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15  Abstract

16 In recent years, nitrate aerosols have emerged as a dominant component of atmospheric
17  composition, surpassing sulfate aerosols in both concentration and climatic impact. However,
18 accurately simulating nitrate aerosols remains a significant challenge for global atmospheric
19  models due to the complexity of their formation and regional variability. This study investigates
20  key factors influencing nitrate aerosol formation to improve simulation accuracy in highly polluted
21  regions. Using the advanced EMAC climate and chemistry model, we assess the effects of grid
22 resolution, emission inventories, and thermodynamic, chemical, and aerosol scavenging processes.
23 The ISORROPIA Il thermodynamic model is employed to simulate the formation of inorganic
24 aerosols. Model predictions are compared with surface observations of particulate nitrate in PM;
25 and PMas size fractions, including PM. s data from filter-based observational networks and PMy
26  data from aerosol mass spectrometer field campaigns across Europe, North America, East Asia,
27  and India. Results show that the model overestimates PM2 s nitrate concentrations, especially in
28  East Asia, with biases up to a factor of three. Increasing grid resolution, adjusting N2Os hydrolysis
29 uptake coefficient, and utilizing an appropriate emission database (e.g., CMIP6) improve
30 performance. However, these adjustments do not necessarily enhance PM; predictions, which
31  remain underestimated, especially in urban downwind sites. Seasonal variations and diurnal trends
32 reveal discrepancies in model performance, especially in Europe and urban downwind locations.
33 In Europe, model bias is driven by an unrealistically sharp decrease in nitrate aerosol levels from
34 morning maxima to evening minima. Sensitivity tests show relatively small impact on total

35  tropospheric nitrate burden, with variations within 25%.
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36 1. Introduction

37 Aerosols are a critical and complex component of the Earth's climate system, due to the
38  complexity of their chemical composition and the many changes they undergo during their
39  atmospheric lifetime. The composition of anthropogenic aerosols, influenced by the diverse
40  precursor gases emitted by anthropogenic activities, plays a pivotal role in shaping climate and air
41  quality. Of particular concern are aerosols with a diameter of less than 2.5 um (PMz2:s), which have
42 been linked to a significant global mortality rate, estimated to exceed four million deaths per year
43 (Chowdhury et al., 2022; Im et al., 2023). Furthermore, anthropogenic aerosols have a significant
44  impact on the Earth's energy balance by causing a net cooling effect that tends to mask the warming
45 induced by greenhouse gases (Storelvmo et al., 2016; Glantz et al., 2022; Nair et al., 2023). Among
46  the various types of anthropogenic aerosols, sulfates (SO4>") have become the dominant type in
47  terms of mass concentrations, with a tropospheric burden that is more than twice as high than that
48  of nitrates (NO3") (Bellouin et al., 2011; Myhre et al., 2013; Karydis et al., 2016). However,
49  numerous studies have indicated a shift in this regime, with nitrates challenging the dominance of
50 sulfates in several key regions of the polluted northern hemisphere (Tsimpidi et al., 2024),
51  including Europe (Lanz et al., 2010; Aksoyoglu et al., 2017), the USA (Walker et al., 2012), and
52  East Asia (Wang et al., 2013; Li et al., 2020). This phenomenon can be attributed to the strict
53  restrictions on sulfur dioxide (SO2) emissions worldwide, which have not always been
54  accompanied by a corresponding reduction in nitrogen oxide (NOXx) emissions, and particularly
55  ammonia (NHs), which has increased in recent decades (Bellouin et al., 2011; Hauglustaine et al.,
56  2014). Nitrate aerosols are of particular importance because they can influence atmospheric
57  chemistry through heterogeneous reactions with dust and sea salt (Karydis et al., 2016; Kok et al.,
58  2023), which also lead to more acidic conditions in aerosols (Karydis et al., 2021). Additionally,
59 nitrate aerosols have been shown to affect climate through a direct radiative effect that leads to
60  cooling (Myhre et al., 2013; Hauglustaine et al., 2014; Klingmuller et al., 2019; Milousis et al.,
61  2025). Furthermore, nitrate aerosols influence the properties of clouds and other aerosol species,
62  resulting in a complex indirect radiative effect (Klingmuller et al., 2020; Milousis et al., 2025).
63  Consequently, the precise representation of nitrate aerosols in global chemistry climate models
64 (CCM) becomes increasingly important, as they are projected to have the most substantial impact
65 on climate and air quality by the end of the century.

66 However, this task presents a number of challenges. Nitrate aerosol formation is highly sensitive
67  to the levels of its precursors (Karydis et al., 2011), therefore, their accurate representation in
68  models is an essential starting point for realistic simulation of nitrate aerosols. Furthermore, nitrate
69 aerosols are inherently semi-volatile, which means that partitioning between the gas and particle
70  phases is a complicated process as equilibrium conditions must be met, which in turn complicates
71  the calculations (Seinfeld and Pandis, 2016). To ensure the reliability of model predictions, it is
72 imperative that they accurately represent the equilibrium between the gas and particle phases,
73 which depends on various atmospheric conditions. Humidity and temperature have been identified
74 as key factors in determining this equilibrium, while atmospheric acidity has been shown to play
75 acrucial role in regulating partitioning processes (Ansari and Pandis, 2000; Guo et al., 2016; Pye
76  etal., 2020). The complexity of the system is further increased by the interaction of nitrate aerosols
77  with other important aerosol species, such as sea salt and mineral dust. The inclusion of these
78  pathways can be critical for accurate predictions (Karydis et al., 2010; Karydis et al., 2016;
79  Kakavas and Pandis, 2021). The complex nature of nitrate aerosols often leads to discrepancies
80  between model estimates and observations, with models frequently predicting higher mass
81  concentrations. For instance, overestimations of approximately 2 pg/m? have been found in Europe
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82  (Jonesetal.,, 2021; Milousis et al., 2024), with biases reaching a factor of 5 or more in some cases
83  (Chen et al., 2018). Analogous findings have been documented in the US (Walker et al., 2012;
84  Zakoura and Pandis, 2018, 2019; Jones et al., 2021), while model simulations in East Asia have
85  exhibited even greater biases (Miao et al., 2020; Milousis et al., 2024), with Xie et al. (2022) noting
86  that approximately 60% of studies modeling particle concentrations in China overpredicted
87  particulate nitrate levels. The potential causes of such biases can be categorized into several
88  groups, covering a range of physicochemical processes and model characteristics.
89 A fundamental reason for discrepancies between model predictions and observations, as well
90 as between predictions made by different models, is the grid resolution employed. A high spatial
91  resolution (i.e., a substantial number of simulated grid cells with reduced size) facilitates the
92  capture of chemical interactions that precursors undergo and their various removal processes with
93 ahigh degree of precision. Conversely, a low spatial resolution may result in oversimplifications.
94 Itis important to note that the increased complexity of the representation is associated with higher
95  computational costs. However, the use of high spatial resolution has been shown to reduce biases
96 in predicted nitrate aerosol concentrations by 60-80% (Metzger et al., 2002; Zakoura and Pandis,
97 2018, 2019). Furthermore, Schaap et al. (2004) and Heald et al. (2012) note that in certain cases,
98 the use of high resolution is essential to ensure the accurate representation of observational data
99 by the model.
100 Another source of discrepancies between model and measurement results is the accuracy of the
101  emission inventories in the model. Specifically in the case of nitrate aerosols, the presence of
102  ammonia (NHz3) emissions is critical in determining their concentrations. In regions where there is
103  anexcess of ammonia, it forms ammonium nitrate (NH4NO3) after having neutralized sulfuric acid
104  (H2SO4) and reacting with nitric acid (HNOs3) (Seinfeld and Pandis 2016). The main sources of
105 NHs emissions are associated with agricultural activities, and the accuracy of their representation
106  in emission inventories is not always ensured (Nair and Yu, 2020). This is due to the influence of
107  various factors. These include the variety of agricultural practices and management techniques
108  used, as well as the land changes induced by agricultural activities in general (Sutton et al., 2013;
109  Ge et al., 2020). These factors make it difficult to ensure consistent accuracy regarding NH3
110  emissions. Additionally, the distinct characteristics of soil types and climates across different
111  regions can substantially influence emission factors (Reis et al., 2009; Nair and Yu, 2020), a
112 critical consideration in the development of a global inventory. For instance, Zhang et al. (2017)
113  have highlighted that numerous prior NHs emission inventories in China employed emission
114  factors determined for Europe. In addition, the diurnal and seasonal variability of NH3z emissions
115  must be considered in global inventories to ensure representability (Pinder et al., 2006; Hendriks
116 et al., 2016). These considerations are equally relevant to the representation of other precursor
117  gases, such as NOx and SOz, which are also crucial for particulate nitrate formation (Tsimpidi et
118 al., 2007; 2008; 2012).
119 The thermodynamic state of the aerosol is another factor that plays an important role in the
120  accuracy of model predictions. Typically, thermodynamic equilibrium models can assume that the
121  particle can only exist as a supersaturated aqueous solution throughout its lifetime (metastable
122 conditions), or they can calculate its deliquescence into a solid state as the ambient relative
123 humidity decreases (stable conditions). The choice of the thermodynamic state can lead to
124 differences in the acidity of the aerosol, which, in turn, can affect the prediction of concentrations
125  for species such as nitrate, as less acidic conditions favor its partitioning into the aerosol phase and
126  vice versa (Nenes et al., 2020). Previous studies have examined the impact of the thermodynamic
127  state assumption on aerosol concentration predictions and have demonstrated that the choice is
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128  region dependent. For instance, a stable state has been shown to yield more realistic predictions
129  when simulating arid and desert regions (Karydis et al., 2016). Furthermore, Fountoukis et al.
130  (2009) and Karydis et al. (2010) found that stable thermodynamic conditions are more consistent
131  with observations when the ambient relative humidity (RH) is below 50%. Conversely, Ansari and
132 Pandis (2000) found that metastable thermodynamic conditions are more suitable for regions with
133  intermediate relative humidity (RH) and low aerosol concentrations. However, no significant
134  differences were observed between these two assumptions for high aerosol concentrations. Guo et
135 al. (2016) determined that metastable thermodynamic conditions are more representative of areas
136  exhibiting characteristics analogous to those observed in the Northeastern US. In contrast,
137  Milousis et al. (2024) found minimal differences between the two assumptions for major inorganic
138  pollutant concentrations (i.e., nitrate, sulfate, and ammonium aerosols, as well as mineral cations)
139  onaglobal scale.

