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Abstract

Neural activity at the population level is commonly studied experimentally through mea-
surements of electric brain signals like local field potentials (LFPs), or electroencephalog-
raphy (EEG) signals. To allow for comparison between observed and simulated neural
activity it is therefore important that simulations of neural activity can accurately predict
these brain signals. Simulations of neural activity at the population level often rely on
point-neuron network models or firing-rate models. While these simplified representa-
tions of neural activity are computationally efficient, they lack the explicit spatial informa-
tion needed for calculating LFP/EEG signals. Different heuristic approaches have been
suggested for overcoming this limitation, but the accuracy of these approaches has not
fully been assessed. One such heuristic approach, the so-called kernel method, has pre-
viously been applied with promising results and has the additional advantage of being
well-grounded in the biophysics underlying electric brain signal generation. It is based

on calculating rate-to-LFP/EEG kernels for each synaptic pathway in a network model,
after which LFP/EEG signals can be obtained directly from population firing rates. This
amounts to a massive reduction in the computational effort of calculating brain signals
because the brain signals are calculated for each population instead of for each neu-
ron. Here, we investigate how and when the kernel method can be expected to work,
and present a theoretical framework for predicting its accuracy. We show that the relative
error of the brain signal predictions is a function of the single-cell kernel heterogeneity
and the spike-train correlations. Finally, we demonstrate that the kernel method is most
accurate for contributions which are also dominating the brain signals: spatially clustered
and correlated synaptic input to large populations of pyramidal cells. We thereby further
establish the kernel method as a promising approach for calculating electric brain signals
from large-scale neural simulations.
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1. Introduction

Science is at its most productive when models can make experimental predictions so that
experimental results can inform and improve the models. Measurable brain signals should
therefore be available from simulations of neural activity. The brain is studied at many dif-
ferent scales, from the molecular scale to behavior, and the different scales rely on models at
different levels of abstraction. It is therefore important to have well-founded methods to cal-
culate different types of brain signals, from neural simulations at different levels of abstrac-
tion (Fig 1) [1].

To study neural activity at the level of neural populations, it is common to rely on mea-
surements of local field potentials (LFPs), which is the low-frequency part of the extracellular
potential measured inside the brain, or on electroencephalography (EEG) signals, which is
the extracellular potential measured outside of the head. The most accurate way to calculate
LFP and EEG signals from simulated neural network activity is to use biophysically detailed
multicompartment neuron models, coupled with volume conductor theory [2-5]. For single
neurons or small populations, this is in principle straightforward [6,7], and this approach has
been pursued also for large recurrently connected networks by a handful of studies [6,8-15].

However, biophysically detailed modeling of neural activity at the population levels is
extremely computationally demanding, and often not viable in practice [1]. Therefore, when
studying neural network activity, it is more common to rely on simplified representations
of neurons and neural activity, through for example point-neuron network models [16-18]
or firing-rate models [16,19,20]. These simplified representations of neural activity are more
computationally tractable and typically orders of magnitude faster than biophysically detailed
simulations [18], but many brain signals, like the LFP and EEG signals, are generated by
spatially distributed neural membrane currents, which are not available from the simplified
schemes (since the spatial structure of individual neurons is not explicitly modeled) [5]. An
important topic is therefore what is the best approach for calculating approximations of dif-
ferent brain signals from neural activity simulated from point-neuron network simulations or
firing-rate models.

Several different approaches to calculate LFP/EEG/MEG signals from point-neuron or
firing-rate models have been suggested [19-28], but quantitative evaluations of the accuracy
of such approaches have often been hard to come by, due to the lack of “ground truth” sig-
nals to compare the approximations to. It has therefore often been unclear how well these
approximations work, although there are important exceptions that we discuss later.

A common approach with a long history to get approximate LFP/EEG signals from firing-
rate models is simply to assume that the signal is proportional to the firing rate [19]. For
EEG/MEG signals, it is sometimes instead assumed that an equivalent current dipole is pro-
portional to the firing rate, and the dipole can be inserted into a head model to obtain the
EEG/MEG signal [20]. Although this approach can certainly be useful, it neglects some basic
principles in how these signals are generated, and as a result, some error will be introduced in
the time-domain of the predicted signals [5,22,29].

Hagen et al. [2016] [23] presented the so-called “hybrid scheme”, where the neural network
activity is first simulated in a point-neuron network, and saved to file. Afterward, in a sepa-
rate step, the spiking activity is replayed onto biophysically detailed cell models, from which
the resulting LFP signals can be calculated. The hybrid scheme is a computationally expensive
approach because it relies on representing all neurons that are within the reach of the record-
ing electrode [30,31] with a high level of morphological and electrophysiological detail. On
the other hand, it is well grounded in the biophysics of extracellular signal generation.
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Fig 1. Measurable signals should be available from neural simulations at different levels of abstraction. Neural circuits, here represented

by a putative cortical column (panel A), are studied at different levels of biological detail, depending on the scientific question (panel B). By
using a forward model (panel C) one can calculate measurable signals (panel D) from neural activity simulated at different levels of abstraction.
In general, calculations of such brain signals are only biophysically well-founded when using biophysically detailed cell models, while simpli-
fied representations of neurons will require “heuristic” approaches where it can be hard to estimate the accuracy of the resulting brain signal
predictions.

https://doi.org/10.1371/journal.pcbi.1012303.9001

Hagen et al. [2016] [23] also used the hybrid scheme to test a “kernel approach”, where
they calculated LFP kernels for each synaptic pathway in the model. Each population kernel
represented the average postsynaptic LFP contribution given an action potential in the presy-
naptic population, and the LFP signal could then be approximated by convolving the firing
rate of each presynaptic population with the corresponding population kernel and summing
the LFP contributions for each synaptic pathway in the model. This kernel approach was con-
firmed to give accurate approximations to the LFP, at a very low computational cost once the
kernels were known because the LFP could be predicted directly from the firing rate of each
population, instead of from the transmembrane currents of each individual neuron. A major
drawback of this approach was that the calculation of the population kernels was still very
computationally demanding.

Mazzoni et al. [2015] [22] tested so-called “proxy” methods for calculating LFP signals
(later also extended to EEG signals [25]) directly from point-neuron network simulations,
and found that a weighted sum of synaptic currents, which are available from point-neuron
network simulations, could be used to predict the LFP calculated by a more comprehensive
approach, similar to the “hybrid scheme” discussed above. The proxies were demonstrated
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to be quite accurate and provided excellent LFP predictions for the use-case considered. On
the other hand, they are in a sense phenomenological and typically poorly grounded in the
underlying biophysics of extracellular potentials, which can in some cases be a drawback.

Telenczuk et al. [2020] [24] used experimentally measured LFP kernels from spike-trigger
averaged LFP recordings, and used these kernels to approximate LFP signals, by convolving
them with firing rates from point-neuron network simulations. This approach has the advan-
tage of being independent of the modeling choices that are required when simulating LFP
kernels [24,32]. This approach was later expanded upon by Tesler et al. [2022] [27], to also
enable MEG signal predictions from point-neuron network models or firing-rate models.
However, kernels measured from spike-triggered averages are potentially troubled by correla-
tions, and Hagen et al. [2016] [23] obtained different results when calculating kernels directly,
and from spike-triggered averages, even within the same model. This can also be directly
observed, as the measured kernels are not always causal, which we would expect them to be
given that they represent the postsynaptic contribution from a presynaptic spike. Further, the
measured excitatory LFP kernels were proposed to be disynaptic inhibitory kernels [24,33],
illustrating a problem with interpreting results based on LFP kernels from spike-triggered
averages. Note that the degree to which measured spike-triggered LFP kernels are contami-
nated by correlations will depend on the scenario. For example for the monosynaptic thalamic
activation of cortical postsynaptic target cells considered by Swadlow et al. [2002] [34], the
contamination was very small.

