001040960 001__ 1040960
001040960 005__ 20250423202217.0
001040960 0247_ $$2doi$$a10.1103/PRXQuantum.6.010328
001040960 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02082
001040960 0247_ $$2WOS$$aWOS:001432392800001
001040960 037__ $$aFZJ-2025-02082
001040960 041__ $$aEnglish
001040960 082__ $$a530
001040960 1001_ $$0P:(DE-Juel1)187020$$aKirchhoff, Susanna$$b0$$eCorresponding author
001040960 245__ $$aCorrection Formulas for the Mølmer-Sørensen Gate Under Strong Driving
001040960 260__ $$aCollege Park, MD$$bAmerican Physical Society$$c2025
001040960 3367_ $$2DRIVER$$aarticle
001040960 3367_ $$2DataCite$$aOutput Types/Journal article
001040960 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1745304837_7289
001040960 3367_ $$2BibTeX$$aARTICLE
001040960 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040960 3367_ $$00$$2EndNote$$aJournal Article
001040960 500__ $$aHelmholtzValidation Fund - Project No. HVF-00096
001040960 520__ $$aThe Mølmer-Sørensen gate is a widely used entangling gate for ion platforms with inherent robustness to trap heating. The gate performance is limited by coherent errors, arising from the Lamb-Dicke (LD) approximation and sideband errors. Here, we provide explicit analytical formulas for errors up to fourth order in the LD parameter, by using the Magnus expansion to match numerical precision, and overcome significant orders-of-magnitude underestimation of errors by previous theory methods. We show that fourth-order Magnus expansion terms are unavoidable, being in fact leading order in LD, and are therefore critical to include for typical experimental fidelity ranges. We show how these errors can be dramatically reduced compared to previous theory by using analytical renormalization of the drive strength, by calibration of the Lamb-Dicke parameter, and by the use of smooth pulse shaping.
001040960 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001040960 536__ $$0G:(EU-Grant)101113690$$aPASQuanS2.1 - Programmable Atomic Large-scale Quantum Simulation 2 - SGA1 (101113690)$$c101113690$$fHORIZON-CL4-2022-QUANTUM-02-SGA$$x1
001040960 536__ $$0G:(EU-Grant)101080085$$aQCFD - Quantum Computational Fluid Dynamics (101080085)$$c101080085$$fHORIZON-CL4-2021-DIGITAL-EMERGING-02$$x2
001040960 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040960 7001_ $$0P:(DE-Juel1)184630$$aWilhelm, Frank K.$$b1
001040960 7001_ $$0P:(DE-Juel1)179158$$aMotzoi, Felix$$b2
001040960 773__ $$0PERI:(DE-600)3063626-7$$a10.1103/PRXQuantum.6.010328$$gVol. 6, no. 1, p. 010328$$n1$$p010328$$tPRX quantum$$v6$$x2691-3399$$y2025
001040960 8564_ $$uhttps://juser.fz-juelich.de/record/1040960/files/INV_25_JAN_015951.pdf
001040960 8564_ $$uhttps://juser.fz-juelich.de/record/1040960/files/PRXQuantum.6.010328.pdf$$yOpenAccess
001040960 909CO $$ooai:juser.fz-juelich.de:1040960$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire$$qopenCost$$qOpenAPC
001040960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187020$$aForschungszentrum Jülich$$b0$$kFZJ
001040960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184630$$aForschungszentrum Jülich$$b1$$kFZJ
001040960 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179158$$aForschungszentrum Jülich$$b2$$kFZJ
001040960 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001040960 9141_ $$y2025
001040960 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-14
001040960 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-14
001040960 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040960 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPRX QUANTUM : 2022$$d2024-12-14
001040960 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPRX QUANTUM : 2022$$d2024-12-14
001040960 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-12-20T16:22:33Z
001040960 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-12-20T16:22:33Z
001040960 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-14
001040960 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-14
001040960 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-14
001040960 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040960 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-12-20T16:22:33Z
001040960 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-14
001040960 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-14
001040960 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-14
001040960 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-14
001040960 920__ $$lyes
001040960 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001040960 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x1
001040960 980__ $$ajournal
001040960 980__ $$aVDB
001040960 980__ $$aI:(DE-Juel1)PGI-12-20200716
001040960 980__ $$aI:(DE-Juel1)PGI-8-20190808
001040960 980__ $$aUNRESTRICTED
001040960 9801_ $$aFullTexts