140 Another factor influencing model predictions of nitrate aerosols is the chemistry of dinitrogen
141 pentoxide (N20s), which is particularly important for the nocturnal production of nitrate particles.
142 Specifically, N20s, a compound derived from the oxidation of NOx species, undergoes
143 heterogeneous hydrolysis on particle surfaces in the presence of sufficient amounts of water,
144 resulting in the formation of HNO3, a pivotal precursor of nitrate aerosols. This heterogeneous
145  pathway has been shown to dominate the nighttime production of HNOs, potentially accounting
146  for up to 50% of particulate nitrate production in polluted areas during both winter (Liu et al.,
147 2020) and summer (Qu et al., 2019). The hydrolysis reaction is predominantly governed by a
148  corresponding uptake coefficient, with numerous models employing a single average value.
149  However, the reaction exhibits a strong dependence on environmental quantities such as
150 temperature and relative humidity. Consequently, some studies suggest the utilization of different
151  wvalues in models depending on the prevalent ambient conditions of the examined region. For
152  instance, Wang et al. (2020) proposed a significantly lower value than the conventional value
153  utilized in CCMs (0.02) to better align with conditions observed in Beijing. A similarly suggestion
154 was made by Phillips et al. (2016) for semi-rural regions in Germany, with the intent of providing
155  more precise estimates of particulate nitrate, and this is supported by a number of studies in various
156  parts of the US as well (Bertram et al., 2009; Brown et al., 2009; Chang et al., 2011; Chang et al.,
157  2016). The significance of N20Os chemistry is particularly pronounced in regions exhibiting
158 activities that contribute to elevated NOx concentrations. This effect is further exacerbated in areas
159  characterized by intrusions of particles, such as mineral dust and/or sea salt, which facilitate
160  heterogeneous reactions.

161 Furthermore, model predictions of nitrate aerosols can be strongly influenced by the model
162  treatment of their wet deposition and, specifically, the manner in which cloud acidity affects the
163  dissolution of HNOs. Specifically, in less acidic conditions, elevated in-cloud dissolution of HNO3
164  is observed to achieve overall electroneutrality, leading to increased particulate nitrate production
165  (Seinfeld and Pandis, 2016; Tilgner et al., 2021). Therefore, it is essential that a model accurately
166  represents in-cloud properties, as the pH conditions in regions with different characteristics will
167  be more accurately captured. This, in turn, will facilitate a more comprehensive understanding of
168 nitrate formation processes.

169 This study aims to investigate the sensitivity of the simulated nitrate aerosol concentration to a
170  number of parameters on a global scale. For this purpose, the global atmospheric chemistry-climate
171 model EMAC was used, with different configurations and parameterizations covering all the
172 aspects mentioned above that influence the prediction of particulate nitrate concentrations. The
173 model performance was evaluated against network and station observations of NOs™ in the PM2s
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174  and PM;s size ranges, with the aim of identifying the parameters that are most relevant over specific
175  regions.

176 2. Methodology

177 2.1 Model setup

178 The model utilized in this study is the EMAC global chemistry and climate model (Jockel
179 etal., 2006). EMAC comprises a series of submodels, which are interconnected via the Modular
180  Earth Submodel System (MESSy) (Jockel et al., 2005) to the base (core) model, namely the fifth
181  generation European Center Hamburg general circulation model (ECHAMS) (Roeckner et al.,
182  2006). The gas phase chemistry is simulated by the submodel MECCA (Sander et al., 2019) with
183  a simplified scheme similar to that used in the Chemistry Climate Model Initiative (CCMI), as
184  described by Jockel et al. (2016). The liquid phase chemistry is simulated by the submodel SCAV
185  (Tost et al., 2006), which is also responsible for the wet deposition treatment of trace gases and
186  aerosols. The submodel DRYDEP (Kerkweg et al., 2006b) addresses the dry deposition of trace
187  gases and aerosols, while the submodel SEDI (Kerkweg et al., 2006b) handles the gravitational
188  sedimentation of aerosols. The GMXe submodel (Pringle et al., 2010a; Pringle et al., 2010b)
189  simulates aerosol microphysical processes and the gas-to-particle partitioning of inorganic species.
190  For more detailed information on these particular processes, the reader is referred to Section 2.2.
191 The ORACLE submodel (Tsimpidi et al., 2014; 2018) is responsible for simulating the
192  composition and chemical evolution of all organic aerosol species. The microphysical processes
193  of clouds are simulated by the CLOUD submodel (Roeckner et al., 2006), using the two-moment
194 microphysical scheme for liquid and ice clouds of Lohmann and Ferrachat (2010), while
195 considering a physically based treatment for the processes related to the activation of liquid
196  droplets (Karydis et al., 2017) and ice crystals (Bacer et al., 2018). In this study, all simulations
197  performed were nudged towards the actual meteorology using ERAI data (Dee et al., 2011), and
198  concern the period 2009-2018, with the first year being used as the model spin-up period.

199 The spatial resolution used in all simulations, except for two sensitivity cases (see Section 2.3),
200  corresponds to T63L31, which has a grid resolution of 1.875° x 1.875° and covers vertical
201  altitudes up to 25 km, divided into 31 layers. The database of anthropogenic emissions in terms of
202  aerosols and their precursors, utilized by all simulations with the exception of the related sensitivity
203  cases (see Section 2.3), was derived from the CAMS inventory (Inness et al., 2019). Biomass
204  burning emissions were taken from the GFEDv4.1 database (Randerson et al., 2017). The natural
205  emissions of NHs, originating from soil and oceanic volatilization, were obtained from the GEIA
206  database (Bouwman et al., 1997). The biogenic soil emissions of NO were calculated online during
207  runtime using the algorithm of Yienger and Levy (1995). Lightning production of NOx is also
208  calculated online by the LNOx submodel (Tost et al., 2007a) based on the parameterization of
209  Grewe et al. (2001). The emissions of SO. from volcanic eruptions are obtained from the
210  AEROCOM database (Dentener et al., 2006). Sea salt emissions are calculated online according
211  to the parameterization of Guelle et al. (2001), which utilizes precalculated lookup tables to
212  determine the wind speed-dependent mass and particle number fluxes for the accumulation and
213  coarse mode sizes, which applies for sea salt aerosols. For more detailed information on the
214  calculation of the lookup tables, the reader is referred to Stier et al. (2005) and Kerkweg et al.
215  (2006a). The AIRSEA submodel (Pozzer et al., 2006) calculates oceanic emissions of dimethyl
216  sulfide (DMS) online. Additionally, dust emission fluxes are calculated online using the
217  parameterization of Astitha et al. (2012). This method considers both the meteorological
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218 information of each grid cell (temperature and relative humidity) and the various friction velocity
219  thresholds above which dust particle suspension occurs. The mineral dust composition is
220  determined by the bulk composition, and the mineral ions Na*, Ca®*, K* and Mg?* are estimated
221  as a fraction of the total dust emission flux based on the chemical composition of the soil in each
222 grid cell (Karydis et al., 2016; Klingmdller et al., 2018).

223 2.2 Inorganic aerosol partitioning

224 In this study, all calculations related to the thermodynamics of inorganic aerosols, as well as
225  their phase partitioning process, are performed by ISORROPIA Il v2.3 (Fountoukis and Nenes,
226 2007), which is a thermodynamic module integrated into the GMXe submodel. ISORROPIA 11
227  v2.3treats the chemical system of K*-Ca?*~Mg?'~NHs"-Na*-S04> —~NO3s —CI—H-0 aerosols and
228  has the ability to simulate either a stable thermodynamic state, where aerosols are allowed to
229  precipitate into solid salts, or a metastable state, where aerosols remain in a supersaturated aqueous
230  solution even at low relative humidities. The first case is used for the base case assumption of this
231  study, along with all other sensitivity simulations, with the exception of one (Section 2.3).
232  ISORROPIA 11 v2.3 is a slightly updated version of ISORROPIA 1l that concerns more accurate
233 predictions of aerosol pH near neutral conditions (Song et al., 2018). However, this affects only a
234 small number of calculations in the different compositional sub-regimes of ISORROPIA II.
235  Specifically, in some cases, NHs evaporation was not taken into account in the aerosol pH
236  calculations, resulting in values that approached neutrality. However, this had a negligible effect
237  on both the predicted NHs and the inorganic aerosol concentrations. The ISORROPIA 11 v2.3
238  model utilizes Bromley's formula (Bromley, 1973) to calculate the binary activity coefficients for
239  multicomponent mixtures. For specific component pairs, it employs the Kusik-Meissner
240 relationship (Kusik and Meissner, 1978), which incorporates the temperature dependence of
241  Meissner and Peppas (1973). Further insights can be found in Fountoukis and Nenes (2007).

