.4 0.3 0.2 155 123 0.5 

Autumn 214 0.2 0.4 0.3 0.2 143 99 0.5 

EMEP Winter 7 3.4 3.9 2.5 0.6 74 16 3.3 

Spring 18 1.6 2.8 1.6 1.2 96 73 2.1 

Summer 18 0.3 1.5 1.3 1.2 461 451 1.8 

Autumn 17 0.8 2.7 1.9 1.9 241 233 2.8 

EANET Winter 30 2.0 2.5 1.6 0.4 80 21 2.6 

Spring 59 1.9 2.0 1.6 0.1 87 8 2.9 

Summer 59 0.6 1.6 1.4 0.9 217 147 2.6 

Autumn 59 0.8 0.8 0.7 0.0 85 3 1.1 
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50%). In North America, the observed underprediction of average values is slightly stronger for 395 

downwind and particularly for rural locations (Fig. 3b) with average values for urban sites showing 396 

better agreement. In East Asia, the model shows similar accuracy to Europe in urban and rural 397 

locations, but with a significantly lower number of outliers (Fig. 3c). However, the average urban 398 

downwind values in this region exhibit an overprediction of slightly more than 50%. In India, the 399 

model's estimation of average urban values aligns closely with measurements, while the model 400 

significantly overestimates average rural values by a factor of 4 (Fig. 3d). 401 

In contrast to the comparison of PM2.5 concentrations, most of the metrics indicate that PM1 402 

aerosol observations in Europe are better reproduced. The USA shows low mean bias values and 403 

high scatter, as evidenced by normalized bias and error metrics. Conversely, East Asia shows 404 

higher absolute differences. The model has the worst performance for India, particularly in rural 405 

areas where there is a substantial discrepancy between the modeled and observed values. Overall, 406 

the model demonstrates a higher degree of accuracy in predicting PM1 concentrations in both rural 407 

and urban locations as compared to downwind areas. 408 

 409 

Table 3: Statistical evaluation of EMAC simulated PM1 NO3
- surface concentrations from the base 410 

case against observations during 2010-2018. The used metrics include the Mean Absolute Gross 411 

Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), Normalized Mean Bias (NMB) 412 

and Root Mean Square Error (RMSE). 413 

 414 

 

Region 

 

 

Type of 

location 

Number 

of 

datasets 

Mean Observed 

(μg m-3) 

Mean Predicted 

(μg m-3) 

MAGE 

(μg m-3) 

MB  

(μg m-3) 

NME 

(%) 

NMB 

(%) 

RMSE  

(μg m-3) 

USA Rural 31 1.1 0.7 1.0 -0.5 88 -42 1.5 

Urban 22 1.5 1.8 1.6 0.4 111 25 2.1 

Downwind 5 1.2 0.8 1.1 -0.5 87 -36 1.7 

East Asia Rural 40 6.8 7.8 4.7 1.0 68 15 6.0 

Urban 78 9.7 10.3 4.0 0.6 41 6 5.2 

Downwind 15 4.9 7.9 3.5 3.0 71 61 5.2 

Europe Rural 163 1.4 1.4 0.9 0.0 62 1 1.4 

Urban 28 1.8 1.5 1.0 -0.2 54 -13 1.5 

Downwind 99 3.2 2.4 1.5 -0.7 48 -23 2.2 

India Rural 5 0.4 2.1 1.8 1.7 439 412 2.6 

Urban 14 8.2 7.8 4.0 -0.4 49 -5 5.2 
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 415 

Figure 3: Scatterplots comparing monthly mean surface concentrations of PM1 NO3
- as simulated 416 

by EMAC from the base case and measured by AMS instruments in field campaigns in the regions 417 

of (a) Europe, (b) North America, (c) East Asia and (d) India. Enlarged dots indicate the 2008 – 418 

2018 period averages from all locations. Also shown are the 1:1 lines (solid) as well as the 2:1 and 419 

1:2 lines (dashed). 420 

4. Differences between PM2.5 and PM1 NO3
- concentrations in the sensitivity 421 

model runs  422 

The differences in the predicted surface PM2.5 nitrate concentrations across the sensitivity 423 

simulations in comparison to the base case, are illustrated in Figure 4. Furthermore, a comparison 424 

for PM2.5 concentrations across different seasons can be seen in Figure 5 and a comparison of PM1 425 

concentrations for the different types of measurements sites in Figure 6, with detailed statistical 426 

metrics provided in Tables S1–S14. 427 

(b) North America (a) Europe 

(c) East Asia 
(d) India 
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Figure 4: (a) Average surface concentrations of PM2.5 NO3
- for the period of 2008 – 2018 as 428 

simulated by EMAC from the base case. White areas indicate average concentrations smaller than 429 

0.25 µg/m3. Percentage changes of the EMAC-simulated average surface concentrations of PM2.5 430 

NO3
- between the base case model run and the (b) ‘THERM’ case (c) ‘RES_low’ case, (d) 431 

‘RES_high’ case, (e) ‘CMIP’ case, (f) ‘HTAP’ case, (g) ‘HYDRO’ case and (h) ‘SCAV’ case 432 

model runs. Negative values in red indicate higher concentrations by the respective sensitivity case 433 

and positive values in blue indicate the opposite. 434 

(a) (b)

(c) (d)

(e

)

(f)

(g) (h)
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4.1 Sensitivity to the model spatial resolution  435 

 Lower Grid Resolution: Employing a coarser grid resolution generally predicts higher surface 436 

PM2.5 nitrate concentrations than the base case (Fig. 4c). The largest differences (up to 80%) are 437 

observed for North America, followed by Europe (~30%). In East Asia, changes are more 438 

localized, with some areas exhibiting up to 15% lower values, while the Himalayan Plateau in 439 

India shows reductions of approximately 50%. 440 

When evaluated against observational datasets, the lower-resolution sensitivity simulation 441 

closely reproduces mean winter and spring nitrate concentrations in Europe, where nitrate levels 442 

typically peak during these seasons (Fig. 5). However, the model significantly overestimates 443 

summer and autumn concentrations, with biases reaching factors of 3 to 4 for EMEP observations. 444 