The earlier attempts to model LFP kernels have required a large number of single-cell sim-
ulations [23,32,35] to represent the postsynaptic population. However, a very efficient yet
highly biophysically detailed framework for calculating population kernels was recently pro-
posed by Hagen et al. [2022] [29]. In this framework, a single biophysically detailed cell sim-
ulation was sufficient to accurately predict a population kernel by first obtaining the mem-
brane currents of the single postsynaptic neuron in response to conductance-based synap-
tic input, and letting this represent the population-averaged membrane currents following
synaptic activation. All other effects, including the spatial extent of the population and the
variability of synaptic parameters, were then accounted for by a series of linear convolutions
in the spatial and temporal domains. This approach greatly increases the applicability of the
kernel approach, since LFP/EEG kernels can be calculated accurately and efficiently, even
by common laptop computers. The LFP calculated from the kernel approach by Hagen et al.
[2022] [29] was tested against the “ground truth” LFP calculated from a multicompartment,
biophysically detailed neural network simulation, and the kernel approach was found to be
quite accurate in most scenarios.

As reviewed above, several recent projects have used the kernel approach to estimate
a promising tool for future studies of neural activity at the population level. Therefore, it is
important to have a good qualitative understanding of how the kernel approach works, and
good quantitative measures of how accurate it is under different circumstances.

In this study, we start by building a better understanding of how and when the kernel
method can be expected to work, and when caution is advised. We then develop a theoretical
framework for predicting the accuracy of the kernel approach and show that the relative error
is a function of the single-cell kernel heterogeneity and spike-train correlations. Finally, we
demonstrate that the kernel approach is most accurate for the LFP contributions that can be
expected to dominate the LFP signal, like highly concentrated and correlated synaptic input to
large populations of pyramidal neurons.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012303  April 14, 2025 4/29



https://doi.org/10.1371/journal.pcbi.1012303

PLOS COMPUTATIONAL BIOLOGY On the validity of electric brain signal predictions based on population firing rates

2. Results

Many measurable brain signals, like cortical LFPs, ECoGs, EEGs, and MEGs are expected to
share the same biophysical origin, namely the membrane currents following large numbers
of synaptic inputs to populations of geometrically aligned pyramidal neurons [4,5]. To accu-
rately calculate these signals from simulated neural activity, we therefore need to take into
account all synaptic events.

Since volume conduction is linear [37], the compound extracellular potential

anst

V(r,t) = z Vi(r,t) (1)

generated by a population of N, neurons is a linear superposition of the individual cell con-
tributions V; (i = 1,..., Npogt). Therefore, calculating the extracellular potential of a population
of Np,st neurons is typically done by focusing on the synaptic input to each cell, calculating
single-cell contributions (see Methods), and finally summing all cells (Fig 2A), here referred
to as the postsynaptic perspective.

2.1. Single-cell spike-LFP kernels

In principle, we can also switch the perspective to each presynaptic cell: Each action potential
from a given cell leads to an activation of the outgoing synapses, causing a distributed “extra-
cellular potential flash” from all postsynaptic target cells (Fig 2B), referred to as the single-cell
spike-LFP kernel. For simplicity, we will here refer to this as the single-cell kernel. If we con-
volve the single-cell kernel with the spike train of the presynaptic neuron, we get the extracel-
lular potential including all postsynaptic effects from this neuron. If we know all single-cell
kernels and corresponding spike trains, we can then calculate the extracellular potential as
the sum of all single-cell postsynaptic contributions. If this is also done for external input, we
have accounted for all synaptic events.

The above argument is based on the assumption that the single-cell kernel is similar each
time a neuron spikes. This holds if we ignore synaptic plasticity and assume that extracellu-
lar potential contributions caused by individual synaptic activations superimpose linearly for
each cell, meaning that both the cell models and the synaptic inputs are fully linear. In real-
ity, the membrane currents of a cell can depend on the joint effect of all its spiking inputs, for
example, active dendritic channels or voltage-dependent synaptic currents cause nonlinear
interference of inputs. However, previous work has shown that LFPs can be well predicted
with quasi-linear approximations of ion channels [38,39], and that kernel-based approaches
can give accurate LFP predictions also for conductance-based synapses [29,40]. In this investi-
gation, we therefore assume fully linear cell models and synaptic input. In this case, the above
assumption holds and we obtain

N pre

Vi(r,t) = Z (hi(r) =5;) (1), ()
j=1

where h;;(r,t) is the LFP response of postsynaptic neuron i to an individual spike of presy-
naptic neuron j, and s; is the spike train of presynaptic neuron j. Here * denotes a temporal
convolution. If we combine equation (1) and equation (2) and rearrange summands, then we
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Fig 2. Illustration of the principle underlying the kernel method. A: The postsynaptic perspective, where all
incoming synaptic input to a postsynaptic cell is taken into account, and the time-dependent LFP contribution

of the postsynaptic cell is calculated. The blue and red colors are used to illustrate positive and negative regions,
respectively, of the LFP at a moment in time. The total population LFP V(r, t) is then the sum of all such single-cell
contributions V;(r,t). This is the standard way of calculating LFP signals from neural simulations. B: The presynaptic
perspective, where all outgoing synapses from a single cell are considered. For passive cells with static (no plasticity),
current-based synapses, every action potential of a presynaptic neuron j will evoke the same postsynaptic currents,
and hence, each action potential has a fixed LFP response hj;(r, t). By taking into account all postsynaptic targets,
the single-cell kernel k;(r, ) can be calculated, and the single-cell LFP contribution can be found by convolving the
single-cell kernel with the corresponding spike train of the presynaptic cell. The population LFP is again the sum of
all single-cell contributions, and if this is done for all cells, and all external incoming synapses, the LFP calculated by
these two approaches will be identical, under the assumptions listed above.

https://doi.org/10.1371/journal.pcbi.1012303.g002

get what we refer to as the presynaptic perspective (Fig 2B),

Npre

V(rt)= Z (ki(r) = s;) (t), (3)
j=1

with the single-cell kernel

N post

kj(l’, t) = Z h,j(l’, t). (4)
i=1

This prediction of the population LFP from single-cell kernels is in the following denoted
as the “ground truth” against which we test approximations.

2.2. Population rate-LFP kernels

Neurons in neural circuits often share statistical properties in terms of morphology, electro-
physiology, connections, and spiking activity. Based on such similarities they can be grouped
into neuronal populations. In the classical view, a population is a group of neurons with simi-
lar input statistics as well as similar internal properties and dynamics, such that they have sim-
ilar spiking statistics. For the generation of LFP contributions, however, not only the spiking
statistics should be similar for cells within a population, but also their translation into LFPs as
measured by the single-cell kernels.
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If all single-cell kernels k; of a population of neurons were identical, then they would in
particular be identical to the population-averaged kernel

_ 1 Npre
k(rt) = D ki(r 1), (5)
pre j=1

such that the compound LFP V(r, ) = (k(r) * R) (t) of the population could be perfectly

J.Iipl'e s;(t) without the need to consider the detailed
information of individual neuronal spike trains. The population-averaged kernel k(r, t) can
therefore be interpreted as a population rate-LFP kernel. For simplicity, we will here refer to
this as the population kernel.