242 In the GMXe submodel, aerosol size is described by seven lognormal size modes, four of which
243  are assigned to a soluble fraction and the remaining three to an insoluble fraction. The soluble
244 fraction includes the nucleation, Aitken, accumulation, and coarse size modes, while the insoluble
245  fraction includes only the latter three (Pringle et al., 2010a, 2010b). In the aerosol partitioning
246  process, kinetic limitations must be considered, as only sizes smaller than coarse mode can reach
247  equilibrium within the timeframe of one model time step (10 minutes for this study). Consequently,
248  the partitioning calculations are performed in two stages. Initially, the amount of gas phase species
249  that can kinetically condense to the particle phase within this timeframe is calculated according to
250 the diffusion limited condensation theory of Vignati et al. (2004). Subsequently, the partitioning
251  between the gas and particle phases is estimated by assuming instantaneous equilibrium for all
252 aerosol size modes, as the ISORROPIA 11 v2.3 routines are called separately for each one. Finally,
253  the transfer of material between the soluble and insoluble modes is calculated by GMXe after the
254  partitioning calculations have been completed. This transfer can occur in two ways: by
255  coagulation, where two particles of different modes collide and the resulting particle is in the
256  soluble mode; or if substantial soluble material has condensed onto an insoluble particle, the latter
257  istransferred to the soluble mode (Pringle et al., 2010a, 2010b).

258 2.3 Sensitivity configuration details

259 A total of eight simulations were performed (base case and seven sensitivity cases) in an attempt
260  to cover all aspects that influence the model predictions of particulate nitrate concentrations, as
261  discussed in Section 1, and whose configurations are summarized in Table 1. The objective is to
262  ascertain whether a specific configuration can most accurately reproduce the measurements of
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263  PM2s and PM; concentrations in the most heavily polluted regions of the globe. The base case
264  simulation was performed using the following combination of configurations. A T63L31 spatial
265  resolution (1.875° x 1.875° grid) with anthropogenic emissions provided by the CAMS database
266 is used. The aerosols' thermodynamic state was assumed to be stable, i.e., it was permitted to
267  precipitate into solid salts at low relative humidity (RH). Aerosol scavenging is addressed by a
268  comprehensive mechanism encompassing over 150 chemical reactions for the liquid phase, in
269 addition to the online calculation of the in-cloud and precipitation pH (Tost et al., 2006, 2007b).
270  The uptake coefficient of N2Os hydrolysis is 0.02 according to the parameterization proposed by
271  Evans and Jacob (2005).

272 In the first two sensitivity model runs (RES_low and RES _high), only the spatial grid resolution
273  was changed. The change involved the adoption of a lower resolution, characterized by a reduction
274 in the number of grid cells, and a higher resolution, marked by an increase in the number of grid
275  cells. Notably, the vertical resolution was maintained at 31 layers, consistent with the base case.
276  The lower spatial resolution is the T42L31 resolution, which corresponds to a 2.813° x 2.813°
277 grid and the higher spatial resolution is the T106L31 resolution, which corresponds to a
278  1.125° x 1.125° grid. The other two sensitivity model runs (‘CMIP’ and ‘HTAP’) employed
279  distinct emission inventories with regard to anthropogenic emissions of aerosols and trace gases,
280 et utilized the grid resolution of the base case. Specifically, the CMIP6 model run utilized the
281  CMIP6 database (O'Neill et al., 2016), while the HTAP model run employed the HTAPv3 database
282  (Crippaetal., 2023).

283 An additional sensitivity model run was performed in which the thermodynamic state of the
284  aerosol was altered (‘THERM?). In this run, the metastable assumption was implemented, meaning
285  aerosols are prevented from forming solids, even at extremely low RH values, allowing them to
286  persist in a supersaturated aqueous phase. Additionally, a sensitivity model run was conducted in
287  which the scavenging treatment was modified (‘SCAV’), employing a simplified mechanism
288  where the gas-to-particle phase partitioning follows the effective Henry's Law coefficients
289  approach. Furthermore, no aqueous phase chemistry was considered in the calculation of cloud
290 acidity, as a constant value of 5 was assumed for in-cloud and precipitation pH (Tost et al., 2007b).
291  Another sensitivity model run (‘HYDRO’) concerns the treatment of the uptake of N20s
292  hydrolysis, and more specifically the uptake coefficient considered. Specifically, an uptake
293  coefficient for hydrolysis of 0.002 was employed (one order of magnitude lower than in the base
294  case) in an attempt to obtain more accurate predictions in certain regions (Section 1).

295
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296 Table 1: Configurations used in the base case and all sensitivity simulations.

Simulation | Spatial Resolution Anthropogenic Thermodynamic | Scavenging N2Os
Name Emissions State Treatment Uptake
Coefficient
[} Vo] ()] + (] 5
s g 8§ £ £ & 3 £ = s 8 8
— = pa 6 S T P g 3 38 o o
Base Case X X X X X
RES_low X X X X X
RES_high X X X X X
CMIP6 X X X X X
HTAP X X X X X
THERM X X X X X
SCAV X X X X X
HYDRO X X X X X

297 3. Evaluation of the Base Case Predictions for particulate NOs

298 3.1 Surface concentrations and PM,sSize fraction

299 The mean surface concentrations of PM.s NOs", and the size fraction of PM25s NOs™ (i.e., the
300 fraction of PM2s NO3z™ mass in respect to the total aerosol NOs™ mass) are shown in Figure 1 for
301 the entire period from 2010 to 2018. The maximum values of 14 ug/m?® are predicted over the
302 Indian subcontinent and the East Asian region, with Central Europe showing concentrations of ~5
303  pg/m?d for the period average, while Turkey and Eastern USA show mostly concentrations of ~3
304  pg/m? (Fig. 1a). With respect to the size fraction, PM2s accounts for more than 80% of the total
305 particle concentration over the polluted northern hemisphere and up to 70% over South America,
306 the southern part of Africa and Australia (Fig. 1b). The interaction of nitric acid with coarse
307  mineral dust and sea salt particles results in smaller PM:s size fractions. A 30% contribution is
308  observed over the Southern Ocean, while the Arabian Peninsula region has the lowest predicted
309 NOs PMgs fraction, with a value of less than 20%. Over the Western Sahara and the dust outflow
310  directed towards South America, the PM2s nitrate size fraction is around 60%.

311
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314  Figure 1: Annual mean (a) surface concentrations and (b) size fraction of PM25NOs" for the period
315 2010 - 2018 as simulated with EMAC from the base case.
316

317 3.2 Comparison of base case model results with PM,s observations

318 The PM2s aerosol observations are obtained from four networks that cover regions with the
319 highest levels of anthropogenic activity in the polluted northern hemisphere. These networks
320 include the EPA CASTNET network (U.S. Environmental Protection Agency Clean Air Status
321  and Trends Network) and the IMPROVE network (Interagency Monitoring of Protected Visual
322 Environments), which collectively encompass 152 stations for particulate nitrate across the United
323  States. Notably, IMPROVE predominantly focuses on rural and remote regions, while EPA
324 primarily covers urban areas. The EMEP network (European Monitoring and Evaluation
325  Programme Air Pollutant Monitoring Data) includes nine stations for particulate nitrate, covering
326  the European region. Additionally, the EANET network (The Acid Deposition Monitoring
327  Network in East Asia) covers parts of East Asia with 33 stations. The locations of all stations can
328  be found in Figure Sla. The above networks provide monthly measurements for the entire period
329  under consideration in this study. Given the continuous nature of PMys measurements, a
330 comparison with model predictions is presented in the form of surface concentration maps, where
331  the observations from each station are overlaid on the model concentration maps (see Figure 2). A
332 comparison in the form of scatter plots of seasonal means can be found in Figure S2. The seasonal
333  statistical evaluation for the comparison of PM2 s nitrate is shown in Table 2. The metrics employed
334 include Mean Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME),
335  Normalized Mean Bias (NMB), and Root Mean Square Error (RMSE).

336 As illustrated in Figure 2a, the model can well reproduce the measurements with a high
337  agreement for most stations in the USA, particularly those situated in the Midwestern region and
338 along the Southern East Coast. However, discrepancies of approximately 1 pg/m*® (model
339  overprediction) are evident over the Central East stations, and discrepancies of approximately 2
340  pg/m? are observed for the larger areas of New York and Northern California. In Europe, the
341  model's overprediction of low concentrations is evident in the Iberian Peninsula, the Baltic region,
342  and Croatia (~3 pg/m? difference), while it more accurately represents the high concentrations
343  observed in the UK and the Central and Western regions, with some exceptions in Germany and
344 Switzerland (Fig. 3b). In East Asia, the discrepancy between model predictions and observations
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345 is particularly pronounced. The model values for the North China Plain, Japan, Vietnam, and
346  Thailand exceed the observed concentrations by up to 2 pg/m?, similar to the overprediction
347  observed in Europe. However, the model values for Korea are three times higher than the observed
348  concentrations (Fig. 3c). Conversely, the concentrations in the Zhangzhou region were
349  underpredicted by the model, with discrepancies up to 5 pg/m*

350 Statistically, the USA region demonstrates the most optimal model representation exhibiting
351 differences to observations that are less than 1 pg/m? across all seasons. However, elevated
352 normalized error values were observed during the summer and autumn periods. While the model
353  shows higher overpredictions for East Asia, the mean bias and normalized error values appear to
354  be relatively unaffected. However, the mean gross error and root mean square error metrics are
355 notably larger compared to those observed for the USA. Notably, Europe exhibits the most
356  significant discrepancies between model predictions and observations, with a mean bias exceeding
357 1 pg/m®and normalized error values particularly pronounced during the warm spring and summer
358  periods, which are typically associated with low nitrate concentrations.