In North America, this sensitivity case consistently overestimates nitrate levels, particularly during 445 

the warmer seasons, although winter concentrations are more in line with EPA observations. In 446 

contrast, the model overestimates PM2.5 nitrate levels observed in the IMPROVE network by up 447 

to three times, exhibiting comparable overestimations to those observed in EANET data. 448 

According to the statistical metrics, the lower-resolution model run does not outperform the base 449 

case, indicating that a coarser grid resolution does not increase the model's estimation accuracy. 450 

For PM1 nitrate concentrations, the lower-resolution case slightly overpredicts rural values in 451 

Europe by approximately 13%, while urban values are slightly underpredicted (Fig. 6). At 452 

downwind locations, the underprediction is more pronounced, reaching around 25%. In North 453 

America, this tendency is nearly reversed, with rural sites exhibiting a substantial underprediction 454 

(~30%) and urban sites showing an overprediction (~20%). Notably, downwind locations in this 455 

region are best represented by the lower-resolution sensitivity case. In East Asia, this case case 456 

shows very similar rural values to the base case, while urban sites display a moderate 457 

underprediction (~15%). However, at downwind locations, concentrations are significantly 458 

overpredicted, with nearly twice as high values as the observed values. In India, the lower grid 459 

resolution leads to the opposite behavior. In this case, concentrations in rural areas are 460 

overpredicted, similar to the base case results, while concentrations in urban areas show the largest 461 

underprediction among all sensitivity model runs, with concentrations being approximately a 462 

factor of 2.5 lower. Statistically, the lower-resolution case offers a slight improvement in accuracy 463 

for rural locations in North America and East Asia. However, it does not exceed the accuracy of 464 

the base case for Europe or India. 465 

Higher Grid Resolution: In contrast to the results of the low grid resolution, simulations 466 

employing a higher grid resolution have yielded reduced surface PM2.5 nitrate concentrations in 467 

comparison to the base case (Fig. 4d). The differences in nitrate concentrations can reach up to 468 

50% across North America, Europe, and India, with less consistent patterns in East Asia.  469 

A comparison of the high-resolution model run with the EMEP observations reveals that it 470 

underpredicts nitrate concentrations in winter and spring by approximately 20%, but performs 471 

better in summer and autumn, reducing the overestimation compared to the base case (Fig. 5). 472 

Similarly, the higher grid resolution provides more accurate predictions for EPA observations in 473 

most seasons except winter, when slight underestimations occur. For the IMPROVE network, the 474 

high-resolution case achieves the best agreement in summer, though its performance varies across 475 

other seasons. 476 

For PM1 nitrate, the high grid resolution provides a modest underprediction across all European 477 

location types, with the most substantial discrepancy observed at downwind sites (~33%). In North 478 

America, rural and downwind sites exhibit a more pronounced underprediction, reaching up to a 479 

factor of 2, while urban locations show a modest overprediction (~12%). In contrast, the results 480 
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for East Asia exhibit an opposing pattern, with observations from all location types slightly 481 

overpredicted by the model, particularly at downwind sites (~factor of 2). In India, the urban 482 

locations estimate by this sensitivity align closely with the base case results, while rural sites 483 

demonstrate a marginally higher overprediction. Statistically, the high grid resolution enhances the 484 

accuracy of model predictions for urban sites in North America and Europe while also improving 485 

rural predictions in East Asia, underscoring its effectiveness in capturing finer spatial variability. 486 

 487 

 488 

 489 

Figure 5: Average seasonal surface concentrations of PM2.5 NO3
- measured (black bars) and 490 

predicted from the base case and all sensitivity cases (colored bars) for the networks of (a) EMEP, 491 

(b) EPA, (c) IMPROVE and (d) EANET during winter, spring, summer and autumn. 492 

 493 

 494 

(a) Europe (b) US (EPA) 

(c) US (IMPROVE) (d) East Asia 
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4.2 Sensitivity to anthropogenic emission inventories 495 

CMIP6: The application of the CMIP6 anthropogenic emission inventory for the simulation of 496 

surface PM2.5 nitrate concentrations provides lower concentrations in most regions, except for 497 

India (Fig. 4e). The most significant reductions in surface PM2.5 nitrate concentrations are observed 498 

in North America and Europe (50%-60%). East Asia exhibits a comparatively smaller reduction, 499 

ranging from 10% to 20%. Conversely, India exhibits an increase in PM2.5 nitrate levels ranging 500 

from 30% to 40%. 501 

A comparison with observations reveals notable discrepancies (Fig. 5). For EMEP observations, 502 

the CMIP emission inventory underestimates winter and spring concentrations by up to 40%, while 503 

overestimating summer values (by twofold), although autumn values are well captured. For EPA 504 

observations, this case underestimates in all seasons except winter, yielding the lowest PM2.5 505 

nitrate predictions among all cases. Interestingly, the underestimation during most seasons is 506 

analogous to the overestimation seen in the 'RES_high' case. For IMPROVE observations, model 507 

predictions are more accurate, characterized by minor positive biases (less than 10%), with 508 

summer values showing enhancement over the base case. For EANET observations, summer 509 

values are improved compared to the base case model, but values are overpredicted for other 510 

seasons similar to the base case model results. Statistically, the 'CMIP' case demonstrates greater 511 

efficacy than the base case for most observational networks, with the exception of EANET, for 512 

which similar results are obtained. 513 

A comparison of the 'CMIP' model run with observations of PM1 nitrate concentrations 514 

measured by AMS instruments in field campaigns reveals the largest underprediction of all 515 

sensitivity model runs for all location types in Europe, with downwind sites showing the largest 516 

discrepancy (~factor of 2). A similar pattern is observed in North America, where rural sites show 517 

differences as high as 80%. In contrast, observations in East Asia are more closely aligned with 518 

this case. Values in rural sites show the best agreement with observations, while values in urban 519 

sites exhibit only a slight underprediction of less than 10%. In downwind locations, however, 520 

values are moderately overpredicted by approximately 25%. In India, the CMIP emission 521 

inventory results in an overprediction of observations of around 20% in urban areas, with values 522 

in rural areas showing an even greater discrepancy, reaching approximately a factor of 10. 523 

