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Injection optimization at particle accelerators via reinforcement learning:
From simulation to real-world application
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Optimizing the injection process in particle accelerators is crucial for enhancing beam quality and
operational efficiency. This paper presents a framework for utilizing reinforcement learning (RL) to
optimize the injection process at accelerator facilities. By framing the optimization challenge as an RL
problem, we developed an agent capable of dynamically aligning the beam’s transverse space with desired
targets. Our methodology leverages the soft actor-critic algorithm, enhanced with domain randomization
and dense neural networks, to train the agent in simulated environments with varying dynamics promoting
it to learn a generalized robust policy. The agent was evaluated in live runs at the cooler synchrotron COSY
and it has successfully optimized the beam cross section reaching human operator level but in notably less
time. An empirical study further validated the importance of each architecture component in achieving a
robust and generalized optimization strategy. The results demonstrate the potential of RL in automating and
improving optimization tasks at particle acceleration facilities.
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I. INTRODUCTION

The field of accelerator physics has seen a growing
interest in leveraging machine learning techniques to
enhance the operation and efficiency of particle acceler-
ators. Among the machine learning techniques, reinforce-
ment learning (RL) has emerged as a powerful tool for
optimizing complex systems [1].

Particle accelerators are complex machines designed to
accelerate charged particles to desired energies for a variety
of applications ranging from basic research in physics to
applied sciences and medical treatments [2,3]. The cooler
synchrotron COSY [4,5], located at Forschungszentrum
Jilich in Germany, is an accelerator facility primarily
focused on hadron physics research [6-8]. Optimizing
the injection process, which involves transferring particles
into the accelerator’s storage ring, is a nontrivial challenge.
This process is critical for ensuring high-quality beam
properties, such as intensity and stability, which directly
impact the effectiveness and precision of experiments
conducted at accelerator facilities [9,10].

Integrating machine learning methods into accelerator
facilities has been a subject of increasing interest within the
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scientific community. Several studies have demonstrated
the potential of machine learning techniques in improving
various aspects of accelerator operations. For instance,
machine learning methods have been employed for beam
diagnostics [11-13], optimization and control tasks [14—17],
and anomaly detection [18,19]. These works, among others,
highlight the versatility and effectiveness of machine learn-
ing approaches in addressing the challenges faced by
accelerator facilities. Within the domain of utilizing RL in
accelerator operations, several studies utilized RL methods
to optimize the beam in simulation, showing their promising
potentials [20-22]. Recent studies have managed to run RL
agents successfully in live runs, including optimizing a beam
with linear settings [23], employing an RL agent that is
trained only in simulation to optimize the beam at a real
machine [24,25], and in addition optimize a beam with
nonlinear settings [25]. These recent methods, however,
are either limited to linear optimization problems or low-
dimensional optimization in comparison to the injection
beam line (IBL) at COSY. Furthermore, achieving operator-
level optimization remains a challenging task requiring
complex RL methods that cannot be trained in live settings
due to their need for a large amount of training. Achieving
this level of optimization from simulation training only
requires a more comprehensive approach in RL.

The optimization of the injection process in particle
accelerators, such as the one at COSY, presents a machine
learning challenge that is impractical for traditional super-
vised machine learning methods. Supervised learning
depends on a labeled dataset, where the correct output
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for each input is known and used to train the model. This is
not the case in the context of injection optimization as the
optimal actions are not readily available or easily computed
due to the highly dynamic and complex nature of particle
accelerators. In addition, there are no expert samples of
optimal actions and it is difficult to build one within the
domain of injection optimization because the optimal
settings can vary significantly based on the specific
experimental setup and objectives. If sufficient expert
samples of optimal actions are available then other machine
learning methods like imitation learning [26] and inverse
RL [27] might be considered.

RL is well suited for this type of optimization tasks as it
does not require labeled examples or expert samples. RL
agents learn optimal policies through trial and error by
interacting with the environment and are guided by a
reward function that reflects the quality of the actions
based on their outcomes. This approach allows RL agents
to autonomously discover and refine strategies for optimiz-
ing the injection process [28].

Numerical optimization methods such as Bayesian
optimization and evolution strategies are popular methods
within the domain of optimizations in accelerator facilities
due to their flexibility and adaptability [14,29-31]. These
methods are easier to implement and are well suited for
scenarios, where a simulation model is not available or
when quick adjustments are needed for different optimi-
zation targets. However, they tend to require more time to
converge with less consistency, especially in high-dimen-
sional cases. On the other hand, RL, while requiring more
initial investment in terms of computational resources and
time, provides efficient, fast, and consistent optimization
performance through targeted exploration by learning the
system dynamics.

Building on our previous work and interest [29], this
research introduces a framework for the application of RL
in accelerator facilities and applies it to optimize the
injection process at COSY. By framing the optimization
challenge as an RL problem, we train an agent to make
data-driven decisions that improve the injection efficiency.
The RL agent is capable of adapting to varying conditions,
learning from interactions with the environment to optimize
the beam’s properties dynamically. The actions of RL
agents are aligned and tailored to the specific domain they
are trained on. This is because they build an internal
concept of their environment and the potential conse-
quences of their actions [32]. This paper is based on the
thesis [33] which contains a more detailed description.