359
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364  Figure 2: Average surface concentrations of PMzs NO3™ for the period 2010 — 2018 as simulated
365 by EMAC from the base case (shaded contours) versus observations of the same species from the
366 (a) EPA-IMPROVE, (b) EMEP and (c) EANET networks (colored circles).
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375 Table 2: Seasonal statistical evaluation of EMAC simulated PM2s NOs™ surface concentrations
376  from the base case against observations during 2010-2018. The used metrics include the Mean
377  Absolute Gross Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), Normalized
378 Mean Bias (NMB) and Root Mean Square Error (RMSE).

Number of Mean Observed Mean Predicted MAGE MB NME NMB RMSE

Network  Season datasets (ng m3) (ug m3) (ugm?3)  (ugm?3 (%) (%) (ug m?)
EPA Winter 144 2.8 24 14 -0.5 50 -16 2.2
Spring 291 14 2.2 12 0.8 87 54 15
Summer 280 0.5 0.8 0.5 0.3 103 59 0.9
Autumn 290 0.7 0.9 0.6 0.2 89 37 0.9
IMPROVE  Winter 116 0.8 1.2 0.7 0.4 80 48 0.9
Spring 233 0.5 1.1 0.7 0.6 131 112 0.9
Summer 193 0.2 0.4 0.3 0.2 155 123 0.5
Autumn 214 0.2 0.4 0.3 0.2 143 99 0.5
EMEP Winter 7 34 3.9 2.5 0.6 74 16 3.3
Spring 18 1.6 2.8 1.6 1.2 96 73 21
Summer 18 0.3 15 1.3 1.2 461 451 1.8
Autumn 17 0.8 2.7 1.9 19 241 233 2.8
EANET Winter 30 2.0 2.5 1.6 0.4 80 21 2.6
Spring 59 19 2.0 16 0.1 87 8 2.9
Summer 59 0.6 1.6 14 0.9 217 147 2.6
Autumn 59 0.8 0.8 0.7 0.0 85 3 1.1
379

380 3.3 Comparison of base case model results with PM; observations

381 The aerosol observations of PM; are derived from AMS measurements obtained during field
382  campaigns in the Northern Hemisphere from 2010 to 2018. The measurement durations of these
383  campaigns ranged from one to six months and included rural, urban, and downwind locations. The
384  campaign and types of locations can be seen in Figure S1b. Further details regarding the locations
385  of the field campaigns, including their duration, can be found in Tsimpidi et al. (2016; 2024). As
386  the field observations (in contrast to the network measurements) are not continuous but rather
387  fragmented into different time periods for each field campaign location, the comparison is
388  presented in the form of scatter plots that compare the model and the measured values depending
389  on the location type (see Figure 3). A scatter plot comparison of the seasonal means is shown in
390 Figure S3. The statistical evaluation involves the regions of the USA, East Asia, Europe, and India,
391  using the same metrics as above. The results are presented in Table 3.

392 As shown in Figure 3a, the model is able to reproduce the average PMy values over rural and
393 urban locations in Europe with a high accuracy, although there is considerable variation at specific
394  locations. On the other hand, it underpredicts PMz nitrate in urban downwind locations (up to
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395  50%). In North America, the observed underprediction of average values is slightly stronger for
396 downwind and particularly for rural locations (Fig. 3b) with average values for urban sites showing
397  better agreement. In East Asia, the model shows similar accuracy to Europe in urban and rural
398 locations, but with a significantly lower number of outliers (Fig. 3c). However, the average urban
399  downwind values in this region exhibit an overprediction of slightly more than 50%. In India, the
400 model's estimation of average urban values aligns closely with measurements, while the model
401  significantly overestimates average rural values by a factor of 4 (Fig. 3d).

402 In contrast to the comparison of PM2s concentrations, most of the metrics indicate that PM:
403  aerosol observations in Europe are better reproduced. The USA shows low mean bias values and
404  high scatter, as evidenced by normalized bias and error metrics. Conversely, East Asia shows
405 higher absolute differences. The model has the worst performance for India, particularly in rural
406  areas where there is a substantial discrepancy between the modeled and observed values. Overall,
407  the model demonstrates a higher degree of accuracy in predicting PMz concentrations in both rural
408  and urban locations as compared to downwind areas.

409

410 Table 3: Statistical evaluation of EMAC simulated PM1 NO3surface concentrations from the base
411  case against observations during 2010-2018. The used metrics include the Mean Absolute Gross
412  Error (MAGE), Mean Bias (MB), Normalized Mean Error (NME), Normalized Mean Bias (NMB)
413  and Root Mean Square Error (RMSE).

Number Mean Observed Mean Predicted MAGE MB NME NMB RMSE

Region Type of of (ng m®) (ng m?) (gm®)  (ngm?®) (%) (%)  (ngm?®)
location datasets
USA Rural 31 11 0.7 1.0 -0.5 88 -42 15
Urban 22 1.5 1.8 1.6 0.4 111 25 2.1
Downwind 5 1.2 0.8 11 -0.5 87 -36 1.7
East Asia Rural 40 6.8 7.8 4.7 1.0 68 15 6.0
Urban 78 9.7 10.3 4.0 0.6 41 6 52
Downwind 15 4.9 7.9 3.5 3.0 71 61 5.2
Europe Rural 163 14 14 0.9 0.0 62 1 14
Urban 28 1.8 1.5 1.0 -0.2 54 -13 15
Downwind 99 3.2 24 15 -0.7 48 -23 2.2
India Rural 5 0.4 2.1 1.8 1.7 439 412 2.6
Urban 14 8.2 7.8 4.0 -0.4 49 -5 5.2
414
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416  Figure 3: Scatterplots comparing monthly mean surface concentrations of PM1 NOs™ as simulated
417 by EMAC from the base case and measured by AMS instruments in field campaigns in the regions
418  of (a) Europe, (b) North America, (c) East Asia and (d) India. Enlarged dots indicate the 2008 —
419 2018 period averages from all locations. Also shown are the 1:1 lines (solid) as well as the 2:1 and

420  1:2 lines (dashed).

421 4. Differences between PM2sand PM: NOz™ concentrations in the sensitivity

422  model runs

423 The differences in the predicted surface PMzs nitrate concentrations across the sensitivity
424 simulations in comparison to the base case, are illustrated in Figure 4. Furthermore, a comparison
425  for PM2sconcentrations across different seasons can be seen in Figure 5 and a comparison of PM:
426  concentrations for the different types of measurements sites in Figure 6, with detailed statistical

427  metrics provided in Tables S1-S14.
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428  Figure 4: (a) Average surface concentrations of PM2s NOs™ for the period of 2008 — 2018 as
429  simulated by EMAC from the base case. White areas indicate average concentrations smaller than
430  0.25 pg/md. Percentage changes of the EMAC-simulated average surface concentrations of PMzs
431 NOs between the base case model run and the (b) ‘THERM’ case (c) ‘RES_low’ case, (d)
432  ‘RES_high’ case, () ‘CMIP’ case, (f) ‘HTAP’ case, (g) ‘HYDRO’ case and (h) ‘SCAV’ case
433 model runs. Negative values in red indicate higher concentrations by the respective sensitivity case
434 and positive values in blue indicate the opposite.
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435 4.1 Sensitivity to the model spatial resolution

436 Lower Grid Resolution: Employing a coarser grid resolution generally predicts higher surface
437  PMas nitrate concentrations than the base case (Fig. 4c). The largest differences (up to 80%) are
438  observed for North America, followed by Europe (~30%). In East Asia, changes are more
439  localized, with some areas exhibiting up to 15% lower values, while the Himalayan Plateau in
440  India shows reductions of approximately 50%.

441 When evaluated against observational datasets, the lower-resolution sensitivity simulation
442  closely reproduces mean winter and spring nitrate concentrations in Europe, where nitrate levels
443  typically peak during these seasons (Fig. 5). However, the model significantly overestimates
444 summer and autumn concentrations, with biases reaching factors of 3 to 4 for EMEP observations.
445 In North America, this sensitivity case consistently overestimates nitrate levels, particularly during
446  the warmer seasons, although winter concentrations are more in line with EPA observations. In
447  contrast, the model overestimates PM2 s nitrate levels observed in the IMPROVE network by up
448  to three times, exhibiting comparable overestimations to those observed in EANET data.
449  According to the statistical metrics, the lower-resolution model run does not outperform the base
450  case, indicating that a coarser grid resolution does not increase the model's estimation accuracy.
451 For PMy nitrate concentrations, the lower-resolution case slightly overpredicts rural values in
452  Europe by approximately 13%, while urban values are slightly underpredicted (Fig. 6). At
453  downwind locations, the underprediction is more pronounced, reaching around 25%. In North
454  America, this tendency is nearly reversed, with rural sites exhibiting a substantial underprediction
455  (~30%) and urban sites showing an overprediction (~20%). Notably, downwind locations in this
456  region are best represented by the lower-resolution sensitivity case. In East Asia, this case case
457  shows very similar rural values to the base case, while urban sites display a moderate
458  underprediction (~15%). However, at downwind locations, concentrations are significantly
459  overpredicted, with nearly twice as high values as the observed values. In India, the lower grid
460 resolution leads to the opposite behavior. In this case, concentrations in rural areas are
461  overpredicted, similar to the base case results, while concentrations in urban areas show the largest
462  underprediction among all sensitivity model runs, with concentrations being approximately a
463  factor of 2.5 lower. Statistically, the lower-resolution case offers a slight improvement in accuracy
464  for rural locations in North America and East Asia. However, it does not exceed the accuracy of
465  the base case for Europe or India.

