001040966 001__ 1040966
001040966 005__ 20250610131444.0
001040966 0247_ $$2doi$$a10.1371/journal.pcbi.1012303
001040966 0247_ $$2ISSN$$a1553-734X
001040966 0247_ $$2ISSN$$a1553-7358
001040966 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02088
001040966 0247_ $$2pmid$$a40228210
001040966 0247_ $$2WOS$$aWOS:001466754000003
001040966 037__ $$aFZJ-2025-02088
001040966 082__ $$a610
001040966 1001_ $$0P:(DE-HGF)0$$aNess, Torbjørn V.$$b0
001040966 245__ $$aOn the validity of electric brain signal predictions based on population firing rates
001040966 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2025
001040966 3367_ $$2DRIVER$$aarticle
001040966 3367_ $$2DataCite$$aOutput Types/Journal article
001040966 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1747405647_2287
001040966 3367_ $$2BibTeX$$aARTICLE
001040966 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040966 3367_ $$00$$2EndNote$$aJournal Article
001040966 520__ $$aNeural activity at the population level is commonly studied experimentally through measurements of electric brain signals like local field potentials (LFPs), or electroencephalography (EEG) signals. To allow for comparison between observed and simulated neural activity it is therefore important that simulations of neural activity can accurately predict these brain signals. Simulations of neural activity at the population level often rely on point-neuron network models or firing-rate models. While these simplified representations of neural activity are computationally efficient, they lack the explicit spatial information needed for calculating LFP/EEG signals. Different heuristic approaches have been suggested for overcoming this limitation, but the accuracy of these approaches has not fully been assessed. One such heuristic approach, the so-called kernel method, has previously been applied with promising results and has the additional advantage of being well-grounded in the biophysics underlying electric brain signal generation. It is based on calculating rate-to-LFP/EEG kernels for each synaptic pathway in a network model, after which LFP/EEG signals can be obtained directly from population firing rates. This amounts to a massive reduction in the computational effort of calculating brain signals because the brain signals are calculated for each population instead of for each neuron. Here, we investigate how and when the kernel method can be expected to work, and present a theoretical framework for predicting its accuracy. We show that the relative error of the brain signal predictions is a function of the single-cell kernel heterogeneity and the spike-train correlations. Finally, we demonstrate that the kernel method is most accurate for contributions which are also dominating the brain signals: spatially clustered and correlated synaptic input to large populations of pyramidal cells. We thereby further establish the kernel method as a promising approach for calculating electric brain signals from large-scale neural simulations.
001040966 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
001040966 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
001040966 536__ $$0G:(EU-Grant)945539$$aHBP SGA3 - Human Brain Project Specific Grant Agreement 3 (945539)$$c945539$$fH2020-SGA-FETFLAG-HBP-2019$$x2
001040966 536__ $$0G:(DE-HGF)SO-092$$aACA - Advanced Computing Architectures (SO-092)$$cSO-092$$x3
001040966 536__ $$0G:(DE-Juel-1)ZT-I-PF-3-026$$aMetaMoSim - Generic metadata management for reproducible high-performance-computing simulation workflows - MetaMoSim (ZT-I-PF-3-026)$$cZT-I-PF-3-026$$x4
001040966 536__ $$0G:(GEPRIS)491111487$$aDFG project G:(GEPRIS)491111487 - Open-Access-Publikationskosten / 2025 - 2027 / Forschungszentrum Jülich (OAPKFZJ) (491111487)$$c491111487$$x5
001040966 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040966 7001_ $$0P:(DE-Juel1)145211$$aTetzlaff, Tom$$b1$$ufzj
001040966 7001_ $$0P:(DE-HGF)0$$aEinevoll, Gaute T.$$b2
001040966 7001_ $$0P:(DE-Juel1)156459$$aDahmen, David$$b3$$eCorresponding author
001040966 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1012303$$gVol. 21, no. 4, p. e1012303 -$$n4$$pe1012303$$tPLoS Computational Biology$$v21$$x1553-734X$$y2025
001040966 8564_ $$uhttps://juser.fz-juelich.de/record/1040966/files/Invoice%20PAB390608.pdf
001040966 8564_ $$uhttps://juser.fz-juelich.de/record/1040966/files/Article%20File.pdf$$yOpenAccess
001040966 8767_ $$8PAB390608$$92025-03-19$$a1200212677$$d2025-03-27$$eAPC$$jZahlung erfolgt$$z$2,926.00
001040966 909CO $$ooai:juser.fz-juelich.de:1040966$$pdnbdelivery$$popenCost$$pec_fundedresources$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001040966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145211$$aForschungszentrum Jülich$$b1$$kFZJ
001040966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156459$$aForschungszentrum Jülich$$b3$$kFZJ
001040966 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
001040966 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
001040966 9141_ $$y2025
001040966 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001040966 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001040966 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2022$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-02-08T09:42:16Z
001040966 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-02-08T09:42:16Z
001040966 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040966 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-16
001040966 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001040966 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040966 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001040966 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lComputational and Systems Neuroscience$$x0
001040966 980__ $$ajournal
001040966 980__ $$aVDB
001040966 980__ $$aUNRESTRICTED
001040966 980__ $$aI:(DE-Juel1)IAS-6-20130828
001040966 980__ $$aAPC
001040966 9801_ $$aAPC
001040966 9801_ $$aFullTexts