II. BEAM AND INJECTION OPTIMIZATION AT
THE COOLER SYNCHROTRON COSY FACILITY

COSY accelerates protons or deuterons and is equipped
to handle polarized and unpolarized ions. The facility,
including the cyclotron and the IBL, is used in a wide range
of experimental research. The IBL at COSY is specifically

designed for the transfer of negatively charged hydrogen
and deuteron ions from the cyclotron JULIC [34] to the
synchrotron. At the point where the ions are injected into
COSY, the injection point, the electrons are stripped off via
a stripping foil. During injection, the acceptance of COSY
is filled with particles via multiturn phase space painting.
Subsequently, the optimal region in phase space for the
incoming beam during injection will be called injection
acceptance. The IBL’s functionality is crucial, as it directly
influences the intensity and quality of the beam delivered
to COSY.

A. The injection beam line

The IBL at COSY, spanning a length of 94.15 m, is a
transfer beam line designed for the efficient transfer of ions,
see Fig. 1. It is logically partitioned into eight sections
consisting of 15 quadrupole magnet families and 28
steerers, among other components, to guide and shape
the beam into COSY. The IBL’s design allows for precise
control over the beam, which is essential for achieving
optimal performance in beam injection and experimenta-
tion. Figure 1 illustrates the layout of the COSY facility,
highlighting the IBL and its various sections.

Section &, the last section of the IBL, is composed of four
quadrupoles and seven steerers and has high importance,
see Fig. 2. The task of this section is to match the
transferred beam from the preceding sections with the
injection acceptance of COSY. The focus of the RL
approach is to optimize this section due to its vital and
direct role in controlling the final phase of the beam
injection process and the subsequent impact on the beam
intensity and quality inside COSY.

B. Injection optimization

The optimization of the IBL is a complex nonlinear
problem, primarily due to the multidimensional nature
of beam dynamics and the complex design of the IBL.
The objective is to maximize the beam intensity inside
COSY while ensuring minimal setup time. The optimiza-
tion process involves adjusting the parameters of the IBL
components, particularly the strengths of the quadrupole
and steerer magnets, to fine-tune the beam’s trajectory and
properties. The ultimate goal of this optimization is to align
the phase space of the injected beam with the injection
acceptance of the storage ring to ensure a stable and high
intensity beam. A key challenge in the optimization is, that
the beam parameters at the beginning of the IBL vary. This
is in particular related to the cyclotron and its magnetic
field, which drifts over time and thus influences the beam.
This can even lead to beams where the cross section differs
from a shape which can be estimated by a Gaussian and
offers multiple clusters of particles instead. Given the
complexity of this system which only can be set up by
experts, a common mode of operation at COSY is to treat
the beam from the cyclotron as a black box and make
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FIG. 1.

The COSY facility at Forschungszentrum Jiilich. Illustrated are the cyclotron (right), the cooler synchrotron COSY (left), and

the interconnecting injection beam line (IBL). For the latter, its division into sections is indicated with colors and numerals.

adjustments to the IBL to compensate for the unknown
beam parameters. Currently, the optimization process
involves adjusting the magnets manually to maximize
the beam current inside COSY, a process that is time
consuming and lacks consistency. Automating this process
is of high significance to ensure minimal setup time and
higher availability for the experiments. An alternative
approach is to measure the parameters of the beam at
the beginning of the IBL, as described in [35]. As the
measurement of the parameters to the necessary precision is
lengthy as well, this approach is usually not followed in
standard operation.

The automation of the injection optimization, as
described in the following, is based on the assumption
that the optimal beam occupation of the phase space at the

FIG. 2. A sketch of section 8 of the IBL showing the central
path and the different components along the beam line. Dipoles
are colored in red, quadrupoles are colored in black, and steerers
are colored in gray. The injection point is marked with a blue
star, where the charge exchange foil is placed. The trajectory
of the p~ beam through the IBL is indicated by the solid black
line. The dashed line indicates the central orbit through the
synchrotron COSY.

charge exchange foil for injection is known and can be
restored by an appropriate setting of the IBL. In the topical
approach the task of finding this setting is divided in two
subtasks: The first is to transport the beam from the
beginning of the IBL to the beginning of section 8 without
losing intensity. A possible approach to achieve this is
Bayesian optimization as it is described in [29]. The second
task is then to use the elements in section 8 to match the
desired parameters at the injection point of COSY. Our
approach is to use an RL agent to carry out the latter task.
As in this approach the beam parameters at the beginning of
the IBL. are unknown and the first step only ensures full
transmission of the beam, the beam parameters of the
beginning of section 8§ are to be regarded as unknown as
well. Dividing the optimization in two tasks is chosen to
reduce the number of free parameters for the RL agent to a
reasonable amount while keeping the necessary degrees of
freedom for a successful optimization. At COSY, we have
the opportunity to record the position and the cross section
of the beam at the end of the IBL with a fluorescent screen.
As this gives access to the spacial components only, the
goal of the RL agent is to match the transverse position and
spread of the beam at this location to an operator given
specification. For testing and demonstration of the capa-
bilities of the RL agent the specification may differ from the
optimal settings for injection. The RL agent is trained in
simulation only prior to its application to the real machine.
The experimental demonstration includes the described
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matching to the user’s specifications as well as an inves-
tigation of the influence of several architecture components
on the result.