466 Higher Grid Resolution: In contrast to the results of the low grid resolution, simulations
467  employing a higher grid resolution have yielded reduced surface PM. ;s nitrate concentrations in
468  comparison to the base case (Fig. 4d). The differences in nitrate concentrations can reach up to
469  50% across North America, Europe, and India, with less consistent patterns in East Asia.

470 A comparison of the high-resolution model run with the EMEP observations reveals that it
471  underpredicts nitrate concentrations in winter and spring by approximately 20%, but performs
472  better in summer and autumn, reducing the overestimation compared to the base case (Fig. 5).
473  Similarly, the higher grid resolution provides more accurate predictions for EPA observations in
474  most seasons except winter, when slight underestimations occur. For the IMPROVE network, the
475  high-resolution case achieves the best agreement in summer, though its performance varies across
476  other seasons.

477 For PM nitrate, the high grid resolution provides a modest underprediction across all European
478 location types, with the most substantial discrepancy observed at downwind sites (~33%). In North
479  America, rural and downwind sites exhibit a more pronounced underprediction, reaching up to a
480  factor of 2, while urban locations show a modest overprediction (~12%). In contrast, the results
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481  for East Asia exhibit an opposing pattern, with observations from all location types slightly
482  overpredicted by the model, particularly at downwind sites (~factor of 2). In India, the urban
483 locations estimate by this sensitivity align closely with the base case results, while rural sites
484  demonstrate a marginally higher overprediction. Statistically, the high grid resolution enhances the
485  accuracy of model predictions for urban sites in North America and Europe while also improving
486  rural predictions in East Asia, underscoring its effectiveness in capturing finer spatial variability.
487
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490  Figure 5: Average seasonal surface concentrations of PMa2s NOs™ measured (black bars) and
491  predicted from the base case and all sensitivity cases (colored bars) for the networks of (a) EMEP,
492  (b) EPA, (c) IMPROVE and (d) EANET during winter, spring, summer and autumn.
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495 4.2 Sensitivity to anthropogenic emission inventories

496 CMIP6: The application of the CMIP6 anthropogenic emission inventory for the simulation of
497  surface PM2s nitrate concentrations provides lower concentrations in most regions, except for
498 India (Fig. 4¢). The most significant reductions in surface PM2 s nitrate concentrations are observed
499 in North America and Europe (50%-60%). East Asia exhibits a comparatively smaller reduction,
500 ranging from 10% to 20%. Conversely, India exhibits an increase in PM2s nitrate levels ranging
501  from 30% to 40%.

502 A comparison with observations reveals notable discrepancies (Fig. 5). For EMEP observations,
503 the CMIP emission inventory underestimates winter and spring concentrations by up to 40%, while
504  overestimating summer values (by twofold), although autumn values are well captured. For EPA
505 observations, this case underestimates in all seasons except winter, yielding the lowest PM2s
506 nitrate predictions among all cases. Interestingly, the underestimation during most seasons is
507 analogous to the overestimation seen in the 'RES_high' case. For IMPROVE observations, model
508  predictions are more accurate, characterized by minor positive biases (less than 10%), with
509 summer values showing enhancement over the base case. For EANET observations, summer
510  values are improved compared to the base case model, but values are overpredicted for other
511  seasons similar to the base case model results. Statistically, the 'CMIP' case demonstrates greater
512  efficacy than the base case for most observational networks, with the exception of EANET, for
513  which similar results are obtained.

514 A comparison of the 'CMIP' model run with observations of PM: nitrate concentrations
515 measured by AMS instruments in field campaigns reveals the largest underprediction of all
516  sensitivity model runs for all location types in Europe, with downwind sites showing the largest
517  discrepancy (~factor of 2). A similar pattern is observed in North America, where rural sites show
518  differences as high as 80%. In contrast, observations in East Asia are more closely aligned with
519 this case. Values in rural sites show the best agreement with observations, while values in urban
520  sites exhibit only a slight underprediction of less than 10%. In downwind locations, however,
521  values are moderately overpredicted by approximately 25%. In India, the CMIP emission
522  inventory results in an overprediction of observations of around 20% in urban areas, with values
523 in rural areas showing an even greater discrepancy, reaching approximately a factor of 10.
524  Statistically, this case performs worse than the base case for Europe and India, however, has an
525  improved performance in East Asia and the USA, particularly for metrics other than MB and NMB.
526 HTAP: The simulation using the HT APv3 anthropogenic emission inventory generally predicts
527  higher PM2s nitrate concentrations than the base case (Fig. 4f). Notably, Europe and the eastern
528  United States constitute exceptions, exhibiting 20-30% lower concentrations compared to the base
529  case model. In other regions, particularly western North America and India, the predicted
530  concentrations are up to 100% higher than in the base case model, with values in East Asia showing
531 increases of 60-80%.

532 A comparison of the model results with observations reveals significant variations. For EMEP
533  observations, the HTAP emission inventory underestimates values in winter, similar to the 'CMIP'
534  case, and overestimates concentrations in summer. Notably, the '"HTAP' model run exhibits the
535  most significant underestimation in spring, reaching approximately 60%. However, the model's
536  performance is satisfactory in the autumn. Comparisons to EPA observations show a consistent
537  overestimation in all seasons, opposite to results of the CMIP6 model run. Comparison of the
538 HTAP model results to the IMPROVE data show an overestimation of values (~factor of 2),
539  particularly in winter, similar to results of the RES_low model run. For EANET observations, the
540 use of the HTAP emission inventory leads to high overpredictions, ranging from a factor of 2 in
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541  spring and summer to a factor of 4 in winter. Statistically, the HTAP model run performs better
542  than the base case model for EMEP observations during summer and autumn, but model
543  predictions are worse in winter and spring. Slight improvements are observed for EPA
544  observations, while the model performance is worse for IMPROVE observations, and especially
545  for EANET observations.

546 When evaluated against PMz nitrate concentrations measured by AMS instruments in field
547  campaigns, the HTAP emission inventory shows a 20% underprediction of values at rural sites in
548  Europe, but it best captured average urban values compared to all other sensitivity simulations.
549  However, in downwind locations, the model underpredicts concentrations by nearly 40%. This
550  sensitivity model run performs particularly well compared to observations in North America,
551  where it shows the best agreement with observations in both rural and urban locations. However,
552  in downwind locations, the model values are significantly lower than the observations, similar to
553  the base case estimates, with a model-measurement discrepancy of nearly 50%. In contrast,
554  reproducing observations in East Asia appears to be challenging for this sensitivity case, as the
555  simulated values show the highest overprediction of all model cases for all location types. The
556  results for downwind sites exhibit a distinct overprediction of almost a factor of 2, while results
557  for other locations show discrepancies of less than 20%. In India, concentrations simulated by the
558 'HTAP' case show a substantial overprediction for both urban and rural locations, and the most
559 significant model-measurement discrepancies among all sensitivity model runs. In rural areas, the
560 overprediction can reach up to a factor of 15, while in urban areas, the predicted concentrations
561 are approximately double the observed values. Statistically, the '"HTAP' case performs worse
562 relative to the base case in East Asia and India. However, it provides improved predictions for
563  rural locations in the USA and Europe, but not for urban downwind sites.

564
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566  Figure 6: Average PM; NOsz surface concentrations measured by AMS instruments in field
567  campaigns (black bars) and predicted by the base case and all sensitivity cases (colored bars) for
568 the regions of (a) Europe, (b) North America, (c) East Asia and (d) India divided into rural, urban
569  and downwind locations.
570

571 4.3 Sensitivity to the model treatment of the aerosol thermodynamic state and
572 chemistry

573 Metastable state: The simulation assuming a metastable thermodynamic state (aerosols do not
574  precipitate into solid salts at low humidity) indicates only minor discrepancies in surface PM2s
575 nitrate concentrations compared to the base case (Fig. 4b). Concentrations exhibit a 10-15%
576  increase in North America and Europe, while in the Himalayan Plateau, they decrease by up to
577  30%, and in East Asia, they are slightly lower.

578 When evaluated against PM. s observations, the metastable state performs almost identically to
579  the stable state (i.e., base case) for all observational networks. However, slightly less accurate
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580  predictions (differences <5%) are observed for the EPA and IMPROVE networks, as reflected in
581 the statistically insignificant differences between the metrics derived for the sensitivity and base
582  case model runs.

583 For observations of PM1 nitrate concentrations, the metastable results are nearly identical to the
584  base case model run in Europe and North America for all location types. A similar behavior is
585  observed in East Asia, where the metastable assumption overpredicts observed concentrations by
586  approximately 5% compared to the base case model run for all locations. In India, the metastable
587  and base case results show no difference in rural areas, but values are underpredicted by about
588  40% in urban areas due to the use of the metastable state assumption. This discrepancy is
589  associated with the combination of moderate temperatures and low relative humidity at these
590 locations, which hinder the partitioning of nitrate into the aerosol phase (Ansari and Pandis, 2000;
591 Milousis et al., 2024). These factors contribute to the model-measurement discrepancies,
592  particularly in urban areas with elevated nitrate aerosol concentrations. Statistically, this particular
593  sensitivity performs marginally better than the base case model run for downwind sites in East
594  Asia. However, it underestimates nitrate concentrations at urban sites in India, with only minor
595  discrepancies to observed values elsewhere.