In general, however, the properties and projections of neurons are only statistically similar

rather than identical, such that the single-cell kernels differ from k(r,t). As a consequence

predicted by the population rate R(t) =

V(r,t) = (k(r) *R) (t) (6)

is only an approximation of the true compound LFP V(r, ). In the following, we study the
error of this approximation and how it depends on the neuronal and the network properties.

Single-cell kernels depend on a multitude of neuron and network features including net-
work connectivity, neuronal morphology, synapse positions, electrode position and electrical
properties of cells, leading to potentially complicated spatio-temporal profiles. Yet they are by
definition causal and their time course is determined by synaptic dynamics and dendritic fil-
tering properties [41]. As with LFP responses to individual synaptic inputs, the amplitude and
polarity of single-cell kernels is expected to strongly depend on the relative position of cells
with respect to the recording electrodes.

The precise shape of single-cell kernels from biophysically detailed models will depend
on a large number of different parameters, including synaptic locations, strengths, and time
constants. However, before calculating the precise shape of single-cell kernels from biophysi-
cally detailed models, we first show some key aspects of the population kernel approximation
using a simple illustrative model, where single-cell kernels are defined as double-exponential
functions which only differ in amplitudes (see Methods, Fig 3A).

Each single-cell kernel (Fig 3A) is convolved with a different spike train (Fig 3B) and the
resulting extracellular potential (Fig 3D) is compared to the prediction of the population ker-
nel (black line in Fig 3A) that is convolved with the population rate (Fig 3C). The popula-
tion kernel prediction generally resembles the ground truth. It is, however, different in detail
due to the heterogeneity in single-cell spike kernels. The approximation improves at times
where multiple neurons spike synchronously (Fig 3D =50 ms). This hints at a more general
aspect: if all spike trains in equation (1) are identical, then the population kernel prediction
becomes exact even though the single-cell kernels are different. In conclusion, this simple toy
model illustrates the two main features that determine the quality of the population kernel
prediction: spike-kernel heterogeneity and spike-train correlations. Predictions become poor
when spike-train correlations are low and spike-kernel heterogeneity is large, whereas large
spike-train correlations and low spike-kernel heterogeneity lead to low errors (Fig 4).

This behavior of the prediction error can be derived analytically by employing a statistical
description of the setup. As mentioned above, a population of neurons is defined via statisti-
cal similarities between neuronal spike trains and spike kernels. In the following, we assume
that both quantities, appearing as a product (convolution) in equation (3), are drawn from
distributions with known means and covariances. A natural first choice for the definition of

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012303  April 14, 2025 7129



https://doi.org/10.1371/journal.pcbi.1012303

PLOS COMPUTATIONAL BIOLOGY

On the validity of electric brain signal predictions based on population firing rates

A kernels
$0.5 “‘ —
N —_—
0.0 45 - :
-10 " 0 10
Ime (ms
B (ms)
o
=2
o
ol - | | |
c T T T 1 T 1 T
20 30 40 50 60 70 80 90
) time (ms)
£5.C
g 1 4
C
R
£ | | I
é\%o T T T T T T T
o 20 30 40 50 60 70 80 90
time (ms)
D
~11
2
S LA A N A\
L
20 30 40 50 60 70 80 90
time (ms)
= population kernel ——— ground truth —— difference

Fig 3. Illustration of kernel method with toy model. A: Two toy single-cell kernels (blue and orange), and the mean,
that is, the population kernel (black). B: Raster plot of the two corresponding spike trains, with the same color code
as in panel A. Each colored marker corresponds to a spike, and the individual spike trains are plotted at different
heights along the y-axis. C: The population rate (average number of spikes per time bin, At = 0.1 ms), that is, the
mean firing rate from the spike trains in panel B. D: The gray line shows the ground truth toy LFP signal calculated
as the sum of each single-cell contribution, which is again calculated by convolving the single-cell kernels with the
corresponding spike trains. The black line shows the LFP calculated by convolving the population kernel with the
population rate. The red line shows the difference between the ground truth LFP and the population kernel LFP.

https://doi.org/10.1371/journal.pchi.1012303.g003

the prediction error would be the mean deviation Mean [ V(r,t) - V(r, )] of the population
kernel prediction V(r,t) from the ground truth V(r,t), where Mean [-] denotes the average
across time. We could then ask what this quantity is on expectation across different realiza-
tions of kernels. In fact, it is zero, because each individual single-cell kernel on expectation
coincides with the expectation of the population-averaged kernel. This measure is therefore
not informative about the prediction error of the population kernel method for a single real-
ization of single-cell kernels. The error is better assessed by the standard deviation of the dis-
crepancy of the population kernel prediction from the ground truth. The squared error then is
E*(r) = Var [V(r, t) - V(r, t)], where Var [-] denotes the variance across time. The expectation
of this quantity can be computed analytically (see Methods)

(B(1) = (Npwe =1) [ dr (Ax(1.7) - Gl 0)) (A(2) - C(5)), (7)

with (-), denoting the expectation across realizations of the kernels. We further introduced
the population averaged spike-train autocovariances A(7), the population averaged spike-
train cross-covariances C;(7) , and the autocorrelation and cross-correlation of single-cell
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Fig 4. Error in population kernel predictions depend on kernel heterogeneity and spike-train correlations. Each column shows
1000 single-cell kernels with different amplitude standard deviations Asp (top), and different levels of spike-train correlations (middle).
Spike trains with varying levels of correlations were generated through Multiple Interaction Processes (MIP) [42], controlled by the
parameter f, where f= 0 corresponds to uncorrelated homogeneous Poisson processes, while f= 1 corresponds to fully correlated (iden-
tical) spike trains (see Methods). The mean firing rate is shown in black, and the standard deviation in gray. The toy LFP is calculated
(bottom). Relative error E,|, quantified by the normalized standard deviation of the difference between the ground truth signal and

the population kernel signal (see Methods), vanishes for identical kernels, regardless of correlation (first column). For variable kernels
with some correlation, the kernel approach will result in some relative error (second column). For variable kernels and zero correlation,
the relative error will be large (third column). For perfect correlation, the relative error vanishes regardless of kernel variability (fourth
column).

https://doi.org/10.1371/journal.pcbi.1012303.g004

kernels Ax(r,7) = [ dt’ (ki(r, 7 )ki(r, 7" + 7)) Ce(r,7) = [ dt’ (ki(r, T )ki(r, T + T)) The
expression for E* shows that, as expected, the error vanishes if the population of neurons
spikes in a fully correlated manner (C; = A;) or if all neurons have the same spike-LFP kernels
(Ag = Cy). For low average cross-covariances C; & 0 as observed in cortex, the error is primar-
ily determined by the size of the presynaptic population Ny, i.e., the number of single-cell
kernels, the correlations in spike-LFP kernels, and the spike-train autocovariances. To assess
the overall performance of the population-based prediction, it is useful to also consider the
relative error E,, defined as the expected error E normalized by the standard deviation of
the ground-truth signal (see Methods). In the uncorrelated case, this normalized error E, is
approximately independent of the size Ny of the presynaptic population. For finite correla-
tions, E, decays as ~ 1/ \/m. For our toy model, the analytical predictions for the absolute
and the relative error perfectly match the results of numerical simulations (Fig 5). Theory and
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Fig 5. Parameter scan for simple toy-model LFP. A: The LFP amplitude (quantified by its standard deviation across time)
for different levels of amplitude variability in single-cell kernels, and different levels of correlations between spike trains.