III. THEORETICAL BACKGROUND

In this section, we introduce the theoretical foundations
of reinforcement learning, along with the concepts of
partially observable Markov decision process (POMDP)
and domain randomization. These concepts are essential for
understanding the RL framework applied in this research.
A comprehensive introduction to RL can be found in [36]
and a detailed description is given in [28].

A. Reinforcement learning

Reinforcement Learning (RL) is the core principle of
our approach to optimize the IBL at COSY. The general
setup of RL involves an agent interacting with its
environment at a sequence of time steps to maximize
cumulative rewards. In this setup, the environment’s state
at each time step ¢ is represented by s, € S. Assuming full
observability of the state, the agent’s policy z(als) dictates
the probability distribution over actions a € A given a
state s. The agent then receives a reward signal r, =
r(s,, a,) from the environment, providing feedback on the
desirability of the action. The agent’s objective is to
maximize the expected return over a horizon, which is
the sum of discounted rewards obtained during an epi-
sode, expressed as

T
R =) 7n, (1

k=t

where y € [0, 1] is the discount factor which balances the
immediate and future rewards and T is the horizon of each
episode.

The state-value function V*(s) is the expected return
over the horizon, starting from state s and following a
policy z. The state-value function V7*(s) is defined as

T
V”(S) = [Er~p(r\7r) l yk_trk|S, = S‘| s (2)
k=t

where 7 = (sg,ag,S1,...,ar_;,S7) denotes a trajectory
through the state-action space and p(z|x) is the trajectory’s
probability under policy z, and the discount factor y
balances the immediate and future rewards. The action-
value function Q"(s,a), also known as the Q-function,
representing the expected return when starting in state s and
taking action a then following policy z, is closely related to
V7(s,) and is defined as

T
Q”(S,(l) = [E7~p(‘r\ﬂ) Zykitrkbvt =s,A =al. (3)
k=t

The state-value function V”(s,) can be expressed in
terms of the action-value function Q"(s, a) as

V(s) = Eqes[Q7 (5. @)|S; = s]. @

J(7) represents the expected return by following a
certain policy 7. This measure indicates how good a policy
is and maximizing it results in improving the policy to
achieve the optimal policy #*. The expected return of a
policy J(x) is defined as

J(”) = [E[R0|7T] = lET'\’]J(‘L"]L’) lz }/kr(sb ak)] : %)

k=0

The next state is dictated by the state-transition function
P(s,+1|$;, a;) which is determined by the dynamics of the
environment [28]. Contemporary methods in RL utilize a
key concept in RL which is the Bellman equation [37]. It
provides a recursive decomposition for the value function.
The Bellman equation for Q”(s) is given as

Q"(s.a) =E[r(s,a) +yV*(s;1)|S; = s.A, = a].  (6)

The objective in RL is to find the optimal policy z* that
maximizes the expected return from any initial state. This is
often framed as maximizing the state-value function V*
or the action-value function Q" for all states s€S.
Mathematically, the objective is to find z* such that

7" = arg maxE, _g[V”(s)]. @)

Table I shows an overview of the variables used in the
equations and their definitions.

TABLE I. Definitions of variables used throughout the paper.

Variable Meaning

Time step

Trajectory

Action

State

Observation

History

Policy

Discount factor

Reward

Future expected rewards from time step ¢
Expected return of a policy =
Action-value function
State-values function
Environment dynamics vector
The goal of the optimization

A/\’s\“‘
gl S~—
S
=

LV CROSXINNY T = QN
[
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B. Partially observable Markov decision processes

RL methods are primarily designed to solve decision-
making problems formulated as Markov decision pro-
cesses (MDPs), where the environment setup is inherently
Markovian [38]. An MDP is characterized by a set of states
S, a set of actions A, a transition function P[s,|s,, a,] that
determines the probability of transitioning from state s, to
state s,,, after taking action a,, and a reward function
r(s,, a,) which assigns rewards to state-action pairs. The
fundamental assumption in an MDP is that the current state
encapsulates all necessary information for decision making,
implying that the future state s,,; is conditionally inde-
pendent of past states given the current state s, and action
a,. Formally, this is expressed as
*, 80, ol (8)

P[st+1|st7at] = P[St+1|st7atvst—lvat—la e

Partially observable Markov decision processes
(POMDPs) extend the MDP framework to scenarios with
partial observability [39]. In POMDP, at each time step ¢ the
agent receives an observation o, €2, which provides
partial information about the actual state s,. The challenge
in POMDPs lies in the agent’s need to infer the hidden state
of the environment from the history of observations and
actions. This is a significant complication over the full
observability assumption in MDPs, where the current state
encapsulates all necessary information for decision making.

