001040961 001__ 1040961
001040961 005__ 20250414120447.0
001040961 0247_ $$2doi$$a10.1103/PhysRevAccelBeams.28.034601
001040961 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02083
001040961 0247_ $$2WOS$$aWOS:001447589700004
001040961 037__ $$aFZJ-2025-02083
001040961 082__ $$a530
001040961 1001_ $$0P:(DE-Juel1)190925$$aAwal, Awal$$b0
001040961 245__ $$aInjection optimization at particle accelerators via reinforcement learning: From simulation to real-world application
001040961 260__ $$aCollege Park, MD$$bAmerican Physical Society$$c2025
001040961 3367_ $$2DRIVER$$aarticle
001040961 3367_ $$2DataCite$$aOutput Types/Journal article
001040961 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744291712_1186
001040961 3367_ $$2BibTeX$$aARTICLE
001040961 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040961 3367_ $$00$$2EndNote$$aJournal Article
001040961 520__ $$aOptimizing the injection process in particle accelerators is crucial for enhancing beam quality and operational efficiency. This paper presents a framework for utilizing reinforcement learning (RL) to optimize the injection process at accelerator facilities. By framing the optimization challenge as an RL problem, we developed an agent capable of dynamically aligning the beam’s transverse space with desired targets. Our methodology leverages the soft actor-critic algorithm, enhanced with domain randomization and dense neural networks, to train the agent in simulated environments with varying dynamics promoting it to learn a generalized robust policy. The agent was evaluated in live runs at the cooler synchrotron COSY and it has successfully optimized the beam cross section reaching human operator level but in notably less time. An empirical study further validated the importance of each architecture component in achieving a robust and generalized optimization strategy. The results demonstrate the potential of RL in automating and improving optimization tasks at particle acceleration facilities.
001040961 536__ $$0G:(DE-HGF)POF4-612$$a612 - Cosmic Matter in the Laboratory (POF4-612)$$cPOF4-612$$fPOF IV$$x0
001040961 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040961 7001_ $$0P:(DE-Juel1)162384$$aHetzel, Jan$$b1
001040961 7001_ $$0P:(DE-Juel1)131164$$aGebel, Ralf$$b2
001040961 7001_ $$0P:(DE-Juel1)156288$$aPretz, Jörg$$b3
001040961 773__ $$0PERI:(DE-600)2844143-6$$a10.1103/PhysRevAccelBeams.28.034601$$gVol. 28, no. 3, p. 034601$$n3$$p034601$$tPhysical review accelerators and beams$$v28$$x2469-9888$$y2025
001040961 8564_ $$uhttps://juser.fz-juelich.de/record/1040961/files/RL_COSY.pdf$$yOpenAccess
001040961 909CO $$ooai:juser.fz-juelich.de:1040961$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
001040961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190925$$aForschungszentrum Jülich$$b0$$kFZJ
001040961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162384$$aForschungszentrum Jülich$$b1$$kFZJ
001040961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131164$$aForschungszentrum Jülich$$b2$$kFZJ
001040961 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156288$$aForschungszentrum Jülich$$b3$$kFZJ
001040961 9131_ $$0G:(DE-HGF)POF4-612$$1G:(DE-HGF)POF4-610$$2G:(DE-HGF)POF4-600$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lMatter and the Universe$$vCosmic Matter in the Laboratory$$x0
001040961 9141_ $$y2025
001040961 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-28
001040961 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040961 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV ACCEL BEAMS : 2022$$d2024-12-28
001040961 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-10-14T15:01:02Z
001040961 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-10-14T15:01:02Z
001040961 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-28
001040961 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-28
001040961 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-28
001040961 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040961 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2021-10-14T15:01:02Z
001040961 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-28
001040961 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-28
001040961 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-28
001040961 920__ $$lyes
001040961 9201_ $$0I:(DE-Juel1)IKP-2-20111104$$kIKP-2$$lExperimentelle Hadrondynamik$$x0
001040961 980__ $$ajournal
001040961 980__ $$aVDB
001040961 980__ $$aUNRESTRICTED
001040961 980__ $$aI:(DE-Juel1)IKP-2-20111104
001040961 9801_ $$aFullTexts