B: Simulated absolute error, quantified by the standard deviation of the difference between the ground truth signal and the
population kernel signal. C: Simulated relative error, quantified by the standard deviation of the difference between the
ground truth signal and the population kernel signal (panel B), normalized by the ground truth signal amplitude (panel A).
D, E: Same as in panels B and C, but predicted from theory (equation (7)). F: Difference map between results from simula-
tions (panel B) and theory (panel D), for the absolute error. G: Difference map between results from simulations (panel C)
and theory (panel E), for the relative error. Correlated spike trains were generated using MIP processes (see Methods).

https://doi.org/10.1371/journal.pchi.1012303.9005

simulation confirm the anticipated trend that the error grows with increasing kernel hetero-
geneity and decreasing spike-train correlations (Fig 5B and 5D). The effect of spike-train cor-
relations is, however, much more pronounced in the relative error (Fig 5C and 5E), as can be
explained by the theory (see Appendix B). Note that the relative error is low in regions where
the signal amplitude is large (Fig 5A).

2.3. Sources and effect of kernel heterogeneities

As we have seen, the error depends on single-cell kernel heterogeneities. After having derived
the general dependence of the population kernel prediction on the statistics of single-cell ker-
nels and spike-train correlations, we next investigate more systematically where heterogene-
ity in single-cell kernels stems from. To this end, we need to go beyond the toy model of the
previous section and employ a mechanistic model of extracellular potential generation based
on the spatial distribution of cells, connectivity specifications and biophysically detailed cell
models.

We consider LFP and EEG signals from cortical populations. The major contribution to
these signals stems from synaptic inputs onto pyramidal neurons [5,23]. In the following, we
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therefore investigate the LFP and EEG kernels of a population of layer 5 pyramidal neurons,
positioned around a linear multi-contact electrode that records the LFP at different depths,
while the EEG is recorded outside the scalp (Fig 6A). Synaptic inputs from a single presy-
naptic neuron are modeled as spikes delivered to a random subset of K,y (the so-called out-
degree) neurons in the considered postsynaptic population. To account for the natural hetero-
geneity in cortical connectivity, parameters such as synapse locations, synaptic strengths, time
constants, and delays are randomly drawn from predefined distributions. The calculations of
postsynaptic membrane currents and resulting extracellular potentials are based on a mor-
phologically reconstructed pyramidal neuron from Hay et al. [2011] [43]. Note that a similar
approach to calculating kernels, referred to as “unitary fields” for hippocampus was previously
presented by Telenczuk et al. [2020] [32]. A single-cell kernel represents the post-synaptic
LFP (EEG) response to the firing of a single presynaptic neuron. The population kernel cor-
responds to the average of the single-cell kernels obtained for different presynaptic neurons,
each targeting a subsets of K, neurons in the postsynaptic population. Each population ker-
nel represents one specific synaptic pathway from a given presynaptic population to a given
postsynaptic population. Details of the setup outlined here are described in Fig 6 and Meth-
ods. In the following, we assess the sources of kernel heterogeneities by systematically varying
the different features of this setup.

It is well known that the LFP/EEG response of individual cells to synaptic input strongly
depends on the location of the synapses [4,7,30,41]. Since the single-cell kernel is the super-
position of such signals from all target cells of a given spike, we expect that this dependence
translates into a strong influence of synaptic locations on the shape of the single-cell ker-
nels. Different synaptic pathways to pyramidal cell populations are often associated with dif-
ferent synaptic target regions. For example, Hagen et al. [2016] [35] reported (their Table
8), based on experimental data from Binzegger et al. [2004] [44], that the largest subfamily
of layer 5 pyramidal cells received the most synapses in layer 5, which corresponds to basal
input, and the majority of these synapses were excitatory. We therefore in the following con-
sider this as our “default” case. Another smaller subfamily of layer 5 pyramidal cells received
the most synapses in layer 1, where the sources were again predominantly excitatory. We will
refer to this as the “apical” case. We also consider a “uniform” case where excitatory synap-
tic input is uniformly distributed over the entire morphologies, as this has also been used in
literature [22,29,32]. We find that the single-cell LFP/EEG kernels looks very different when
stimulating cells in the population only apically, only basally, or uniformly (Fig 6B-6E).

Note that we here only consider excitatory synaptic input, but for current-based synaptic
input as used here, the only difference between excitatory and inhibitory currents is a change
of sign. This transfers directly to the LFP-kernels, and the inhibitory equivalents of the excita-
tory LFP-kernels shown here can be obtained through a sign reversal. Since this sign-change
does not affect kernel heterogeneity, the error from using the kernel method is agnostic to this
change.

We notice substantial variability in single-cell spike kernels (light gray), however, for the
cases of apical or basal input we observe that different single-cell kernels seem to have a sim-
ilar overall shape, and therefore a pronounced population kernel. In the case of the uniform
input, there is more diversity in single-cell LFP kernels, such that the population kernel has
very low signal amplitude at all depths. The reason is that individual apical or basal inputs
lead to rather stereotypic (but opposite) LFP/EEG responses, irrespective of the exact loca-
tion of the synapse on the dendrite. In contrast, when considering all possible input locations
(uniform) the diversity in the LFP/EEG responses to individual synaptic inputs is larger, lead-
ing to substantial cancellation. Furthermore, we notice that the variability seems to be higher
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Fig 6. Effect of neuron and synapse heterogeneity on the variability of single-cell LFP kernels. A: A population of cortical pyramidal neurons
(morphologies depicted in shades of light gray and soma locations as black dots) receives synaptic input from a presynaptic population. Each
incoming axon forms, in total, Kout connections with different postsynaptic neurons. The strength J of each synapse is randomly drawn from

a lognormal distribution. The synaptic time constant Ty, and the synaptic delay are drawn from normal distributions (graphs to the left). The
vertical position of each synapse is drawn from the segment locations of the cells weighted by a normal distribution (green curve to the right).
Some exemplary synapse positions are plotted on the postsynaptic population as green dots. Vertical soma positions are drawn from a capped
normal distribution (black curve to the right). Horizontal soma positions are uniformly distributed on a disc within radius Rpop. The LFP response
to an activation of all Koy synapses of a single incoming axon is calculated for different cortical depths (dark red dots). The EEG response outside
the head, directly above the population, is calculated using a simple spherical head model. For each parameter configuration, we generate 100
single-cell kernels resulting from different random realizations of neuron and synapse parameters. Each of these kernels describes the postsynaptic
LFP (EEG) response to the firing of a different presynaptic neuron. B-D: LFP and EEG responses for different synaptic target zones (B: apical; C:
basal; D: uniform). Gray: single-cell kernels. Black: population kernel. The “basal input” case is used as the “default case” throughout this study. E:
Mean (solid curves) and standard deviation (bands) of the maximum LFP deflection at different cortical depths for different synaptic target zones
(see legend). See Methods for details on the model and parameter values.

https://doi.org/10.1371/journal.pcbi.1012303.g006

close to the input region and decreases with distance from the input region. As a result, there
is generally less kernel heterogeneity in the EEG kernels than in the LFP kernels (Fig 6B-6D).