To address the challenges posed by partial observability,
strategies often involve utilizing the history of observations
and actions or an encoding of this history to approximate
the unobservable states, effectively transforming the prob-
lem back into a solvable MDP. The agent observes at each
time step an encoding of the history /,, from which it needs
to infer the hidden state of the environment. The history
encoding /, can be expressed as

hl :f(s,_l,a,_1,~-,s0,a0), (9)

where f represents a function that encodes the history of
states and actions into a format that the agent can use for its
decision-making process. This encoding can be the stack-
ing of a predefined number of the most recent observations
and actions [40,41], or it can be achieved using a recurrent
neural network [42,43], which is capable of maintaining
and updating internal state representations based on the
sequence of observations and actions.

C. Domain randomization

The challenge of transferring the trained machine learn-
ing models, particularly in RL, from simulation to the real
world is a major challenge in robotics and control systems
[44]. This challenge, often referred to as the sim-to-real
transfer problem, arises because the transition probabilities
in a simulated environment, Pg[s,.]s;, a,], do not per-
fectly match those in the real world, P euword[Si1]5:» a)-

The discrepancy between these transition probabilities
usually leads to a model that performs well in simulation
but fails to generalize in real-world conditions.

Domain randomization is a technique designed to
address this discrepancy by training the agent in a variety
of simulated environments with randomly altered physics
parameters, sensor noise, and other environmental con-
ditions. The core idea is to expose the agent to a wide range
of possible conditions during the training phase, which
helps in improving its ability to generalize from the
simulated environment to the real world [45,46]. In
standard training, an agent is trained under a fixed
dynamics vector p € P, where P represent the space of
all possible dynamics parameters. In domain randomiza-
tion, for each training episode i, a dynamics vector p; is
sampled from a predefined distribution over P, i..,
pi ~ P(P). The environment dynamics for that episode
are then defined by p;, and they remain constant for the
duration of the episode. This process can be formalized as
follows:

pi~P(P), V ie{l,2,---,N}, (10)
where N is the number of episodes and P(P) is the
probability distribution over the dynamics space P. The
goal of domain randomization is to train an agent such that
the real-world environment appears as another sample from
the distribution P(P). This approach effectively broadens
the distribution of the simulation to incorporate a wider
range of real-world variations. The agent, therefore, learns
a generalized policy = that is robust across a variety of
dynamics.

IV. METHODOLOGY

The optimization of the injection process at COSY
currently involves manual adjustments of all sections (1
to 8). This manual method aims to enhance the beam
current within COSY but is time consuming and often
results in inconsistent beam properties within the stor-
age ring.

A better alternative strategy is to focus on optimizing the
beam’s phase space at the point of injection, rather than
merely aiming to increase the beam current inside the
storage ring. The objective is to align the phase space of the
incoming beam with the storage ring’s injection acceptance
to ensure a consistently high-quality beam. In this research,
the agent is assigned to manipulate the 11 magnets (4
quadrupoles and 7 steerers) of section 8 to optimize the
transverse space of the beam at the injection point. The
settings of sections 1-7 can be chosen independently, as
long as 100% transmission to the end of section 7 is
reached. A possible method to optimize these sections is
discussed in [29]. While acknowledging the importance of
the angle of the injected beam, it was excluded from the
optimization process due to limitations with the IBL
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FIG. 3. The optimization goal of the agent is the beam’s cross
section at the injection point and is set by operators. It is defined
by the center of the beam (u,, u,) and its spread (o, o).

sensors at COSY. The direct feedback on the beam’s
characteristics is provided by a camera positioned at the
end of the IBL.

A. Explicit goal

The goal g € R? of the optimization is explicitly dictated
by the operators. We set the goal as the cross section
(position and width) of the beam at the injection point.
Therefore, the goal g€ R* is defined as the beam param-
eters corresponding to the beam center (u,,u,) and its
spread (o,, 0,) at the injection point as observed through
the camera, see Fig. 3. This requires the value function V(s)
to generalize not only over states, but goals too as a
universal value function approximator V(s,g) [47]. This
adjustment demands the introduction of a goal-oriented
reward function, r(s, a, g), and modifies the agent’s policy
correspondingly to z(als, ). This modification enables the
learning of a universal policy adaptable to various target
configurations at the injection point by presenting the agent
with a randomly sampled goal g at the beginning of each
episode. The agent’s task is to manipulate the magnets to
match the observed beam characteristics with the desired
goal, thereby optimizing the transverse position and width
of the beam at the point of injection.

B. Randomized simulation dynamics

To train the policy to perform under varying real-world
dynamics, the concept of domain randomization is
employed in simulation during the training phase. The
goal to be achieved here is to train the agent across a
multitude of simulated environments, each characterized by
distinct physics parameters, sensor noise levels, and envi-
ronmental factors. This is realized by adjusting the training
environment’s dynamics through a set of parameters p
which are varied at the start of each training episode but
remain static throughout the same episode. In our experi-
ment, the dynamics vector p consists of (i) initial bunch
phase space parameters, (ii) initial beam angle, offset, and
number of clusters, (iii) magnets’ strength, (iv) initial
magnets values, and (v) offset to magnets reading value.

