001     1040961
005     20250414120447.0
024 7 _ |a 10.1103/PhysRevAccelBeams.28.034601
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02083
|2 datacite_doi
024 7 _ |a WOS:001447589700004
|2 WOS
037 _ _ |a FZJ-2025-02083
082 _ _ |a 530
100 1 _ |a Awal, Awal
|0 P:(DE-Juel1)190925
|b 0
245 _ _ |a Injection optimization at particle accelerators via reinforcement learning: From simulation to real-world application
260 _ _ |a College Park, MD
|c 2025
|b American Physical Society
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744291712_1186
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Optimizing the injection process in particle accelerators is crucial for enhancing beam quality and operational efficiency. This paper presents a framework for utilizing reinforcement learning (RL) to optimize the injection process at accelerator facilities. By framing the optimization challenge as an RL problem, we developed an agent capable of dynamically aligning the beam’s transverse space with desired targets. Our methodology leverages the soft actor-critic algorithm, enhanced with domain randomization and dense neural networks, to train the agent in simulated environments with varying dynamics promoting it to learn a generalized robust policy. The agent was evaluated in live runs at the cooler synchrotron COSY and it has successfully optimized the beam cross section reaching human operator level but in notably less time. An empirical study further validated the importance of each architecture component in achieving a robust and generalized optimization strategy. The results demonstrate the potential of RL in automating and improving optimization tasks at particle acceleration facilities.
536 _ _ |a 612 - Cosmic Matter in the Laboratory (POF4-612)
|0 G:(DE-HGF)POF4-612
|c POF4-612
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hetzel, Jan
|0 P:(DE-Juel1)162384
|b 1
700 1 _ |a Gebel, Ralf
|0 P:(DE-Juel1)131164
|b 2
700 1 _ |a Pretz, Jörg
|0 P:(DE-Juel1)156288
|b 3
773 _ _ |a 10.1103/PhysRevAccelBeams.28.034601
|g Vol. 28, no. 3, p. 034601
|0 PERI:(DE-600)2844143-6
|n 3
|p 034601
|t Physical review accelerators and beams
|v 28
|y 2025
|x 2469-9888
856 4 _ |u https://juser.fz-juelich.de/record/1040961/files/RL_COSY.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1040961
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190925
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)162384
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131164
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)156288
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Matter and the Universe
|1 G:(DE-HGF)POF4-610
|0 G:(DE-HGF)POF4-612
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-600
|4 G:(DE-HGF)POF
|v Cosmic Matter in the Laboratory
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-28
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV ACCEL BEAMS : 2022
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-10-14T15:01:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-10-14T15:01:02Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2024-12-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2021-10-14T15:01:02Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IKP-2-20111104
|k IKP-2
|l Experimentelle Hadrondynamik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IKP-2-20111104
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21