By choosing a set of kernels, first from the basal input which we will treat as the “default
case” (Fig 6C), and combining them with spike trains (see Methods), we can then calculate
the LFP signal by convolving each individual kernel (Fig 7A, gray curves) with its correspond-
ing spike train (Fig 7B, individual spike trains in gray) and summing the results for all single-
cell contributions (Fig 7C, gray curves). This is what we treat as ground truth in the follow-
ing analysis. Further, we convolve the population kernel (Fig 7A, black curves) with the pop-
ulation rate (Fig 7B, black line) to obtain the population kernel LFP (Fig 7C, black curves).
For brevity, we first focus on the LFP signal, but the general results also apply to EEG signals,
which we will get back to later.

To evaluate the accuracy of the population kernel approach in approximating the ground
truth case, we compare the LFP signals (Fig 7C black versus gray curves). We calculate the
observed relative error (see Methods), and compare to the relative error predicted from the-
ory, and find them to be almost indistinguishable, demonstrating that the theory is well suited
to predict the error (Fig 7D).
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Fig 7. Example of LFP kernels, spike trains, and the resulting LFP signals. A: The LFP kernels at different depths (see Fig 6A) with each single-
cell kernel in gray and the population kernel in black. The kernels shown here are from the “default” case, corresponding to Fig 6C. B: Raster plot
of uncorrelated spike trains (see Methods) with a firing rate of 10 s~!. Below the spikes, the population firing rate (constructed by summing all
individual spike trains) is shown in black. C: The ground truth LFP signal (gray), the population kernel LFP signal (black), and the difference
between them (red), at different depths. D: The relative error at different depths (see Methods), either observed from simulations (solid curve) or
predicted from theory (dotted curve).

https://doi.org/10.1371/journal.pcbi.1012303.g007

We can now evaluate the error of the kernel approach for different parameters of the ker-
nels. To evaluate the relative importance of different factors, we compare different parameter
configurations to the “default case” shown in Figs 6C and 7. We start with uncorrelated Pois-
son spike trains. In the following analysis, we will only show LFP amplitudes and errors but
kernels from all tested parameter combinations (see Methods, Table 1) and resulting LFPs are
shown in S1 Fig.

For basal or apical synaptic input (Fig 8A1, black or brown curves), the ground truth and
the population kernel LEP give indistinguishable predictions for the signal amplitude at dif-
ferent depths (the signal amplitude is here represented by the signal standard deviation). This
is not the case for the uniformly distributed synaptic input (Fig 8 A1, purple curves), which
has a much lower amplitude, and a pronounced difference between the ground truth and the
population kernel LFP. This is reflected in the error (Fig 8A2) and the relative error (Fig 8A3),
where we observe very high relative errors at all depths for the uniform input, and substan-
tially lower error for apical or basal input. Furthermore, for the latter two cases, the error
decreases with distance from the input site. This is in agreement with our earlier observations
regarding the kernels (Fig 6B-6E). Notice also that the observed error (Fig 8 A2-8A3, solid
curves) and the error predicted from theory (Fig 8A2-8A3, dotted curves) closely overlap,
illustrating again that the theory is perfectly able to predict the error.

Intuitively we would expect the number of postsynaptic targets per neuron, Koy, to
strongly affect the signal amplitude and the error, since more postsynaptic targets can be
expected to increase the amplitude and decrease the variability of the kernels. The reason for
this low variability is that each single-cell kernel corresponds to a sum of many extracellular
potential responses ;. These are all “activated” simultaneously by the incoming spike such
that differences in h;; to some degree average out. As a consequence, we would expect the
population kernel prediction to become significantly worse if neuronal out-degrees are small.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012303  April 14, 2025 13/ 29



https://doi.org/10.1371/journal.pcbi.1012303.g007
https://doi.org/10.1371/journal.pcbi.1012303

PLOS COMPUTATIONAL BIOLOGY On the validity of electric brain signal predictions based on population firing rates

Al A2 A3
———
€ —500 )
3 - : —— ground truth —— simulated
——- ulation kernel ===« th
%—1000 : population kerne eory
(]
RS I
—1500 ! .
0 5 10 0 1 2 0.0 0.1 0.2 0.3
LFP amplitude (uV) error (UV) relative error
—— apical —— default —— uniform
Bl B2 B3
5— —500 —— ground truth —— simulated
52_—1000 ——~ population kernel = theory
(0]
°
—-1500
0 5 10 0 1 2 0.0 0.1 0.2 0.3
LFP amplitude (uV) error (UV) relative error
—— small Kot ~—— default —— large Koyt
C1 Cc2 C3
lE:l' =500 ——— ground truth —— simulated
g_—lOOO ——~ population kernel = theory
(]
o
—-1500
5 10 0 1 2 0.0 0.1 0.2 0.3
LFP amplitude (uV) error (LV) relative error
similar synapses —— default —— variable synapses
D1 \ D2 D3
5 =500 —— ground truth —— simulated
< —== population kernel ===+ theory
%—1000 L
o° >~ > =
-15004 —
0 5 10 0 1 2 0.0 0.1 0.2 0.3
LFP amplitude (uV) error (LV) relative error
—— narrow input region —— default broad input region
E1l E2 E3
g_ =500 —— ground truth —— simulated
—== population kernel = theo
£-1000 pop Y
(]
©
—1500
5 10 0 1 2 0.0 0.1 0.2 0.3
LFP amplitude (uV) error (LV) relative error
—— small radius — default —— large radius

Fig 8. Comparison of how different parameter configurations affect LFP amplitude and population kernel errors.
For uncorrelated Poisson input with a rate of 10 s~! (see Methods), the figure shows the standard deviation of the LFP
at different depths (column 1), and the absolute (column 2) and relative error (column 3) from using the population
kernel, for different modifications of the original parameter set (“default”). Each row corresponds to varying a certain
feature, see Methods and Table 1 for full description of different parameter configurations. A: Three different synaptic
input regions, that is, apical dendrites, basal dendrites (“default”), or uniformly distributed over the whole cell. B: Three
different numbers of postsynaptic targets Kout (outdegree), including half and double of the default value of 500. C:
Three different levels of variability of synaptic parameters, including half and double the parameter values used for con-
trolling the variability of the synaptic time constants, the synaptic delays, and the synaptic weights. D: Three different
standard deviations of the normal distribution used when drawing synaptic locations, including half and double the
default value of 100 um. E: Three different radii, including half and double the default radius of 250pum.

https://doi.org/10.1371/journal.pcbi.1012303.g008
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This is indeed the case if we reduce the out-degree K, towards lower values (Fig 8B1-8B3). A
theoretical analysis confirms that the relative error decreases as 1/v/Kou (see Methods).

The synaptic parameters we consider are the synaptic weight, the synaptic time con-
stant, and the synaptic delay. The synaptic weights are lognormally distributed in analogy to
Hagen et al. [2016; 2022] [23,29], while the synaptic time constants and delays are normally
distributed. As predicted by the theory (see Methods), decreasing or increasing the standard
deviations of these distributions by a factor of two has a negligible effect on signal amplitudes
(Fig 8C1), while the error increases with increasing variability (Fig 8C2-8C3).

The spatial spread of the synaptic input is seen to have an important effect on both the
signal amplitudes (Fig 8D1) and the errors (Fig 8D2-8D3), where a broader region of input
gives a much weaker signal and much larger relative errors, similarly to what we saw for the
uniformly distributed synaptic input (which can be seen as an extreme case of a broad input
region, Fig 6D and 6E).