Domain randomization distribution

R

Simulated dynamics

Real-world dynamics

FIG. 4. Illustration of the domain randomization concept.
Usually there is discrepancy between the simulated dynamics
and the real-world dynamics shown here as the gray point and the
blue point, respectively, in the space of all possible dynamics. By
expanding the distribution of dynamics from which the simulated
dynamics are sampled, the trained agent becomes more robust. If
the domain randomization is sufficient, the real-world dynamics
appear to the agent as another sample of the simulated environ-
ments [33].

When the agent is trained under sufficient domain
randomization and can perform the optimization in simu-
lation successfully, the agent is expected to perform well in
the live run. The reason is, for the agent, the live IBL looks
as another sample of the environment dynamics it encoun-
tered during the training. If the domain randomization is not
sufficient, then the defined distribution over the dynamics
space should be increased as shown in Fig. 4. Formally, this
is correct when the defined distribution over the dynamics
space P(P) includes the dynamics of the live IBL pjyeip1

PriveasL € P(P). (1)

In addition, a Gaussian noise A (0, 6?) is added to the
observations which are sampled at each time step of the
training. This noise enhances the agent’s ability to operate
under realistic conditions by simulating the measurement
inaccuracies and environmental noise. By exposing the
agent policy to a broad range of dynamic conditions, it
learns to generalize its performance by learning an internal
concept of the environment, improving its applicability to
the actual conditions of the IBL at COSY.

C. Reinforcement learning agent

The RL agent used in this study is based on the soft
actor-critic (SAC) algorithm [48], a model-free and off-
policy actor-critic method [49,50] that is effective in
environments requiring continuous action decisions. SAC
is distinguished by its incorporation of entropy into the
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reward structure, promoting exploration by the agent and
preventing premature convergence to suboptimal policies.
Based on the earlier discussions, explicit goals g, encoded
history &, and simulation dynamics p are incorporated into
the policy 7, (als, h, g) and the Q-function Qy(s. h, g, a, p)
which are parameterized using neural networks. Here ¢) and
6 denote the weights of the policy network and the Q-
function network, respectively.

The SAC algorithm optimizes the stochastic policy
during off-policy learning, which means it can learn from
experiences generated by any policy, not just the current
one. The policy network 7, aims to maximize the expected
return as well as the entropy of the policy to encourage
exploration. The objective function for the policy network,
parameterized by ¢, is given by

‘](”(ﬁ) = E(s,h.g)~D,a~7r¢ [QQ(S’ hug’a!p) _alog”¢(a|sv h’g)]’
(12)

where « is the temperature parameter that determines the
relative importance of the entropy term against the reward,
and D represents the experience replay buffer. The envi-
ronment dynamics p and the goal g are fixed throughout the
episode while the others are time step dependent.

The Q-function network Qy(s, i, g, a, p) is optimized to
improve the computed predicted returns, also called the O
value, by minimizing the difference between the predicted
Q value and the target Q value, a better estimate than the
predicted one. The target Q value is computed as

y= [E(S,h,g,aVr,s’,h’)ND
[r+7(Qo(s' 1, g.d p) —alogr,(d'|s'. I, g))]. (13)

where y is the discount factor, and unlike the next state s’
and next encoded history 4/, which are sampled from the
replay buffer D, the next action @’ is computed using the
current policy network .

The Q-network is trained similar to supervised learning
using the computed target Q value. The loss function for
optimizing the Q-function network is expressed as

1
Ly(0) = E¢shgayp E(Qe,(&h,g,a,/)) -y (14

The SAC algorithm iteratively updates the policy r,, and
the action-value function Q, using samples drawn from the
experience replay buffer D. The replay buffer allows the
agent to learn from a diverse set of experiences, leading to a
robust and generalized policy that can effectively adapt to
the variant conditions under the randomized simulation
dynamics.

The Q-function network is used only during the training
process and is discarded later during the live run. During the

training, it implicitly learns the model of the environment and
its structure of rewards. This knowledge is then used to
compute the gradients with respect to the action that resultsin a
higher reward. Passing the environment dynamics p to the
action-value function can improve the training by speeding up
the convergence of the action-value function and might
improve the performance of the agent by computing better
gradients of the expected value with respect to the action. The
environment dynamics p can be, nevertheless, omitted from
the action-value function as they can be inferred from the
encoded history 4. This can extend the training time, but the
learned policy of the agent is eventually the same.