Statistically, this case performs worse than the base case for Europe and India, however, has an 524 

improved performance in East Asia and the USA, particularly for metrics other than MB and NMB.  525 

HTAP: The simulation using the HTAPv3 anthropogenic emission inventory generally predicts 526 

higher PM2.5 nitrate concentrations than the base case (Fig. 4f). Notably, Europe and the eastern 527 

United States constitute exceptions, exhibiting 20–30% lower concentrations compared to the base 528 

case model. In other regions, particularly western North America and India, the predicted 529 

concentrations are up to 100% higher than in the base case model, with values in East Asia showing 530 

increases of 60–80%. 531 

A comparison of the model results with observations reveals significant variations. For EMEP 532 

observations, the HTAP emission inventory underestimates values in winter, similar to the 'CMIP' 533 

case, and overestimates concentrations in summer. Notably, the 'HTAP' model run exhibits the 534 

most significant underestimation in spring, reaching approximately 60%. However, the model's 535 

performance is satisfactory in the autumn. Comparisons to EPA observations show a consistent 536 

overestimation in all seasons, opposite to results of the CMIP6 model run. Comparison of the 537 

HTAP model results to the IMPROVE data show an overestimation of values (~factor of 2), 538 

particularly in winter, similar to results of the RES_low model run. For EANET observations, the 539 

use of the HTAP emission inventory leads to high overpredictions, ranging from a factor of 2 in 540 
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spring and summer to a factor of 4 in winter. Statistically, the HTAP model run performs better 541 

than the base case model for EMEP observations during summer and autumn, but model 542 

predictions are worse in winter and spring. Slight improvements are observed for EPA 543 

observations, while the model performance is worse for IMPROVE observations, and especially 544 

for EANET observations. 545 

When evaluated against PM1 nitrate concentrations measured by AMS instruments in field 546 

campaigns, the HTAP emission inventory shows a 20% underprediction of values at rural sites in 547 

Europe, but it best captured average urban values compared to all other sensitivity simulations. 548 

However, in downwind locations, the model underpredicts concentrations by nearly 40%. This 549 

sensitivity model run performs particularly well compared to observations in North America, 550 

where it shows the best agreement with observations in both rural and urban locations. However, 551 

in downwind locations, the model values are significantly lower than the observations, similar to 552 

the base case estimates, with a model-measurement discrepancy of nearly 50%. In contrast, 553 

reproducing observations in East Asia appears to be challenging for this sensitivity case, as the 554 

simulated values show the highest overprediction of all model cases for all location types. The 555 

results for downwind sites exhibit a distinct overprediction of almost a factor of 2, while results 556 

for other locations show discrepancies of less than 20%. In India, concentrations simulated by the 557 

'HTAP' case show a substantial overprediction for both urban and rural locations, and the most 558 

significant model-measurement discrepancies among all sensitivity model runs. In rural areas, the 559 

overprediction can reach up to a factor of 15, while in urban areas, the predicted concentrations 560 

are approximately double the observed values. Statistically, the 'HTAP' case performs worse 561 

relative to the base case in East Asia and India. However, it provides improved predictions for 562 

rural locations in the USA and Europe, but not for urban downwind sites. 563 

  564 
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 565 

Figure 6: Average PM1 NO3
- surface concentrations measured by AMS instruments in field 566 

campaigns (black bars) and predicted by the base case and all sensitivity cases (colored bars) for 567 

the regions of (a) Europe, (b) North America, (c) East Asia and (d) India divided into rural, urban 568 

and downwind locations. 569 

 570 

4.3 Sensitivity to the model treatment of the aerosol thermodynamic state and 571 

chemistry  572 

Metastable state: The simulation assuming a metastable thermodynamic state (aerosols do not 573 

precipitate into solid salts at low humidity) indicates only minor discrepancies in surface PM2.5 574 

nitrate concentrations compared to the base case (Fig. 4b). Concentrations exhibit a 10–15% 575 

increase in North America and Europe, while in the Himalayan Plateau, they decrease by up to 576 

30%, and in East Asia, they are slightly lower. 577 

When evaluated against PM2.5 observations, the metastable state performs almost identically to 578 

the stable state (i.e., base case) for all observational networks. However, slightly less accurate 579 

(a) Europe (b) North America 

(c) East Asia (d) India 
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predictions (differences <5%) are observed for the EPA and IMPROVE networks, as reflected in 580 

the statistically insignificant differences between the metrics derived for the sensitivity and base 581 

case model runs. 582 

For observations of PM1 nitrate concentrations, the metastable results are nearly identical to the 583 

base case model run in Europe and North America for all location types. A similar behavior is 584 

observed in East Asia, where the metastable assumption overpredicts observed concentrations by 585 

approximately 5% compared to the base case model run for all locations. In India, the metastable 586 

and base case results show no difference in rural areas, but values are underpredicted by about 587 

40% in urban areas due to the use of the metastable state assumption. This discrepancy is 588 

associated with the combination of moderate temperatures and low relative humidity at these 589 

locations, which hinder the partitioning of nitrate into the aerosol phase (Ansari and Pandis, 2000; 590 

Milousis et al., 2024). These factors contribute to the model-measurement discrepancies, 591 

particularly in urban areas with elevated nitrate aerosol concentrations. Statistically, this particular 592 

sensitivity performs marginally better than the base case model run for downwind sites in East 593 