When the postsynaptic cells are more spatially concentrated, within half the original
radius, we find a larger LFP amplitude in the center of the population as expected (Fig 8E1).
The relative error is however only weakly affected (Fig 8E3).

2.4. Sources and effect of spike correlations

To evaluate the error of the kernel approach, we also need to consider the effect of differ-

ent types of spiking statistics, with different levels of correlation. To this end, we employ the
same setup described in the previous subsection but replace the uncorrelated Poissonian input
spikes with spike trains generated by two different methods. In a first approach, we create
spike trains as realizations of a Multiple Interaction Process (MIP; [42]) with firing rate v,
fraction f of shared spikes, and pairwise correlation coefficient ¢ = f. With this model, the
spike-train auto- and cross-covariances A,(7) = v8(7) and C,(7) = £v8(7) can easily be con-
trolled, but are delta-shaped and thus rather artificial (see Appendix B). As an alternative
approach, we employ a recurrent point-neuron network model of excitatory and inhibitory
neurons (“Brunel network”; [45]) that can operate in different dynamical regimes and thereby
produce spike trains with a more natural correlation structure. Here, we use the same param-
eters and corresponding network states described in Brunel [2000] [45], and extract spikes
from the asynchronous irregular (AI; Fig 9C), and the slow synchronous irregular regime

(SI slow; Fig 9D).

In the parameter configurations discussed above, we used uncorrelated spike trains. How-
ever, as earlier discussed, the spike-train correlation will also affect the error (equation (7)).
We therefore combine the kernels from the default case used above, with spike trains exhibit-
ing different levels of correlation, including those illustrated in Fig 9. The amplitude of the
LFP is highly dependent on the spike trains, and for the MIP spike trains the amplitude
increases with both firing rate and correlation (Fig 10A).

The absolute errors from the MIP spike trains appear roughly independent of the cor-
relation, but dependent on the firing rate (Fig 10B and 10D), while the relative errors are
instead independent of the firing rate but dependent on the correlation (Fig 10C and 10E).
The relative error is independent of the firing rate v because the spike-train auto- and cross-
covariances A;(7) and C,(7) scale linearly with v. In consequence, both the absolute squared
error (equation (7)) and the ground-truth variance (Eq (A.3)) are proportional to v. Also
the correlation dependence is confirmed by theory (see Appendix B) and in line with earlier
observations in Fig 5B, where we saw in a toy model that the absolute error is only dependent
on the correlation for very high levels of correlations (f>0.1).
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Fig 9. Generating different types of correlated spiking. A, B: Spiking activity generated by Multiple Interaction Processes

(MIP; [42]) with firing rate ¥ = 10s~! and correlation coefficients ¢ = f* = 0 (A) and 0.01 (B). C, D: Spiking activity generated by a
recurrent network of point neurons [45] operating in the asynchronous irregular (“AI”; C) and in the slow synchronous irregular
regime (“SI slow”; D). Top panels: Raster plots for 100 exemplary neurons. Bottom panels: Normalized spike-train auto- (black)
and cross-covariance (gray) functions. The depicted curves represent population averaged correlations obtained from binned spike
trains of an ensemble of 100 neurons, with an observation time of 15.5 s, and a binsize of 2~* ms. See Methods for details on the
spike-generation models and parameter values.

https://doi.org/10.1371/journal.pchi.1012303.g009

The lowest relative error is from the Brunel SI slow state. This is as expected, because of the
highly correlated spiking activity.

2.5. Combined effect of kernel heterogeneity and spike-train correlations

We summarize the results in Fig 11A and 11B, which combines different kernel parameters
with different types of spiking activity. If we start by focusing on the kernel parameters (rows),
we see that in all cases, uniform synaptic input gives low signal amplitudes and large relative
errors. The next highest relative errors are for the case with the broader synaptic input region,
which together with the uniform input case demonstrates the importance of the spatial spread
of the synaptic input. The lowest relative errors are observed for the large out-degree (large
Kout), followed by the narrow input region. If we instead focus on the different types of spik-
ing activity (columns), we see that the lowest relative error is for Brunel SI slow, while the
highest relative error is from the uncorrelated MIP processes.

A convenient rule-of-thumb emerges from the results discussed above: The relative error
associated with applying the population kernel method is in general inversely proportional
to the signal amplitude (Fig 11C). This is an important insight because it means that we can
expect the population kernel approach to work best for the synaptic pathways that are domi-
nating the LFP signal, and worst for the synaptic pathways that have a weak LFP contribution.
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Fig 10. Effect of spike-train statistics on population kernel errors. A: Dependence of the LFP amplitude on the recording depth for
various presynaptic spike-train ensembles generated by the MIP and by the Brunel network model (see legend and main text), for the
kernels corresponding to the default case. MIP spike trains are characterized by the firing rate v and the spike-train correlation coeffi-
cient ¢ = f2. Brunel spike trains are obtained from the “AT” and the “SI slow” regime. Solid and dashed lines refer to the ground-truth
signal and the LFP predicted by the kernel method. B: Same as panel A, but showing the absolute prediction error. Solid and dotted
lines represent results obtained from simulations and theory, respectively. C: Same as panel B, but showing the relative prediction
error. D: The maximum error across depth for MIP spike trains with different firing rates v and correlations f. E: Same as panel D but
showing the maximum relative error across depth.

https://doi.org/10.1371/journal.pchi.1012303.g010

Note that this relationship also holds for the EEG signal, where the error is also substantially
lower (Fig 11C, gray dots). As an illustrative example, it has been argued that the LFP and
EEG signal is mainly driven by perisomatic inhibitory input to pyramidal cells [23,24,29,32,
33], while excitatory input to pyramidal cells is less important, as it is more uniformly dis-
tributed across the postsynaptic pyramidal cells, and therefore gives a relatively weak contri-
bution to the LFP/EEG signal. In this case, we would also expect a large relative error for the
excitatory-to-excitatory pathway, but since this synaptic pathway is in this case only associ-
ated with a minor LFP/EEG contribution, the high relative error might be acceptable.

2.6. Application to firing rate models

The kernels considered so far correspond to the kernels from a single synaptic pathway (see
Appendix D for a discussion on multiple pathways). Given some prior knowledge or reason-
able estimation of synaptic parameters, and how synapses are distributed on postsynaptic
neurons, approximate kernels can be derived and used also for firing rate models.

To illustrate its applicability, we here choose a simple population rate model of the
form [46,47],

i = Al + 2tvr, (8)
™ =v*+ Jrr+ 9 + I(t) - T, )

where r and v are the firing rate and membrane potential, respectively, and 7 is the mem-
brane time constant. The model is particularly interesting in the context of multi-scale mod-
eling as it has been shown to be an exact macroscopic description of the average dynamics of
a population of all-to-all coupled excitatory quadratic integrate-and-fire (QIF) neurons [46].
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dashed line is a visual guideline corresponding to a perfect inverse correlation.

https://doi.org/10.1371/journal.pchi.1012303.g011

The other parameters J, 77 and A are derived from the microscopic definition of the QIF net-
work and describe the synaptic weight, and the center and half-width of a Lorentzian distri-
bution of heterogeneous, quenched external inputs, respectively. This population rate model
and its dynamic repertoire have been analyzed extensively over the past years with multiple
extensions. These include the incorporation of multiple populations to model working mem-
ory [47], inhibitory coupling to produce theta-nested gamma oscillations [48], and sparse
coupling and external fluctuations [49,50]. The basic model in equation (8) has been shown
to produce a non-trivial transient oscillatory behavior upon stimulus-induced (I(t)) switch-
ing between two steady-state attractors (Fig 12A). Using the population kernel prediction
such behavior can be modeled in terms of LFP and EEG (Fig 12C), providing the basis for
comparisons of population rate model dynamics with experimentally obtained LFPs and
EEGs.