596 Lower N20s uptake coefficient for hydrolysis: The simulation that incorporated a lower
597 uptake coefficient for N20s hydrolysis consistently yielded lower surface PMa2s nitrate
598  concentrations in all regions when compared to the base case model (Fig. 5g). The simulation
599 indicates a 20% decrease in East Asia and a 40% decrease in Europe and North America, reflecting
600 the suppression of nitrate formation via the hydrolysis pathway.

601 A comparison of the model simulation using a lower N2Os uptake coefficient with observations
602  reveals a tendency to underpredict the PM2 s nitrate concentrations from the EMEP network during
603  winter and spring. The discrepancy between this simulation case and the observations is more
604  pronounced in winter and spring (25% and 35%, respectively) compared to summer and autumn.
605  Forthe EPA network, this sensitivity underpredicts winter values by approximately 30%, but gives
606  better agreement for all other seasons than any of the other sensitivity cases. Against IMPROVE
607  observations, the lower N2Os uptake coefficient case results in a lower overprediction in all seasons
608  when compared to the base case model run. The model-measurement differences are within 30%.
609 For EANET observations, the HYDRO model simulation gives values that are in better agreement
610  with the observations than the results of the other sensitivity model runs, exception for the 'CMIP'
611  case during summer. Statistically, the 'HYDRO' case shows improved performance compared to
612  the base case across all observational networks and metrics, with the exception of the EANET
613  observations during the autumn season. The most significant improvements compared to the base
614  case are observed for the EPA network, as this scenario showed the best metrics in comparison to
615 the rest of the sensitivities, for values obtained in summer and autumn.

616 For PM1 nitrate concentrations, the sensitivity case with lower N2Os uptake exhibits the second
617  highest underprediction among all sensitivity model runs, surpassed only by the 'CMIP' case,
618  across all location types in Europe. A similar behavior was observed for North American values.
619  However, the results of the model-measurement comparison vary significantly for values in East
620 Asia. Specifically, while the 'HYDRO' model run demonstrates the most significant
621 underprediction for urban site values (approximately 15%) among all other sensitivity cases, it
622  exhibits a lower overprediction bias compared to the base case for both rural and downwind
623 locations, resulting in a closer agreement with the measurements. In India, the HYDRO case
624  exhibits the lowest overprediction for rural values among all sensitivity model runs, although these
625  values are substantially lower (a factor of 4) than the observations. For urban areas, the lower N2Os
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626  uptake coefficient results in an underprediction comparable to that obtained by using a lower grid
627  resolution or by assuming a metastable aerosol state. Statistically, the 'HYDRO' case demonstrates
628  a lower performance than the base case in Europe, particularly for rural and downwind locations,
629 asevidenced by the presence of stronger negative biases and higher error rates. In North America,
630 the model performs worse for rural locations but better for urban locations, with comparable
631  metrics for urban downwind predictions. In East Asia, the lower N2Os uptake coefficient provides
632  more accurate predictions than the base case for rural and downwind locations for most metrics
633  (except for RMSE), yet predictions are less precise for urban sites. In India, the predictions in rural
634  areas are improved compared to the base case model run by this sensitivity, but predictions in
635 urban areas remain unchanged. This observation indicates that the 'HYDRO' model run performs
636  better in capturing nighttime aerosol nitrate formation, which is predominant in rural areas. In
637  contrast, daytime production pathways seem to be more significant in urban areas.

638

639 4.4 Sensitivity to the scavenging treatment

640 Simplified scavenging treatment: The implementation of a simplified scavenging treatment
641  for the gas phase aerosol precursors in the model (Section 2.3) yields substantially reduced surface
642  PM25 nitrate concentrations compared to the base case (Fig. 4h). The largest differences are found
643 for Europe and East Asia, where concentrations are reduced by approximately 60%.
644  Comparatively, North America exhibits a reduction of approximately 30%, while India
645  experiences a decline of around 10-20%. These lower concentrations can be attributed to the high
646  wet deposition fluxes in the simplified mechanism, which neglects gas-phase diffusion limitations
647  and assumes an equilibrium between the gas and aerosol phases (Tost et al., 2007b). Additionally,
648  the assumed pH of 5 for clouds and precipitation is less acidic than typical for polluted regions,
649  further enhancing nitrate scavenging.

650 A comparison of the 'SCAV' case with observations reveals the strongest underprediction for
651 EMEP measurements in winter (~45%). Overprediction biases are less by ~20% and ~30%,
652  respectively, than in the base case model run during summer and autumn. For the EPA network,
653 the'SCAV' case demonstrates the most significant overprediction of observations in winter (~45%)
654  among all sensitivity model runs. However, values are only marginally overpredicted in the other
655  seasons (~10%), and even slightly underpredicted in spring. The simplified scavenging treatment
656  better reproduces the IMPROVE observations throughout the year compared to the base case, with
657  notable reductions in model-measurement discrepancies of up to ~40% during winter and spring.
658  For EANET observations, the 'SCAV' model run yielded smaller values than the base case, thereby
659  reducing the overprediction bias by ~35% during winter. In all other seasons within the region,
660 this particular sensitivity demonstrates the smallest discrepancies between model predictions and
661  observations among the rest. Statistically, the 'SCAV' case demonstrates enhanced performance in
662  comparison to the base case for EMEP and EPA observations across the majority of seasons, with
663 the exception of winter, where the model exhibits a substantial underprediction tendency, as
664  evidenced by both bias and error metrics. The model-measurement agreement for observations of
665 the IMPROVE network exhibited enhancement in comparison to the base case model run across
666  all seasons. The agreement for EANET observations shows improvements only during winter and
667  summer, while during spring and autumn the statistical metrics of the 'SCAV' case are worse
668  compared to the base case.

669 For PMy nitrate, the simplified scavenging treatment underpredicts the observations more than
670 the base case for all location types in Europe. The magnitude of the bias observed in the 'SCAV
671  case is comparable to that obtained by using the CMIP6 emission inventory or by using a lower
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672  N20s uptake coefficient. In North America, the simplified scavenging treatment results in an
673  underprediction of concentrations of approximately 50% for rural sites and 40% for downwind
674  sites, though it is slightly smaller than the overprediction bias of the base case model for urban
675 locations. In East Asia, the 'SCAV' case exhibits a smaller overprediction of observed values
676  compared to the base case results for downwind locations (~25%), while this sensitivity provides
677 nearly identical estimates for rural sites. Conversely, urban sites exhibit a slight underprediction
678  (12%) in this sensitivity analysis. In India, the 'SCAV' sensitivity model run does not lead to
679  substantial changes in the estimates compared to the base case results for both urban and rural
680 locations. Statistically, the 'SCAV" case performs worse than the base case in terms of bias metrics
681  for results in Europe, although the discrepancy in error metrics is less pronounced. In North
682  America, the 'SCAV"' case shows worse metrics for rural sites, but shows improvements for urban
683  sites. Downwind sites show increased biases but reduced errors. In East Asia, the 'SCAV' case
684  exhibits higher accuracy in capturing observations at rural and downwind sites compared to the
685  base case but performs less successfully at urban sites. A similar pattern is observed in the results
686  for India. In summary, when evaluated against the metrics of the base case, the 'SCAV' case yielded
687  enhancements for rural sites in Europe and India.

688 5. Temporal Variability and Tropospheric Burden of NOs

689 The availability of continuous time series data from monitoring networks for PM2s nitrate
690  concentrations facilitates a comparison of seasonal patterns across different model sensitivities and
691 regions. Conversely, the PM1 measurements, which were campaign-based and characterized by
692  varying durations, lack the capability to facilitate a comparable seasonal analysis. Consequently,
693 aselection of stations measuring PMy nitrate concentrations in Europe was chosen, as the model
694 in this region had difficulty in reproducing observed concentrations for this size mode. These
695  stations, which provide hourly measurements, facilitate a detailed comparison of the diurnal
696 variation of modeled and observed data. Finally, this section includes an analysis of the total
697  tropospheric burden of nitrate aerosols. This analysis compares estimates from all sensitivity cases
698  to assess their global-scale implications. This multi-scale approach aims to highlight the temporal
699 dynamics and atmospheric significance of nitrate aerosols in relation to different modeling
700  configurations.

701 5.1 Seasonal variation of PM,sconcentrations

702 Figure 7 presents the seasonal patterns of PM2s predictions from model sensitivity runs and
703  measurements obtained from observational networks in the specified regions. For the EMEP
704  network, all sensitivity simulations consistently underpredicted the PM2s concentrations from
705  January to April, with the largest discrepancies observed in March, ranging from 35% for the lower
706  grid resolution case to 55% for the case using a simplified scavenging treatment. It is noteworthy
707  that the 'HTAP' case is the only model run that accurately reproduces this period, including the
708  peak concentration observed in the measurements in March. Conversely, from April to December,
709  the majority of sensitivity cases exhibit an overprediction of observed concentrations, with the
710  exception of the 'HTAP' case after October. The most pronounced overestimations are observed in
711  the run with the lower spatial resolution and the base case, with concentrations reaching up to
712  twice the observed levels in October. In contrast, the 'CMIP' and 'HYDRO' cases exhibit smaller
713  discrepancies between model and measurement, with model overestimations of approximately
714 40%. While all model cases captured the general seasonal cycle, the 'HTAP' case did not capture
715  the exact timing of the second maximum, which was shifted one month earlier and showed a
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716  stronger post-summer decline compared to the other model runs. The results of the 'CMIP' case,
717  followed by the 'RES_high' and 'HYDRO' cases, give the closest agreement with observations,
718  particularly at low nitrate concentrations. Overall, the magnitude of model overpredictions is most
719  pronounced during summer and early autumn. The enhanced discrepancies between model
720  projections and observations for this network can be partially attributed to the increased
721  evaporation of the semi-volatile nitrate aerosol species under warm conditions (Ames and Malm,
722  2001; Docherty et al., 2011) from the nylon filters used by the EMEP samplers (Yu et al., 2005).