Asia. However, it underestimates nitrate concentrations at urban sites in India, with only minor 594 

discrepancies to observed values elsewhere. 595 

Lower N2O5 uptake coefficient for hydrolysis: The simulation that incorporated a lower 596 

uptake coefficient for N2O5 hydrolysis consistently yielded lower surface PM2.5 nitrate 597 

concentrations in all regions when compared to the base case model (Fig. 5g). The simulation 598 

indicates a 20% decrease in East Asia and a 40% decrease in Europe and North America, reflecting 599 

the suppression of nitrate formation via the hydrolysis pathway. 600 

A comparison of the model simulation using a lower N2O5 uptake coefficient with observations 601 

reveals a tendency to underpredict the PM2.5 nitrate concentrations from the EMEP network during 602 

winter and spring. The discrepancy between this simulation case and the observations is more 603 

pronounced in winter and spring (25% and 35%, respectively) compared to summer and autumn. 604 

For the EPA network, this sensitivity underpredicts winter values by approximately 30%, but gives 605 

better agreement for all other seasons than any of the other sensitivity cases. Against IMPROVE 606 

observations, the lower N2O5 uptake coefficient case results in a lower overprediction in all seasons 607 

when compared to the base case model run. The model-measurement differences are within 30%. 608 

For EANET observations, the HYDRO model simulation gives values that are in better agreement 609 

with the observations than the results of the other sensitivity model runs, exception for the 'CMIP' 610 

case during summer. Statistically, the 'HYDRO' case shows improved performance compared to 611 

the base case across all observational networks and metrics, with the exception of the EANET 612 

observations during the autumn season. The most significant improvements compared to the base 613 

case are observed for the EPA network, as this scenario showed the best metrics in comparison to 614 

the rest of the sensitivities, for values obtained in summer and autumn. 615 

For PM1 nitrate concentrations, the sensitivity case with lower N2O5 uptake exhibits the second 616 

highest underprediction among all sensitivity model runs, surpassed only by the 'CMIP' case, 617 

across all location types in Europe. A similar behavior was observed for North American values. 618 

However, the results of the model-measurement comparison vary significantly for values in East 619 

Asia. Specifically, while the 'HYDRO' model run demonstrates the most significant 620 

underprediction for urban site values (approximately 15%) among all other sensitivity cases, it 621 

exhibits a lower overprediction bias compared to the base case for both rural and downwind 622 

locations, resulting in a closer agreement with the measurements. In India, the HYDRO case 623 

exhibits the lowest overprediction for rural values among all sensitivity model runs, although these 624 

values are substantially lower (a factor of 4) than the observations. For urban areas, the lower N2O5 625 
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uptake coefficient results in an underprediction comparable to that obtained by using a lower grid 626 

resolution or by assuming a metastable aerosol state. Statistically, the 'HYDRO' case demonstrates 627 

a lower performance than the base case in Europe, particularly for rural and downwind locations, 628 

as evidenced by the presence of stronger negative biases and higher error rates. In North America, 629 

the model performs worse for rural locations but better for urban locations, with comparable 630 

metrics for urban downwind predictions. In East Asia, the lower N2O5 uptake coefficient provides 631 

more accurate predictions than the base case for rural and downwind locations for most metrics 632 

(except for RMSE), yet predictions are less precise for urban sites. In India, the predictions in rural 633 

areas are improved compared to the base case model run by this sensitivity, but predictions in 634 

urban areas remain unchanged. This observation indicates that the 'HYDRO' model run performs 635 

better in capturing nighttime aerosol nitrate formation, which is predominant in rural areas. In 636 

contrast, daytime production pathways seem to be more significant in urban areas. 637 

 638 

4.4 Sensitivity to the scavenging treatment  639 

Simplified scavenging treatment: The implementation of a simplified scavenging treatment 640 

for the gas phase aerosol precursors in the model (Section 2.3) yields substantially reduced surface 641 

PM2.5 nitrate concentrations compared to the base case (Fig. 4h). The largest differences are found 642 

for Europe and East Asia, where concentrations are reduced by approximately 60%. 643 

Comparatively, North America exhibits a reduction of approximately 30%, while India 644 

experiences a decline of around 10–20%. These lower concentrations can be attributed to the high 645 

wet deposition fluxes in the simplified mechanism, which neglects gas-phase diffusion limitations 646 

and assumes an equilibrium between the gas and aerosol phases (Tost et al., 2007b). Additionally, 647 

the assumed pH of 5 for clouds and precipitation is less acidic than typical for polluted regions, 648 

further enhancing nitrate scavenging. 649 

A comparison of the 'SCAV' case with observations reveals the strongest underprediction for 650 

EMEP measurements in winter (~45%). Overprediction biases are less by ~20% and ~30%, 651 

respectively, than in the base case model run during summer and autumn. For the EPA network, 652 

the 'SCAV' case demonstrates the most significant overprediction of observations in winter (~45%) 653 

among all sensitivity model runs. However, values are only marginally overpredicted in the other 654 

seasons (~10%), and even slightly underpredicted in spring. The simplified scavenging treatment 655 

better reproduces the IMPROVE observations throughout the year compared to the base case, with 656 

notable reductions in model-measurement discrepancies of up to ~40% during winter and spring. 657 

For EANET observations, the 'SCAV' model run yielded smaller values than the base case, thereby 658 

reducing the overprediction bias by ~35% during winter. In all other seasons within the region, 659 

this particular sensitivity demonstrates the smallest discrepancies between model predictions and 660 

observations among the rest. Statistically, the 'SCAV' case demonstrates enhanced performance in 661 

comparison to the base case for EMEP and EPA observations across the majority of seasons, with 662 

the exception of winter, where the model exhibits a substantial underprediction tendency, as 663 

evidenced by both bias and error metrics. The model-measurement agreement for observations of 664 

the IMPROVE network exhibited enhancement in comparison to the base case model run across 665 

all seasons. The agreement for EANET observations shows improvements only during winter and 666 

summer, while during spring and autumn the statistical metrics of the 'SCAV' case are worse 667 

compared to the base case. 668 

For PM1 nitrate, the simplified scavenging treatment underpredicts the observations more than 669 

the base case for all location types in Europe. The magnitude of the bias observed in the 'SCAV' 670 

case is comparable to that obtained by using the CMIP6 emission inventory or by using a lower 671 
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N2O5 uptake coefficient. In North America, the simplified scavenging treatment results in an 672 

underprediction of concentrations of approximately 50% for rural sites and 40% for downwind 673 

sites, though it is slightly smaller than the overprediction bias of the base case model for urban 674 

locations. In East Asia, the 'SCAV' case exhibits a smaller overprediction of observed values 675 

compared to the base case results for downwind locations (~25%), while this sensitivity provides 676 

nearly identical estimates for rural sites. Conversely, urban sites exhibit a slight underprediction 677 