D. Dense neural networks

The choice of the neural network architecture can have
a crucial role in the performance of RL agent. Sinha et al.
[51] showed that better benchmarks can be achieved by
incorporating the state into the inputs of each layer of the
policy neural network and the state-action into the inputs
of each layer of the action-value neural network. We
adopted an architecture that closely resembles the original
DenseNet architecture [52], which enhances the flow of
information and gradients throughout the network by
connecting each layer of the neural network to all earlier
layers. This is achieved by computing the inputs x of each
layer k as the concatenation of the nonlinear outputs and
the inputs of the previous layer as follows:

X = [0(24); X4, (15)

where o is the nonlinear operation, z is the linear trans-
formation of the previous layer, and x, are the initial
inputs to the neural network. Another way to perceive this
architecture, as shown in Fig. 5, is that the features passed
to each layer are the concatenation of the features
generated from all earlier layers in addition to the input
features. This architecture facilitates a more effective
learning process by ensuring that both low-level features
and high-level representations contribute directly to the
output of each layer, thus enabling the RL agent to
distinguish and utilize complex patterns in the environ-
ment more efficiently [53].

E. Reward function

The reward function is a crucial component of the
reinforcement learning framework. It guides the agent
toward achieving the optimization goal and it can also
reinforce or suppress certain behaviors. It evaluates the
performance of the agent at each time step ¢ and provides a
scalar feedback signal. The reward function used in our
approach is composed of several parts, designed to encap-
sulate different aspects of the beam optimization process.

First, we define a term to quantify the accuracy of the
beam’s transverse space alignment with the desired param-
eters at the injection point. This is achieved by computing
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FIG. 5. lustration of the structure of dense neural networks.
The colored circles are the neurons and the color matching
rectangles are the features generated by the neurons while the
blue rectangle represents the input features. Each layer receives
the combination of all earlier features in addition to the input
features [33].

the difference between the measured beam parameters at
the injection point (i, i, 6%, 6,) and the target parameters
(Hy, py, 0y, 0y) using the sofiplus function to ensure a
smooth and differentiable measure:

transverse, = softplus( Z [l — pi] + oy — a:-|]>,
ie{xy}
(16)

where the softplus function is defined as softplus(x) =
log(1 + €*). This term aims to minimize the discrepancy
between the actual and desired beam parameters, encour-
aging precise control over the beam’s alignment and shape
at the point of injection. However, merely using this
measure, especially in a complex IBL with high dimen-
sionality, can lead to undesired behavior, where the agent
loses some or most of the beam but still manages to match
the desired transverse space. In our earlier experiments, this
undesired behavior was present when only this measure
was used. To enforce maintaining the efficiency of beam
transmission through the IBL, we introduce a measure that
evaluates the fraction of the beam successfully transmitted
through the IBL:

1 < oA
transmission, = %Z [di + 151 (17)
i=1

where d; represents the distance traveled by the ith
simulated particle, X is the scaled variable of x to be within
the range [0, 1], n is the total number of particles, and
T (condition) 18 the indicator function, evaluating to 1 when
condition is met and O otherwise. The precision term

precision, combines the transverse alignment and trans-
mission efficiency, reflecting the overall optimization
performance at each time step:
precision, = (1 — transverse,) - transmission,.  (18)
This measure serves as the primary component of the
reward for the agent, promoting the alignment of the
beam’s transverse space with the desired parameters while
ensuring efficient transmission. To discourage unnecessary
adjustments and promote stability, a penalty term is
introduced. This term penalizes changes in magnet settings
that result in a decrease in optimization performance,
incorporating a constant k to adjust the penalty’s severity:

penaltYI =kx precisiont * ]](m,;ém,_])ﬂ(prec1s1on,<r, 1) (19)

where m, represents the magnet settings at time ¢. The final
reward at time ¢, r,, is then calculated as the precision
measure scaled to be negative [54,55] and adjusted for any
penalties incurred:
r, = precision, — penalty, — 1. (20)
This reward structure is designed to finely balance the
trade-off between the accuracy of beam parameters, effi-
ciency of transmission, and the cost of adjustments, guiding
the agent toward achieving the optimal set of actions for
beam injection optimization at COSY.

V. IMPLEMENTATION AND TRAINING

The implementation and training of our RL framework
for optimizing the injection process at COSY is based on a
simulation environment that mirrors different variants of
the real-world dynamics of the IBL. This simulation is the
foundation for training and evaluation of the RL agent,
enabling it to learn and adapt to the complexities of particle
acceleration and beam optimization. At each step of the
optimization run, the RL agent is required to determine
the adjustments to the magnets based on its current policy.
The adjustment is represented by the action a; at time step 7,
which directly influences the current values of the
magnets m,. The new magnet values are calculated using
the equation:

my=m_y +a, @1

where m,_; represents the magnet values at the previous
time step. This formulation of how the new magnet values
m, are updated reflects the practical approach used by
operators who use adjustments and incremental changes to
manage the dynamic and interdependent nature of the
magnets. This approach provides incremental and con-
trolled modifications that ensures maintaining stability and
performance without abrupt changes that could lead to
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beam loss. Additionally, using adjustments allow the RL
agent to respond flexibly to the constantly changing
conditions and feedback from the system.

It is crucial to maintain the magnet values within
operational limits to ensure the safety and integrity of
the accelerator’s components. Therefore, the magnet values
are constrained to operate within the range of [—0.7,0.7],
corresponding to ==70% of their maximum current capabil-
ity. This constraint not only ensures the operational safety
of the IBL but also reflects the physical limitations and
operational protocols of COSY. Training within these
constraints allows the RL agent to develop strategies that
are viable for live deployment, ensuring that the optimi-
zation strategies are both effective and practical for real-
world application.