723 A similar seasonal pattern is observed in the USA when comparing model outputs to EPA
724  measurements, with underpredictions of observed values from January to April and
725  overpredictions from April to December. The 'SCAV' case demonstrates the most significant
726  underprediction of observations, exhibiting a 35% discrepancy in February. In contrast, the lower-
727  resolution case reveals the most substantial overprediction, with concentrations surpassing
728  observations by a factor of 2 in August. The sensitivity model runs with different anthropogenic
729  emission inventories demonstrate contrasting behaviors, with the HTAPv3 consistently
730  overpredicting the measured concentrations and the CMIP6 underpredicting them. Despite these
731  biases, the seasonal variation is adequately captured in all model cases, with the high-resolution
732 and the metastable model runs demonstrating the most optimal overall performance. A similar
733  pattern to the European region was observed, where the warm months were also characterized by
734  the largest overprediction biases of the year for this network. This phenomenon is attributed, at
735 least in part, to biases associated with evaporation losses from the filter samplers during this
736  particular season. Under warmer weather conditions, increased filter temperatures lead to
737  increased evaporation of semi-volatile species such as nitrate (Ames and Malm, 2001; Docherty
738 et al.,, 2011). For the IMPROVE network, all model cases exhibit overpredictions of PM2s
739  concentrations throughout the year, with more pronounced discrepancies observed during colder
740  months. During these months, the HTAP emission scenario shows differences up to a factor of 2.5
741  in February and a factor of 2 in December, while the low-resolution scenario shows comparable
742 deviations in spring and summer. Among the sensitivity cases, the model run with the CMIP6
743 emission inventory shows the best agreement with the observations, followed by the 'SCAV' case
744  during the early months of the year and the high-resolution and metastable sensitivities during the
745 remainder of the year.

746 The EANET network shows a similar seasonal variability to the IMPROVE network, with all
747  model cases consistently predicting higher concentrations than observed throughout the year,
748  while successfully reproducing the observed seasonality. The most pronounced overpredictions
749  occur during the cold months, with the HTAP emission inventory exhibiting the most significant
750  deviations of up to a factor of 3.5 in January. The 'SCAV"' case demonstrates the most favorable
751  agreement with observations, exhibiting deviations that remain constrained to a factor of 1.5 during
752  the cold season. This suggests that the intricate aerosol scavenging process included in the base
753  case may potentially underestimate the wet deposition fluxes of particulate nitrate in this region.
754  The HYDRO and CMIP6 cases also perform well, particularly for lower concentrations.
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757  FEigure 7: Seasonal variation of measured (black lines) and predicted (colored lines) PM2s NO3
758  surface concentrations from the base case and all sensitivity model cases for the networks of (a)
759  EMEP, (b) EPA, (c) IMPROVE and (d) EANET.

760

761

762 5.2 Diurnal variation of PM; concentrations

763 Figure 8 presents a comparison of the diurnal variation of the simulated PM; nitrate

764  concentrations from the base case and sensitivity model runs against hourly observations from
765  seven European stations. At Birkenes, most simulation cases can capture the observed diurnal
766  pattern, with concentrations peaking in the early morning and decreasing in the late evening.
767  However, the low-resolution case deviates significantly, with concentrations that are twice the
768  observed values. The high-resolution case results are closest to the observations, suggesting that a
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769  higher grid resolution is more effective in capturing the variations in aerosol nitrate concentrations
770  induced by anthropogenic activities during the day. Conversely, the 'SCAV' model run exhibited
771  the most significant underprediction, reaching a factor of 2. In Bucharest, the model sensitivities
772  vyielded a comparable morning peak, albeit smaller than the observed value, occurring
773 approximately two hours earlier than the observed peak. Although an evening minimum of PMy
774  nitrate is predicted at a similar time, the model significantly underpredicts afternoon
775  concentrations, with the discrepancy being twice as large as that for the morning values. The
776  simulation with the high-resolution had the best performance compared to the other cases for this
777  station, which has a diurnal pattern similar to the previous station, followed by the base and
778  metastable state assumption. The 'SCAV' case demonstrates the most significant diurnal variability
779  among the rest of the sensitivities, exhibiting a pronounced decrease in concentrations during the
780 transition from day to night.

781 At Hohenpeissenberg, the model results fail to reproduce the observed early morning minimum.
782  Predicted late morning maxima and afternoon minima are higher than the observations in most
783  cases, except for the high-resolution, metastable, and CMIP6 cases. During the early morning
784  hours, these three cases demonstrate the smallest discrepancies with the observations, while the
785  low-resolution exhibits a stronger agreement in the afternoon due to a less pronounced decline in
786  the modeled concentrations. The elevation of the station, 300 meters above the surrounding area,
787  serves to reduce the influence of anthropogenically influenced air masses, thereby reducing the
788  variability observed in the hourly values. However, this is not reflected in the model results.

789 At Melpitz, the observed diurnal pattern is well reproduced by the model results. In most
790  sensitivity cases, morning values are marginally higher than observed values, while evening values
791  are slightly lower. The CMIP6 emissions demonstrate the most accurate morning values among
792 the diverse model runs, while the base and metastable exhibit more precise evening concentration
793  predictions compared to the others. The lower-resolution run demonstrates the most overall
794  agreement with observations throughout the day, attributable to the less pronounced maximum and
795  minimum peaks.

796 For the SIRTA station, the model results adequately capture the diurnal pattern, though the
797  evening minimum values are predicted three hours later than observed. The lower- and higher-
798  resolution cases demonstrated an enhanced representation of the morning maximum compared to
799 the other cases, while the lower spatial resolution exhibited superior prediction of the evening
800 minimum compared to all other sensitivities. This case also demonstrated a less pronounced
801 transition from daytime to nighttime values, similar to the previous comparison. The other model
802  sensitivity cases underpredict the observations, with discrepancies ranging from 40% (HTAP'
803  case) to a factor of 3 (CMIP' case).

804 At Puy De Déme, the model results fail to reproduce the diurnal variation of the observations.
805  As this station is located on one of the highest peaks of the Chaine des Puy, the station is
806  representative of the regional atmospheric conditions. This characteristic is evidenced by the
807  absence of a pronounced diurnal variation in PMy levels, in contrast to what is observed in more
808  polluted locations such as Bucharest and SIRTA. The morning values are marginally overpredicted
809 by the lower spatial resolution; however, evening values are consistently underpredicted by all
810  sensitivities, at a time when the observations showed nearly constant values. The lower-resolution
811  run exhibits the least deviation from observations in the afternoon, while the base and metastable
812  state demonstrate more accurate performance in the early morning.

813 At Villeneuve, the observed diurnal pattern is generally well reproduced by the model results,
814  except for a three-to-four-hour delay in the observed evening minimum. It is evident that all cases
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815  exhibit an underprediction of the observed concentrations, with the most pronounced discrepancies
816  observed in the sensitivity case using the HTAPv3 emissions, reaching up to a factor of 3, and the
817 least significant discrepancies observed in the base case and the metastable, at approximately 60%.
818 The analysis indicates that the grid resolution is the most critical factor in reproducing the
819  diurnal variability of PM1 nitrate concentrations. For stations exhibiting regional characteristics
820  (Hohenpeissenberg, Melpitz, and Puy De D6me), the lower spatial resolution provides optimal
821  predictions during the day, while it more accurately captures evening and nighttime values. The
822  observed discrepancy during nighttime hours can be attributed to the distortion of NOy fields
823  resulting from the larger grid cells. This distortion leads to elevated nitrate radical concentrations
824  and increased nitrate aerosol production during nighttime hours, a process that has the greatest
825  impact on rural areas (Zakoura and Pandis, 2018). Consequently, the low-resolution case results
826 in increased nighttime concentrations that approximate the observed values. The base case and
827  metastable state assumption demonstrate satisfactory performance across all stations, while the use
828  of a lower N2Os uptake coefficient provides minimal improvement compared to the base case. For
829 the sensitivity model runs employing different emission inventories, the HTAPv3 outperforms the
830 CMIPG6; however, the agreement between modeled values and observations remains less than that
831  for the base case. This outcome confirms the suitability of the CAMS database for modeling
832  European PMy nitrate concentrations.

833
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834

835 Table 4: Names, locations and data availability of the stations used for the comparison of diurnal
836  PM:1 NOs™ concentrations. The location type of each station is also categorized as rural (RUR) or
837  downwind (DW) locations.