(12%) in this sensitivity analysis. In India, the 'SCAV' sensitivity model run does not lead to 678 

substantial changes in the estimates compared to the base case results for both urban and rural 679 

locations. Statistically, the 'SCAV' case performs worse than the base case in terms of bias metrics 680 

for results in Europe, although the discrepancy in error metrics is less pronounced. In North 681 

America, the 'SCAV' case shows worse metrics for rural sites, but shows improvements for urban 682 

sites. Downwind sites show increased biases but reduced errors. In East Asia, the 'SCAV' case 683 

exhibits higher accuracy in capturing observations at rural and downwind sites compared to the 684 

base case but performs less successfully at urban sites. A similar pattern is observed in the results 685 

for India. In summary, when evaluated against the metrics of the base case, the 'SCAV' case yielded 686 

enhancements for rural sites in Europe and India. 687 

5. Temporal Variability and Tropospheric Burden of NO3
- 688 

The availability of continuous time series data from monitoring networks for PM2.5 nitrate 689 

concentrations facilitates a comparison of seasonal patterns across different model sensitivities and 690 

regions. Conversely, the PM1 measurements, which were campaign-based and characterized by 691 

varying durations, lack the capability to facilitate a comparable seasonal analysis. Consequently, 692 

a selection of stations measuring PM1 nitrate concentrations in Europe was chosen, as the model 693 

in this region had difficulty in reproducing observed concentrations for this size mode. These 694 

stations, which provide hourly measurements, facilitate a detailed comparison of the diurnal 695 

variation of modeled and observed data. Finally, this section includes an analysis of the total 696 

tropospheric burden of nitrate aerosols. This analysis compares estimates from all sensitivity cases 697 

to assess their global-scale implications. This multi-scale approach aims to highlight the temporal 698 

dynamics and atmospheric significance of nitrate aerosols in relation to different modeling 699 

configurations. 700 

5.1 Seasonal variation of PM2.5 concentrations 701 

Figure 7 presents the seasonal patterns of PM2.5 predictions from model sensitivity runs and 702 

measurements obtained from observational networks in the specified regions. For the EMEP 703 

network, all sensitivity simulations consistently underpredicted the PM2.5 concentrations from 704 

January to April, with the largest discrepancies observed in March, ranging from 35% for the lower 705 

grid resolution case to 55% for the case using a simplified scavenging treatment. It is noteworthy 706 

that the 'HTAP' case is the only model run that accurately reproduces this period, including the 707 

peak concentration observed in the measurements in March. Conversely, from April to December, 708 

the majority of sensitivity cases exhibit an overprediction of observed concentrations, with the 709 

exception of the 'HTAP' case after October. The most pronounced overestimations are observed in 710 

the run with the lower spatial resolution and the base case, with concentrations reaching up to 711 

twice the observed levels in October. In contrast, the 'CMIP' and 'HYDRO' cases exhibit smaller 712 

discrepancies between model and measurement, with model overestimations of approximately 713 

40%. While all model cases captured the general seasonal cycle, the 'HTAP' case did not capture 714 

the exact timing of the second maximum, which was shifted one month earlier and showed a 715 
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stronger post-summer decline compared to the other model runs. The results of the 'CMIP' case, 716 

followed by the 'RES_high' and 'HYDRO' cases, give the closest agreement with observations, 717 

particularly at low nitrate concentrations. Overall, the magnitude of model overpredictions is most 718 

pronounced during summer and early autumn. The enhanced discrepancies between model 719 

projections and observations for this network can be partially attributed to the increased 720 

evaporation of the semi-volatile nitrate aerosol species under warm conditions (Ames and Malm, 721 

2001; Docherty et al., 2011) from the nylon filters used by the EMEP samplers (Yu et al., 2005). 722 

A similar seasonal pattern is observed in the USA when comparing model outputs to EPA 723 

measurements, with underpredictions of observed values from January to April and 724 

overpredictions from April to December. The 'SCAV' case demonstrates the most significant 725 

underprediction of observations, exhibiting a 35% discrepancy in February. In contrast, the lower-726 

resolution case reveals the most substantial overprediction, with concentrations surpassing 727 

observations by a factor of 2 in August. The sensitivity model runs with different anthropogenic 728 

emission inventories demonstrate contrasting behaviors, with the HTAPv3 consistently 729 

overpredicting the measured concentrations and the CMIP6 underpredicting them. Despite these 730 

biases, the seasonal variation is adequately captured in all model cases, with the high-resolution 731 

and the metastable model runs demonstrating the most optimal overall performance. A similar 732 

pattern to the European region was observed, where the warm months were also characterized by 733 

the largest overprediction biases of the year for this network. This phenomenon is attributed, at 734 

least in part, to biases associated with evaporation losses from the filter samplers during this 735 

particular season. Under warmer weather conditions, increased filter temperatures lead to 736 

increased evaporation of semi-volatile species such as nitrate (Ames and Malm, 2001; Docherty 737 

et al., 2011). For the IMPROVE network, all model cases exhibit overpredictions of PM2.5 738 

concentrations throughout the year, with more pronounced discrepancies observed during colder 739 

months. During these months, the HTAP emission scenario shows differences up to a factor of 2.5 740 

in February and a factor of 2 in December, while the low-resolution scenario shows comparable 741 

deviations in spring and summer. Among the sensitivity cases, the model run with the CMIP6 742 

emission inventory shows the best agreement with the observations, followed by the 'SCAV' case 743 

during the early months of the year and the high-resolution and metastable sensitivities during the 744 

remainder of the year. 745 

The EANET network shows a similar seasonal variability to the IMPROVE network, with all 746 

model cases consistently predicting higher concentrations than observed throughout the year, 747 

while successfully reproducing the observed seasonality. The most pronounced overpredictions 748 

occur during the cold months, with the HTAP emission inventory exhibiting the most significant 749 

deviations of up to a factor of 3.5 in January. The 'SCAV' case demonstrates the most favorable 750 

agreement with observations, exhibiting deviations that remain constrained to a factor of 1.5 during 751 

the cold season. This suggests that the intricate aerosol scavenging process included in the base 752 

case may potentially underestimate the wet deposition fluxes of particulate nitrate in this region. 753 