For firing-rate models with different populations we can combine different kernels for dif-
ferent synaptic pathways (see Appendix D). As an example, for an inhibitory-to-excitatory
pathway, we could choose a sign-inversed (to change from excitatory to inhibitory input cur-
rents) version of the “default” case kernel, to represent perisomatic inhibitory input. Likewise,
for an excitatory-to-excitatory pathway, we could use the kernel from uniform synaptic input.
All kernels constructed in this study are available online (see Methods), and can in principle
easily be modified to accommodate different scenarios.
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Fig 12. Illustration of the kernel approach applied to a rate model. A: Stimulus induced switching dynamics of rate model described by equa-
tion (8), with A = 2,7 = =10, ] = 15v/A, and T = 100 ms [47]. The stimulus I(t) is a square pulse with an amplitude of 4, a delay of 15, and a
duration of 3 s, resulting in switching dynamics similar to what was observed by Montbri6 et al. [2015, Fig 2(a)] [46]. B: Population kernel for the
“default” case (basal input) of the setup introduced in Sect 2.3 “(see Fig 6C). C: Transient behavior as observed in the population kernel LFP and
EEG signals, calculated by convolving the population rate in panel A with the kernels in panel B. Before the convolution with the LFP/EEG kernel,
the population rate is transformed from units of hertz to units of spikes/At, and scaled by the considered size of the presynaptic population which
was in this case 10,000 [46].

https://doi.org/10.1371/journal.pcbhi.1012303.9012

3. Discussion
3.1. Summary

In this study, we have attempted to illustrate what the kernel approach is (Figs 2 and 3), and
built an intuition for when we can expect it to be applicable (Figs 4 and 5). We further devel-
oped a mathematical framework to analyze the expected error of the kernel approach and
showed that it was capable of accurately predicting the observed errors (Fig 5). From equa-
tion (7) we saw that the error was dependent on both the single-cell kernel heterogeneity and
the level of correlation between spike trains.

Since LFP, EEG, and MEG signals are, at least in the cortex and in the hippocampus,
expected to primarily originate from synaptic input to populations of pyramidal cells, we
built a biophysically detailed model population receiving different types of synaptic input,
where the individual parameters could be easily adjusted (Fig 6). We then combined these
kernels with different types of spiking activity with varying levels of firing rates and corre-
lations (Fig 9). This allowed us to assess how the error introduced by the population ker-
nel approach was affected by different parameter choices for the kernels (Fig 8) and spiking
activity (Fig 10).

The results show that the relative error of using the kernel approach will be lowest for the
strong signal contributions (e.g., spatially clustered synaptic input and high levels of corre-
lations), and highest for the weak signal contributions (e.g., uniformly distributed synaptic
input and low levels of correlations; Fig 11). This implies that those scenarios where the pop-
ulation kernel prediction breaks down are less relevant when considering the total LFP/EEG
signal: For cortical scenarios, the LFP/EEG is dominated by apical and basal inputs for which
the population kernel prediction only yields a small relative error. Conveniently, this makes
the kernel method particularly suited to study certain types of pathological neural activity,
like epileptic seizures, which are characterized by highly correlated large-amplitude oscilla-
tions [28]. Note also that the same holds for LFP signals created by other morphological types
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of neurons: stellate cells and interneurons lack the asymmetry introduced by the apical den-
drites in pyramidal cells. Unless asymmetry is introduced by synapse positions, their LFP
contribution can therefore be assumed to resemble the uniform input scenario shown above.
The population kernel prediction would break down for populations with symmetric mor-
phologies and synapse distributions. However, their overall contribution to the measured LFP
can be expected to be negligible in the presence of pyramidal-neuron LFP contributions. Fur-
thermore, we show that the population kernel prediction becomes particularly accurate in
cases where neurons have a large number of postsynaptic targets, as is for example the case in
cortex [51].

In summary, these results demonstrate that the kernel approach is a promising method
for calculating LEFP, EEG, or MEG signals directly from firing rates, as also demonstrated in
Fig 12.

3.2. Limitations

An important caveat of the present study is that we considered a fully linear scenario, with
passive postsynaptic neurons and current-based synapses. This allowed us to treat the case,
where each single-cell kernel was coupled to its corresponding spike train, as “ground truth”
We could then quantify the error of approximating the LFP/EEG directly from the popula-
tion kernel and population firing rate. In assuming linearity, we are however ignoring several
potentially important factors that may contribute to LFP and EEG signals.

Firstly, we ignored the extracellular action potentials (EAPs) that in principle precede
each single-cell kernel. Note that we could in principle easily have included these EAPs in
the single-cell kernels by choosing a location for each presynaptic neuron, and calculat-
ing the EAP on the recording electrodes from an action potential in the presynaptic neu-
ron. EAPs can have amplitudes of several hundred microvolts if the soma is very close to a
recording electrode, but the amplitude falls oft rapidly with distance [5,52,53], and we would
therefore expect a very high single-cell kernel heterogeneity in these EAP contributions. We
therefore do not expect that the population kernel would give accurate predictions of EAP-
contributions to LFP/EEG signals. However, at least for large cortical populations, we do
not expect EAPs to be a major contributor to LFP and EEG signals [4,29,54], but the reader
should keep in mind that any putative EAP contribution is neglected in this analysis.

Secondly, in assuming passive postsynaptic neurons, we neglected effects from subthresh-
old active conductances. It has been demonstrated in modeling studies that subthreshold
active conductances can in certain cases be important in shaping the LFP [38,39], however,
this effect can be taken into account also in linear models through linearization [29,38,39,55].
The effect of other types of non-linearities, such as dendritic action potentials, on the validity
of the kernel method LFP estimates should be assessed in future studies.

Thirdly, we relied on current-based instead of conductance-based synapses. Since
conductance-based synapses depend on the membrane potential, and change the effective
membrane conductance of the postsynaptic neurons, the LFP response to synaptic input will
for conductance-based synapses depends on the ongoing synaptic input to the postsynaptic
population. It was previously demonstrated by Hagen et al. [2022] [29], and further expanded
upon by Meneghetti et al. [2024] [40], that the kernel approach can make accurate LFP pre-
dictions also for conductance-based synaptic input, by taking into account the postsynap-
tic membrane potential and the “background level” of synaptic input that each population
was receiving. This is particularly important when considering large co-fluctuations in fir-
ing rates, which can lead to substantial non-linear effects which must be accounted for [40].
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However, while using conductance-based synapses had an important effect on kernel ampli-
tudes [29], it is not expected to have a strong effect on single-cell kernel heterogeneity. There-
fore, the error analysis presented here is equally relevant to models using both current-based
and conductance-based synapses for calculating kernels.

Also, our analysis here focuses on cortical networks where the LFP/EEG is dominated by
inputs onto pyramidal neurons and other contributions are negligible. We show that the rel-
ative error of the population kernel method is in general small for large current dipoles, but
sizable for overall small signals. It is therefore plausible that the kernel method will work less
reliably in other brain regions such as basal ganglia, where there are no pyramidal neurons.