A. Simulation environment

The simulation for training the agent was conducted using
MAD-X [56], a comprehensive tool for designing and simulat-
ing particle accelerators. A virtual environment was created
following the standard Gym interface to simulate the dynam-
ics of the IBL at COSY [57,58]. Particles are simulated and
tracked via the Polymorphic Tracking Code (PTC) for more
comprehensive analysis [59,60]. This environment simulates
the physics of beam propagation through the IBL and models
the effects of the quadrupole and steerer magnets on the
beam’s trajectory and characteristics.

B. Reinforcement learning implementation

The RL model consists of two primary components: the
policy network z and the action-value network Q. Both
networks are implemented with dense layers, each with two
hidden layers of 512 neurons. The input to the policy
network includes the values of the quadrupoles and steerers
in the last section of the IBL, computed statistics from the
camera output (i, fi, 6, 6,), the last seven observations of
magnet values and their corresponding beam statistics, and
the target beam parameters. The Q function receives the
same inputs as the policy, with the addition of the
environment parameters p, representing the dynamics of
the simulation.

The training process utilized eight parallel environments
to enhance learning stability and efficiency, requiring eight
CPUs for environment simulation and an additional GPU
for the agent’s processing and neural network training. At
each step, a beam simulation with 1000 particles was
performed. Each episode consisted of 32 steps, with the
action of the agent having a maximum change of 15% in
the magnet values per step. The discount factor y was set to
0.95, reflecting an emphasis on future rewards. The neural
networks are optimized via ADAM optimizer [61] with a
learning rate of 0.0003. While training was initially set for
10,000 epochs, it was typically terminated earlier upon
convergence. For the empirical analysis conducted during
the development phase, agents were trained using four

parallel environments, utilizing four CPUs for environment
simulation and an additional CPU for agent processing.

C. Live run setup

For the live run, an interface to the IBL was created using
the same Gym environment interface, allowing for a
seamless transition from simulation to real-world applica-
tion. The IBL was autonomously controlled using the
EPICS control system [62—64], enabling real-time adjust-
ments to the magnet settings based on the agent’s decisions.

A fluorescent screen and a camera were deployed at the
end of the IBL to provide direct feedback on the beam’s
transverse space. Live image processing was implemented
using the area-detector module of the EPICS control system
[65]. The camera, operating at a 100 ms frame rate, captures
the beam’s cross section at the injection point and provides
real-time data on the beam’s characteristics. However, due
to the release of particles in 20 ms bunches, the observed
values of o, and o, are notably noisy, presenting an
additional challenge for the optimization task.

The agent was evaluated in several different optimization
tasks, each requiring adjustments to the beam parameters to
meet specific targets. For the live optimization runs, the
agent was limited to 16 steps per task.

VI. EXPERIMENTS AND RESULTS

The experiments conducted aimed to validate the effec-
tiveness of the proposed RL approach in optimizing the
IBL at COSY. The successful training of the agent across a
diverse set of environmental dynamics in simulation,
enables it to efficiently optimize the IBL during live runs.
For the agent, the real-world IBL is presented as another
variant of the various environment dynamics it encountered
during the training and can be optimized via the learned
robust policy of the trained agent.

A. Live run performance

In the live runs, the agent was tasked with optimizing the
beam’s central position and its spread to meet a set of
predefined tasks. These tasks involved positioning the
beam at various locations on the fluorescent screen,
including the center and the edge, while changing the
horizontal and vertical spreads of the beam between 2 and
5 mm. The performance of the agent was quantified using
the mean L2 error for the beam’s central position (1) and
the mean L1 error for its spread (). The agent successfully
optimized the IBL in the live runs achieving a mean L2
error of 0.19 mm for the beam’s central position and an
average L1 error of 0.7 mm for its spread while maintaining
a 100% transmission of the incoming beam. Figure 6 shows
a photograph of the beam as it propagates through the
fluorescent screen during a live run optimization.

The performance of the RL agent was benchmarked
against that of a human operator to evaluate its optimization

034601-9



AWAL, HETZEL, GEBEL, and PRETZ

PHYS. REV. ACCEL. BEAMS 28, 034601 (2025)

FIG. 6. A picture of the beam, illuminating through the
fluorescent screen, during a real-time optimization by the RL
agent. This screenshot was taken during the RL agent optimizing
the beam at step 7 of the full 16 steps. The target in this instance
for the beam cross section is shown in red and has the coordinates
My =5.5 mm, u, =—1.8 mm, 6, = 3 mm, and 6, =2 mm.

efficiency. Both the agent and the operator were given a set
of optimization tasks to adjust the position of the beam
using the steerers only. The operator and the agent achieved
a similar optimization accuracy, see Fig. 8. However, the
agent completed the optimization tasks in around 17 min
while the human operator required around 1 h to complete
the same tasks. While these tasks were limited to control-
ling the steerers, the positioning of the magnets within the
last section resulted in additional complexity. This further
complexity is mainly due to the placement of the last
steerers before the last dipole and quadrupole resulting in
nonlinear dependency of the position on the tuning.