838
Station Name Station Code Longitude Latitude Availability of
hourly data
Birkenes 1l (RUR) NOO0002R 58°23'19"N 008°15'07"E 8/2012 — 8/2018
Bucharest (DW) ROO0007R 44.344°N 26.012°E 8/2016 — 8/2018
4/2015 — 10/2015
Hohenpeissenberg DE0043G 47°48'05"N 011°00'35"E 1/2017 — 9/2017

(DW) 10/2017 — 11/2018

7/2015 - 9/2015

Melpitz (RUR) DE0044R 51°31'49"N 012°56'02"E 5/2016 — 11/2017
Puy de Dome FROO30R 45°46'00"N 002°57'00"E 3/2015 — 10/2016
(RUR) 1/2018 — 12/2018
SIRTA
Atmospheric FR0O020R 48°42'31"N 002°09'32"E 10/2014 — 1/2016
Research

Observatory (DW)

Villeneuve d'Ascq FRO027U 50.611°N 3.14°E 10/2016 — 11/2017
(Dw) 7/2018 — 12/2018

839
840
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842  Figure 8: Diurnal evolution of measured (black lines) and predicted (colored lines) PM1 NOs™
843  surface concentrations from the base case model and all model sensitivity cases for the stations at
844  (a) Birkenes, (b) Bucharest, (c) Hohenpeissenberg and (d) Melpitz.
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846  Figure 8 (cont): Diurnal evolution of measured (black line) and predicted (colored lines) PM1
847  NOs surface concentrations from the base case model and all model sensitivity cases for the
848  stations at (€) SIRTA, (f) Villeneuve and (g) Puy De Déme.

849

850 5.3 Tropospheric burden of particulate nitrate

851 The global tropospheric burden of aerosol nitrate, defined as the total amount (in Tg) present in
852  the Earth’s troposphere and averaged over the entire time period from 2008 to 2018, simulated by
853  the base case and the sensitivity model runs is presented in Table 5 and Figure 9. The base case
854  estimates a burden of 0.7 Tg, closely matching the multi-model average of 0.63 Tg reported by
855  Bian et al. (2017). The 'RES_low' case gives the highest burden of 0.89 Tg, representing a 27%
856 increase compared to the base case estimate. This is attributable to larger grid cells, which have a
857  distorting effect on NOx concentration fields over broader regions, leading to elevated nocturnal
858  production of particulate nitrate. Conversely, the 'RES_high' case exhibits the lowest burden of
859 0.53 Tg, a 24% decrease compared to the base case estimate, attributed to the more accurate
860 reproduction of NOx concentration fields by this sensitivity and the reduced nocturnal production
861  of particulate nitrate.

862 The 'CMIP' case estimates a burden close to the base case (0.74 Tg), while the 'HTAP' model
863  run produces a higher burden of 0.88 Tg, driven by the higher NOx emissions compared to the base
864  case, particularly over India and the Western US. The "THERM' and '"HYDRO' cases both yielded
865  burdens of 0.69 Tg, indicating a minimal impact of the aerosol thermodynamic state assumption,
866  as well as the N2Os uptake coefficient for hydrolysis on the nitrate aerosol burden. The 'SCAV'
867  case estimates a lower burden of 0.53 Tg due to the increased wet deposition rates from the
868  simplified scavenging approach. This result is consistent with the results reported by Tost et al.
869  (2007b), who calculated increased deposition rates using analogous simplifications and
870  assumptions, including a pH of 5 for rain and clouds.

871

872

873

874

875

876

877
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Figure 9: Bar chart showing the average tropospheric burden of total aerosol NOs™ predicted from
the base case and all sensitivity cases for the period 2010-2018. The dashed horizontal line shows
the average tropospheric burden from 9 models taken from Bian et al. (2017), which is equal to

0.63 Tg.

Table 5: Average tropospheric burden of aerosol NOz™ for the period 2010-2018 for the base case

and all sensitivity simulations.

Simulation NOs Tropospheric
case Burden (Tg)

Base Case 0.70
RES_low (T42) 0.89
RES_high (T106) 0.53
CMIP6 0.74
HTAP 0.88
THERM 0.69
HYDRO 0.69
SCAV 0.53
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904 6. Conclusions

905 This study investigated the impact of diverse atmospheric modeling components on the
906 accuracy of the simulated surface concentrations of nitrate aerosols. A series of sensitivity
907 scenarios were developed to assess the impact of grid resolution, anthropogenic emission
908 inventories, aerosol thermodynamic assumptions, uptake coefficient for N2Os hydrolysis, and
909 scavenging treatments on model predictions. A comparative analysis was conducted against PM2 s
910 filter observations and PM1 AMS measurements, focusing on polluted regions within the Northern
911  Hemisphere. The findings indicated that accurately replicating observed PM2s and PM;
912  concentrations requires a nuanced approach, as no single model configuration consistently yielded
913  the best results for all conditions and regions.

914 For PM25 observations, the model performed best in the USA region, with the lowest overall
915  bias and error metrics for all sensitivity simulations. In East Asia, the model consistently
916  overpredicted concentrations in all configurations, although percentage differences were often
917  moderate. Despite the significant model bias within this region, certain configurations improved
918 the simulated concentrations and reduced the associated statistical metrics. These configurations
919 included higher grid resolution, a lower uptake coefficient for N2Os hydrolysis, and a simplified
920  aerosol scavenging treatment. Conversely, Europe proved to be a particularly difficult region for
921  the model to reproduce, with both under- and over-predictions of nitrate concentrations relative to
922  observations, a pattern that showed significant seasonal variation. In particular, the simulated
923 nitrate overprediction in Europe peaked during the summer. This discrepancy can be attributed to
924  measurement artifacts under warm conditions and the enhanced evaporation of the semi-volatile
925  nitrate aerosol species from the nylon filters used. This overprediction was also observed in North
926  America when compared with nitrate observations from the EPA network. Conversely, the model
927  showed increased discrepancies with the IMPROVE and EANET network observations during the
928  colder periods. Despite these challenges, the scenarios that showed improvement over the base
929 case predictions for East Asia were found to be equally effective in the other two regions,
930 highlighting their importance in improving the accuracy of the model in reproducing PMz2 s nitrate
931  observations.

932 For PM1 observations, the model performance varied significantly by the location type and
933  region. In general, simulated urban nitrate was in best agreement with observations in all regions.
934  However, rural observations were underpredicted in North America and strongly overpredicted in
935 India. In contrast, rural observations in Europe and East Asia were more accurately reproduced by
936 the base and CMIP cases, respectively. In general, downwind locations posed the greatest
937  challenge to the model, with underprediction biases evident in Europe and North America, while
938 the opposite behavior was observed for East Asia. Overall, the base case showed satisfactory
939  agreement with most observations for the regions of Europe and East Asia. In contrast to the PM2s
940  comparison, it was challenging to identify specific model configurations that consistently
941  outperformed the base case in terms of predicted nitrate concentrations or statistical metrics.
942  However, the choice of emission inventory proved to be the most important factor in improving
943  model accuracy. Specifically, the model runs that used the CAMS database provided the best
944  representation of particulate nitrate concentrations for Europe, the model runs that used the
945  HTAPv3 database were most accurate for observations in North America, while the model runs
946  that used the CMIP6 database best captured values in East Asia.

947 An analysis of the diurnal variation of PMy nitrate concentrations observed at European stations
948  showed that the majority of model configurations effectively captured the general diurnal patterns
949  of observations at most stations, with the exception of remote stations that lacked significant
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950 diurnal variation. However, the model results systematically over-emphasized the evening minima
951 and showed a strong decrease in concentrations after midday. This behavior was not reflected in
952 the observations, leading to under-predictions of the afternoon and evening observations. The
953  choice of grid resolution proved to have the most significant impact on the predicted diurnal
954  patterns. The high-resolution configuration showed a higher accuracy during the morning hours,
955  while the lower-resolution configuration showed a better ability to capture afternoon and evening
956  values. Among the emission inventories, the use of the CAMS database provided the most reliable
957  estimates for PMy nitrate particle concentrations over Europe.

958 Finally, for the tropospheric nitrate aerosol burden, the base case, the metastable aerosol state
959  assumption, the lower uptake coefficient for N2Os hydrolysis, and the use of the CMIP6 emissions
960  database resulted in values that were the closest to the multi-model average value reported by Bian
961 et al. (2017). The scenarios with reduced grid resolution and the HTAPv3 emissions database
962  resulted in estimates that were approximately 25% higher than the base case, reflecting the
963 influence of the larger grid cells and the expanded precursor fields. Conversely, the scenarios
964  where a higher grid resolution and a simplified aerosol scavenging treatment were used estimated
965 burdens approximately 25% lower compared to the base case, attributable to the finer spatial
966  resolution and increased wet deposition, respectively.

967 In conclusion, this study underscores the complexity of accurately modeling nitrate aerosols.
968  The findings highlight the importance of selecting appropriate configurations based on regional
969 and seasonal conditions, with high-resolution grids, CMIP6 emissions, and adjusted uptake
970  coefficients for N2Os hydrolysis being pivotal in improving the model performance. Nevertheless,
971  the pronounced variability across regions and seasons shows the need for a flexible and adaptable
972  approach to improving atmospheric modeling of particulate nitrate concentrations.

973
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974  Code and Data Availability

975  The usage of MESSy (Modular Earth Submodel System) and access to the source code is licensed
976 to all affiliates of institutions which are members of the MESSy Consortium. Institutions can
977 become a member of the MESSy Consortium by signing the “MESSy Memorandum of
978  Understanding”. More information can be found on the MESSy Consortium website:
979  http://www.messy-interface.org (last access: 22 May 2024). The code used in this study has been
980 based on MESSy wversion 255 and is archived with a restricted access DOI
981  (https://doi.org/10.5281/zenodo.8379120, The MESSy Consortium, 2023). The data produced in
982 the study is available from the authors upon request.
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