The HYDRO and CMIP6 cases also perform well, particularly for lower concentrations. 754 
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 755 

 756 

Figure 7: Seasonal variation of measured (black lines) and predicted (colored lines) PM2.5 NO3
- 757 

surface concentrations from the base case and all sensitivity model cases for the networks of (a) 758 

EMEP, (b) EPA, (c) IMPROVE and (d) EANET. 759 

 760 

 761 

5.2 Diurnal variation of PM1 concentrations 762 

Figure 8 presents a comparison of the diurnal variation of the simulated PM1 nitrate 763 

concentrations from the base case and sensitivity model runs against hourly observations from 764 

seven European stations. At Birkenes, most simulation cases can capture the observed diurnal 765 

pattern, with concentrations peaking in the early morning and decreasing in the late evening. 766 

However, the low-resolution case deviates significantly, with concentrations that are twice the 767 

observed values. The high-resolution case results are closest to the observations, suggesting that a 768 

(a) Europe (b) US (EPA) 

(c) US (IMPROVE) (d) East Asia 
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higher grid resolution is more effective in capturing the variations in aerosol nitrate concentrations 769 

induced by anthropogenic activities during the day. Conversely, the 'SCAV' model run exhibited 770 

the most significant underprediction, reaching a factor of 2. In Bucharest, the model sensitivities 771 

yielded a comparable morning peak, albeit smaller than the observed value, occurring 772 

approximately two hours earlier than the observed peak. Although an evening minimum of PM1 773 

nitrate is predicted at a similar time, the model significantly underpredicts afternoon 774 

concentrations, with the discrepancy being twice as large as that for the morning values. The 775 

simulation with the high-resolution had the best performance compared to the other cases for this 776 

station, which has a diurnal pattern similar to the previous station, followed by the base and 777 

metastable state assumption. The 'SCAV' case demonstrates the most significant diurnal variability 778 

among the rest of the sensitivities, exhibiting a pronounced decrease in concentrations during the 779 

transition from day to night. 780 

At Hohenpeissenberg, the model results fail to reproduce the observed early morning minimum. 781 

Predicted late morning maxima and afternoon minima are higher than the observations in most 782 

cases, except for the high-resolution, metastable, and CMIP6 cases. During the early morning 783 

hours, these three cases demonstrate the smallest discrepancies with the observations, while the 784 

low-resolution exhibits a stronger agreement in the afternoon due to a less pronounced decline in 785 

the modeled concentrations. The elevation of the station, 300 meters above the surrounding area, 786 

serves to reduce the influence of anthropogenically influenced air masses, thereby reducing the 787 

variability observed in the hourly values. However, this is not reflected in the model results. 788 

At Melpitz, the observed diurnal pattern is well reproduced by the model results. In most 789 

sensitivity cases, morning values are marginally higher than observed values, while evening values 790 

are slightly lower. The CMIP6 emissions demonstrate the most accurate morning values among 791 

the diverse model runs, while the base and metastable exhibit more precise evening concentration 792 

predictions compared to the others. The lower-resolution run demonstrates the most overall 793 

agreement with observations throughout the day, attributable to the less pronounced maximum and 794 

minimum peaks. 795 

For the SIRTA station, the model results adequately capture the diurnal pattern, though the 796 

evening minimum values are predicted three hours later than observed. The lower- and higher-797 

resolution cases demonstrated an enhanced representation of the morning maximum compared to 798 

the other cases, while the lower spatial resolution exhibited superior prediction of the evening 799 

minimum compared to all other sensitivities. This case also demonstrated a less pronounced 800 

transition from daytime to nighttime values, similar to the previous comparison. The other model 801 

sensitivity cases underpredict the observations, with discrepancies ranging from 40% ('HTAP' 802 

case) to a factor of 3 ('CMIP' case). 803 

At Puy De Dôme, the model results fail to reproduce the diurnal variation of the observations. 804 

As this station is located on one of the highest peaks of the Chaîne des Puy, the station is 805 

representative of the regional atmospheric conditions. This characteristic is evidenced by the 806 

absence of a pronounced diurnal variation in PM1 levels, in contrast to what is observed in more 807 

polluted locations such as Bucharest and SIRTA. The morning values are marginally overpredicted 808 

by the lower spatial resolution; however, evening values are consistently underpredicted by all 809 

sensitivities, at a time when the observations showed nearly constant values. The lower-resolution 810 

run exhibits the least deviation from observations in the afternoon, while the base and metastable 811 

state demonstrate more accurate performance in the early morning. 812 

At Villeneuve, the observed diurnal pattern is generally well reproduced by the model results, 813 

except for a three-to-four-hour delay in the observed evening minimum. It is evident that all cases 814 
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exhibit an underprediction of the observed concentrations, with the most pronounced discrepancies 815 

observed in the sensitivity case using the HTAPv3 emissions, reaching up to a factor of 3, and the 816 

least significant discrepancies observed in the base case and the metastable, at approximately 60%. 817 

The analysis indicates that the grid resolution is the most critical factor in reproducing the 818 

diurnal variability of PM1 nitrate concentrations. For stations exhibiting regional characteristics 819 