Figure 7 provides a visual representation of the opti-
mization process in action, showing the dynamic adjust-
ments made by the agent to the steerers’ current during a
single optimization task. This visualization illustrates the
agent’s strategic approach to exploration and optimization.
Initially, the agent takes targeted exploration actions and
gathers information about the environment from the
responses. As the optimization progresses, the agent
utilizes this acquired knowledge to make more informed
decisions, gradually refining its actions toward the optimal
settings. This pattern of behavior illustrates the agent’s
ability to adapt and optimize in a complex and dynamic
environment.

These results emphasize the potential of RL in enhancing
the operational efficiency of particle accelerators. The
degree of accuracy achieved by the agent in aligning the
beam’s parameters with the target values demonstrates the
feasibility of employing RL for complex optimization tasks
in particle acceleration facilities.

Magnets' current throughout an optimization task
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FIG. 7. The evolution of the steerers’ current throughout a
single optimization task induced by the agent actions. This plot
illustrates a common optimization pattern, where the agent starts
with targeted exploration actions and gradually converges to
the optimal values as it refines its domain knowledge. Each step
is 6 s long.

B. Empirical study on the architecture components

To further evaluate the impact of the architecture
components on the agent’s performance, an empirical study
was conducted. In this study, the task was limited to
controlling the beam location by optimizing the seven
steerers in section 8 of the IBL to meet a series of five
predefined tasks. The performance of several replicate
agents, each lacking a different component of the archi-
tecture, was analyzed and compared. The examined com-
ponents were the dense layers, observation noise, history,
and domain randomization. The results of this study are
summarized in Fig. 8.

The removal of domain randomization had the most
significant impact on performance, indicating the critical
role of training under varied dynamics for generalizing to
real-world conditions. This reinforces the importance of
domain randomization in preparing the agent for the
complexities and variabilities of the live environment at
COSY. The absence of observation noise, while less
impactful, still resulted in a noticeable degradation in
performance, underlining the importance of training under
conditions that mimic the real operational environment,
including sensor noise and measurement inaccuracies.

Without the inclusion of history in the agent’s observa-
tion space, its ability to infer the environment’s dynamics
and predict the outcome of actions under partial observ-
ability was notably hindered. This limitation is evident in
the increased error and illustrates the importance of
temporal information for making informed decisions in
environments, where the current state alone does not
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Impact of Architecture Components on Agent's Performance

Default (all components) 1
Feed-forward layers in place of dense layers -

No observation noise -

Model

Without history q
Without domain randomization A

Neither domain randomization nor observation noise 1

— == Operator level

0.0

FIG. 8.

T
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Mean L2 Distance (mm)

Empirical analysis of the impact of architecture components on the agent’s performance. The table presents the mean L2

distance (in mm) between the optimized beam’s central position and the target position under various architectural configurations. The
”Default” configuration includes all components: dense layers, observation noise, history, and domain randomization. Each subsequent
bar shows the performance impact when a specific component is removed or altered, highlighting the importance of each in achieving
optimal performance in the beam optimization task. The vertical line marks the optimization level of a human operator.

provide complete information about the system. Utilizing
recent advances in machine learning research, by adopting
dense layers, allowed the agent to take more precise
actions by forming more complex representations of the
observations.

This empirical study demonstrates that each component
of the architecture contributes to the overall effectiveness of
the RL approach in optimizing the IBL at COSY. The
integration of dense layers, observation noise, history, and
domain randomization into the RL framework is essential
for achieving high performance in complex optimiza-
tion tasks.

VII. SUMMARY AND CONCLUSIONS

This research introduces a framework for the application
of reinforcement learning (RL) to optimize the injection
process at accelerator facilities. By employing an RL agent
tailored to the specific challenges of optimizing the
injection beam line, we developed an agent trained solely
in simulation that is capable of optimizing the beam’s cross
section dynamically to meet predefined targets during a live
operation at the COSY facility.

Live run evaluations demonstrated that the RL agent
could effectively optimize the beam’s cross section by
aligning the beam’s central position and spread with the
target values given to the agent by operators. The agent’s
optimization accuracy was on par with that of a human
operator, yet it completed the tasks in a time reduced by a
factor of 3 of the time required by the human operator.

The empirical study of the architecture components
validated the importance and significance of each element
in the RL framework. Especially, the results highlighted the
critical role of domain randomization and observation noise
in preparing an agent trained solely in simulation for real-
world control operation. In addition, incorporating histori-
cal data into the training process was shown to be essential

for dealing with partial observability and enhancing the
agent’s decision-making capabilities.

In conclusion, this research illustrates the potential of
machine learning methods, namely, RL, to enhance the
efficiency of particle accelerator operations. The successful
application of an RL agent for beam injection control at
COSY demonstrates the potentials in adopting broader
applications of machine learning techniques in particle
accelerators and other fields requiring efficient and precise
control of complex systems.
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