(Hohenpeissenberg, Melpitz, and Puy De Dôme), the lower spatial resolution provides optimal 820 

predictions during the day, while it more accurately captures evening and nighttime values. The 821 

observed discrepancy during nighttime hours can be attributed to the distortion of NOx fields 822 

resulting from the larger grid cells. This distortion leads to elevated nitrate radical concentrations 823 

and increased nitrate aerosol production during nighttime hours, a process that has the greatest 824 

impact on rural areas (Zakoura and Pandis, 2018). Consequently, the low-resolution case results 825 

in increased nighttime concentrations that approximate the observed values. The base case and 826 

metastable state assumption demonstrate satisfactory performance across all stations, while the use 827 

of a lower N2O5 uptake coefficient provides minimal improvement compared to the base case. For 828 

the sensitivity model runs employing different emission inventories, the HTAPv3 outperforms the 829 

CMIP6; however, the agreement between modeled values and observations remains less than that 830 

for the base case. This outcome confirms the suitability of the CAMS database for modeling 831 

European PM1 nitrate concentrations. 832 

  833 
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 834 

Table 4: Names, locations and data availability of the stations used for the comparison of diurnal 835 

PM1 NO3
- concentrations. The location type of each station is also categorized as rural (RUR) or 836 

downwind (DW) locations. 837 

 838 

 

Station Name 

 

Station Code 

 

Longitude 

 

Latitude 

 

Availability of 

 hourly data 

 

Birkenes II (RUR) 

 

NO0002R 

 

58°23'19"N  

 

008°15'07"E 

 

8/2012 – 8/2018 

 

Bucharest (DW) 

 

RO0007R 

 

44.344°N  

 

26.012°E 

 

8/2016 – 8/2018 

 

 

Hohenpeissenberg 

(DW) 

 

 

DE0043G 

 

 

47°48'05"N  

 

 

011°00'35"E 

 

4/2015 – 10/2015 

1/2017 – 9/2017 

10/2017 – 11/2018 

 

 

Melpitz (RUR) 

 

 

DE0044R 

 

 

51°31'49"N  

 

 

012°56'02"E 

 

7/2015 – 9/2015 

5/2016 – 11/2017 

 

Puy de Dôme 

(RUR) 

 

FR0030R 

 

45°46'00"N  

 

002°57'00"E 

 

3/2015 – 10/2016 

1/2018 – 12/2018 

 

SIRTA  

Atmospheric 

Research 

Observatory (DW) 

 

 

FR0020R 

 

 

48°42'31"N  

 

 

002°09'32"E 

 

 

10/2014 – 1/2016 

 

Villeneuve d'Ascq 

(DW) 

 

FR0027U 

 

50.611°N  

 

3.14°E 

 

10/2016 – 11/2017 

7/2018 – 12/2018 

 839 

 840 
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 841 

Figure 8: Diurnal evolution of measured (black lines) and predicted (colored lines) PM1 NO3
- 842 

surface concentrations from the base case model and all model sensitivity cases for the stations at 843 

(a) Birkenes, (b) Bucharest, (c) Hohenpeissenberg and (d) Melpitz. 844 

(a) Birkenes (b) Bucharest 

(c) Hohenpeissenberg (d) Melpitz 
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 845 

Figure 8 (cont): Diurnal evolution of measured (black line) and predicted (colored lines) PM1 846 

NO3
- surface concentrations from the base case model and all model sensitivity cases for the 847 

stations at (e) SIRTA, (f) Villeneuve and (g) Puy De Dôme. 848 

 849 

5.3 Tropospheric burden of particulate nitrate 850 

The global tropospheric burden of aerosol nitrate, defined as the total amount (in Tg) present in 851 

the Earth’s troposphere and averaged over the entire time period from 2008 to 2018, simulated by 852 

the base case and the sensitivity model runs is presented in Table 5 and Figure 9. The base case 853 

estimates a burden of 0.7 Tg, closely matching the multi-model average of 0.63 Tg reported by 854 

Bian et al. (2017). The 'RES_low' case gives the highest burden of 0.89 Tg, representing a 27% 855 

increase compared to the base case estimate. This is attributable to larger grid cells, which have a 856 

distorting effect on NOx concentration fields over broader regions, leading to elevated nocturnal 857 

production of particulate nitrate. Conversely, the 'RES_high' case exhibits the lowest burden of 858 

0.53 Tg, a 24% decrease compared to the base case estimate, attributed to the more accurate 859 

reproduction of NOx concentration fields by this sensitivity and the reduced nocturnal production 860 

of particulate nitrate. 861 

The 'CMIP' case estimates a burden close to the base case (0.74 Tg), while the 'HTAP' model 862 

run produces a higher burden of 0.88 Tg, driven by the higher NOx emissions compared to the base 863 

case, particularly over India and the Western US. The 'THERM' and 'HYDRO' cases both yielded 864 

burdens of 0.69 Tg, indicating a minimal impact of the aerosol thermodynamic state assumption, 865 

as well as the N2O5 uptake coefficient for hydrolysis on the nitrate aerosol burden. The 'SCAV' 866 

case estimates a lower burden of 0.53 Tg due to the increased wet deposition rates from the 867 

simplified scavenging approach. This result is consistent with the results reported by Tost et al. 868 

(2007b), who calculated increased deposition rates using analogous simplifications and 869 

assumptions, including a pH of 5 for rain and clouds. 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

(g) SIRTA (f) Villeneuve (e) Puy De Dôme 
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 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

Figure 9: Bar chart showing the average tropospheric burden of total aerosol NO3
- predicted from 896 

the base case and all sensitivity cases for the period 2010-2018. The dashed horizontal line shows 897 

the average tropospheric burden from 9 models taken from Bian et al. (2017), which is equal to 898 

0.63 Tg. 899 

 900 

Table 5: Average tropospheric burden of aerosol NO3
- for the period 2010-2018 for the base case 901 

and all sensitivity simulations. 902 

 903 

Simulation 

case 

NO3
- Tropospheric 

Burden (Tg) 

Base Case 0.70 

RES_low (T42) 0.89 

RES_high (T106) 0.53 

CMIP6 0.74 

HTAP 0.88 

THERM 0.69 

HYDRO 0.69 

SCAV 0.53 
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6. Conclusions 904 

This study investigated the impact of diverse atmospheric modeling components on the 905 

accuracy of the simulated surface concentrations of nitrate aerosols. A series of sensitivity 906 

scenarios were developed to assess the impact of grid resolution, anthropogenic emission 907 

inventories, aerosol thermodynamic assumptions, uptake coefficient for N2O5 hydrolysis, and 908 

scavenging treatments on model predictions. A comparative analysis was conducted against PM2.5 909 

filter observations and PM1 AMS measurements, focusing on polluted regions within the Northern 910 

Hemisphere. The findings indicated that accurately replicating observed PM2.5 and PM1 911 

concentrations requires a nuanced approach, as no single model configuration consistently yielded 912 

the best results for all conditions and regions. 913 

For PM2.5 observations, the model performed best in the USA region, with the lowest overall 914 

bias and error metrics for all sensitivity simulations. In East Asia, the model consistently 915 

overpredicted concentrations in all configurations, although percentage differences were often 916 

moderate. Despite the significant model bias within this region, certain configurations improved 917 

the simulated concentrations and reduced the associated statistical metrics. These configurations 918 

included higher grid resolution, a lower uptake coefficient for N2O5 hydrolysis, and a simplified 919 

aerosol scavenging treatment. Conversely, Europe proved to be a particularly difficult region for 920 

the model to reproduce, with both under- and over-predictions of nitrate concentrations relative to 921 

observations, a pattern that showed significant seasonal variation. In particular, the simulated 922 

nitrate overprediction in Europe peaked during the summer. This discrepancy can be attributed to 923 

measurement artifacts under warm conditions and the enhanced evaporation of the semi-volatile 924 

nitrate aerosol species from the nylon filters used. This overprediction was also observed in North 925 

America when compared with nitrate observations from the EPA network. Conversely, the model 926 

showed increased discrepancies with the IMPROVE and EANET network observations during the 927 

colder periods. Despite these challenges, the scenarios that showed improvement over the base 928 

case predictions for East Asia were found to be equally effective in the other two regions, 929 

highlighting their importance in improving the accuracy of the model in reproducing PM2.5 nitrate 930 

observations. 931 

For PM1 observations, the model performance varied significantly by the location type and 932 

region. In general, simulated urban nitrate was in best agreement with observations in all regions. 933 

However, rural observations were underpredicted in North America and strongly overpredicted in 934 

India. In contrast, rural observations in Europe and East Asia were more accurately reproduced by 935 

the base and CMIP cases, respectively. In general, downwind locations posed the greatest 936 

challenge to the model, with underprediction biases evident in Europe and North America, while 937 

the opposite behavior was observed for East Asia. Overall, the base case showed satisfactory 938 

agreement with most observations for the regions of Europe and East Asia. In contrast to the PM2.5 939 

comparison, it was challenging to identify specific model configurations that consistently 940 

outperformed the base case in terms of predicted nitrate concentrations or statistical metrics. 941 

However, the choice of emission inventory proved to be the most important factor in improving 942 

model accuracy. Specifically, the model runs that used the CAMS database provided the best 943 

representation of particulate nitrate concentrations for Europe, the model runs that used the 944 

HTAPv3 database were most accurate for observations in North America, while the model runs 945 

that used the CMIP6 database best captured values in East Asia. 946 

An analysis of the diurnal variation of PM1 nitrate concentrations observed at European stations 947 

showed that the majority of model configurations effectively captured the general diurnal patterns 948 

of observations at most stations, with the exception of remote stations that lacked significant 949 
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diurnal variation. However, the model results systematically over-emphasized the evening minima 950 

and showed a strong decrease in concentrations after midday. This behavior was not reflected in 951 

the observations, leading to under-predictions of the afternoon and evening observations. The 952 

choice of grid resolution proved to have the most significant impact on the predicted diurnal 953 

patterns. The high-resolution configuration showed a higher accuracy during the morning hours, 954 

while the lower-resolution configuration showed a better ability to capture afternoon and evening 955 

values. Among the emission inventories, the use of the CAMS database provided the most reliable 956 

estimates for PM1 nitrate particle concentrations over Europe. 957 

Finally, for the tropospheric nitrate aerosol burden, the base case, the metastable aerosol state 958 

assumption, the lower uptake coefficient for N2O5 hydrolysis, and the use of the CMIP6 emissions 959 

database resulted in values that were the closest to the multi-model average value reported by Bian 960 

et al. (2017). The scenarios with reduced grid resolution and the HTAPv3 emissions database 961 

resulted in estimates that were approximately 25% higher than the base case, reflecting the 962 

influence of the larger grid cells and the expanded precursor fields. Conversely, the scenarios 963 

where a higher grid resolution and a simplified aerosol scavenging treatment were used estimated 964 

burdens approximately 25% lower compared to the base case, attributable to the finer spatial 965 

resolution and increased wet deposition, respectively. 966 

In conclusion, this study underscores the complexity of accurately modeling nitrate aerosols. 967 

The findings highlight the importance of selecting appropriate configurations based on regional 968 

and seasonal conditions, with high-resolution grids, CMIP6 emissions, and adjusted uptake 969 

coefficients for N2O5 hydrolysis being pivotal in improving the model performance. Nevertheless, 970 

the pronounced variability across regions and seasons shows the need for a flexible and adaptable 971 

approach to improving atmospheric modeling of particulate nitrate concentrations. 972 

  973 
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Code and Data Availability 974 

The usage of MESSy (Modular Earth Submodel System) and access to the source code is licensed 975 

to all affiliates of institutions which are members of the MESSy Consortium. Institutions can 976 

become a member of the MESSy Consortium by signing the “MESSy Memorandum of 977 

Understanding”. More information can be found on the MESSy Consortium website: 978 

http://www.messy-interface.org (last access: 22 May 2024). The code used in this study has been 979 

based on MESSy version 2.55 and is archived with a restricted access DOI 980 

(https://doi.org/10.5281/zenodo.8379120, The MESSy Consortium, 2023). The data produced in 981 

the study is available from the authors upon request. 982 
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