For simplicity, we here demonstrated the applicability of the population-kernel approach
in the context of multi-scale modeling (Fig 12) by choosing a firing rate model that captures
the macroscopic dynamics of fully connected excitatory networks of quadratic integrate-and-
fire neurons [46,47]. Such firing rate models have been extended in various directions over
the past years [48-50], in particular to account for multiple neuronal populations. The here
presented approach can be readily extended to such multi-population networks to obtain
predictions of their extracellular potential signatures.

3.3. Inference and approximation of population kernels

Population kernels were here constructed from the average of all single-cell kernels for a pop-
ulation of neurons. The latter kernels can be measured in experiments [24,33,34,56] and sim-
ulations [32,35], for example using microstimulation of individual neurons. This is, however,
experimentally not feasible for a large number of neurons and in simulations it is computa-
tionally expensive. Since variability in single-cell LFP kernels is low in some scenarios, we can
expect that an approximation of the population kernel based on single-cell kernels of a small
subpopulation is still valid, and indeed Hagen et al. [2022] [29] demonstrated that population
kernels could be accurately estimated based on a single biophysically detailed cell simulation.

A direct way to obtain population kernels is via simultaneous stimulation of the whole
population of neurons, for example using optogenetic techniques. Also, population kernels
can be inferred via deconvolution techniques [57] from given compound extracellular poten-
tials and population rates. This procedure, however, relies on the fact that those neurons from
which spike trains are recorded are those with the dominant single-cell kernels. If other popu-
lations of neurons from which no spikes are recorded contribute significantly to the extracel-
lular potential, then the inferred population kernel is invalid. In the case of spike recordings
from multiple populations, one can use the MIMO (multiple input - multiple output [58])
scheme for deconvolutions of the individual population kernels.

3.4. Definition of population

Typically a population is defined via common input statistics and physiological parameters
between neurons such that output spiking statistics are similar. Here, we need in addition that
the single-cell spike kernels of neurons in a population are similar. This includes similar post-
synaptic targets and projection patterns to them as well as passive properties of postsynaptic
targets. So the definition of a population is not only based on incoming connection statis-

tics but also on outgoing connection statistics. Also what defines a population might dynam-
ically change: if correlations, i.e., spiking statistics, between two populations are large then
merging them into one population even if they have different kernels would lead to a good
population-kernel prediction.
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3.5. Conclusion

As reviewed in the Introduction, several different approaches to calculate LFP/EEG/MEG sig-
quantitative evaluations of the accuracy of these approaches have often been lacking. Here, we
have presented a thorough analysis of how the kernel method works, and when we can expect
it to be a good approximation. Our results further establish the kernel approach as a promis-
ing method for calculating brain signals from large-scale neural simulations, and we hope that
the kernel approach can therefore be used with more confidence.

4. Methods
4.1. Forward modeling

The calculation of the extracellular potential from neural simulations was done using a well-
established forward-modeling scheme based on electrostatics with current sources computed
via solving the membrane potential dynamics of each cell given all its inputs [5]. The neu-

ral simulations were controlled through LFPy 2.3 [6], running on top of NEURON 8.2 [59].
The calculation of extracellular potentials relied on the built-in functionality in LEPy, where
the line-source approximation [2,5] for an infinite, homogeneous volume conductor was
used. The extracellular potential was calculated at 16 different depths, with an inter-electrode
distance of 100 pm. The extracellular conductivity was set to 0.3 S/m [60].

4.1.1. Calculating EEG signals Current dipole kernels were calculated from the neural
simulations using built-in functionality in LEPy [6]. Such current dipoles could in principle
be used with arbitrarily simple or detailed head models [5,7] to calculate EEG signals. Here,
we used the simple four-sphere head model [61] implemented in LFPy.

4.2. Toy model for spike-LFP kernel

The spike-LFP kernels from the toy model (Figs 3, 4 and 5) were double exponential func-
tions (rise time 7; = 0.2 ms, decay time 7, = 1 ms), which only varied in amplitude A;. The
implementation was equivalent to the “Exp2Syn” mechanism in NEURON, and given by,

_e—t/rl +e—t/r2
ki(t) :Aimax(—e‘t/fl T V t>0. (10)

The mean amplitude was always 1.0 wV, while the standard deviation of the amplitude was
varied as detailed in the individual figures. The time resolution of the simulations was 0.1 ms.

4.3. Biophysically detailed simulations

Biophysically detailed neural simulations are highly parameter dependent, and we aimed

to keep our results generic rather than to focus on a particular system. To test ranges of val-
ues we choose to compare default values (see below) with half and twice the default value, as
this results in a fairly broad range independent of units or magnitude of the original parame-
ter. The default values are meant to be plausible, but are also chosen to introduce substantial
kernel heterogeneity.

We used the rat cortical layer 5 pyramidal cell model from Hay et al. [2011] [43], where
all active conductances were removed to make the cell passive [38,39]. We used current-
based synaptic input with exponential decay, and a time resolution of 2™* ms. For calculat-
ing single-cell spike-LFP kernels, we generated for each presynaptic neuron j, a population
of Koy (default value: 500) postsynaptic instances of the pyramidal cell model. The cells were
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Table 1. Parameter combinations used for calculating the kernels, where the names of the columns correspond to the parameter combinations tested
in Figs 8 and 11. Blank spaces indicate no change from the default values, and only parameters that are varied between simulations are included.

Rpop

Kout

syn z SD

syn z mean
Tsyn SD

syn delay SD
J s-value

default apical
250 m
500

100 pm
~1270 im
0.20 ms
0.20 ms
0.40 nA

~200 ptm

uniform small radius |large radius small Koy |large Koye |similar variable |narrow input |broad input

synapses |synapses |region region

125um  |500 um
250 1000

10% pm 50 um 200 pim
~600 m

0.10 ms 0.40 ms

0.10 ms 0.40 ms

0.20 nA 0.80 nA

https://doi.org/10.1371/journal.pcbi.1012303.t001

aligned with and randomly rotated around the z-axis, and the z-positions of the somas were
drawn from a capped normal distribution (mean: -1270 um, SD: 100 pum). The cap was intro-
duced to avoid neurons protruding out of the cortex, and the standard deviation of 100 um
was chosen to roughly reflect that layer 5 in rats is a few hundred micrometers thick [62]. The
somas were uniformly distributed in the xy-plane within a radius Ry, with a default value of
250 pm, similar to the cortical column radius used by Markram et al. [2015] [62]. Each post-
synaptic neuron i had a single synapse with weight J;; drawn from a lognormal distribution,
calculated through scipy.stats.lognorm (mean: 0.1 nA, default s-value: 0.4 nA, see
scipy.stats.lognorm documentation). The spatial distribution of the synapses in the
depth direction was drawn from all available locations on the cells, but weighted by a normal
distribution in the depth direction, with a default mean of -1270 um, and a default standard
deviation of 100 pum to represent synaptic input to layer 5. The synaptic delays were drawn
from a normal distribution (syn delay mean: 1 ms, default syn delay SD: 0.2 ms), similar to
values used by Hagen et al. [2016] [23]. We used the same default parameters for synaptic
time constants Tgyy,.

The default values of the parameters as well as the different variations tested in this study
are listed in Table 1.

4.4. Synthetic spike-trains with correlations

Synthetic spike trains with varying levels of correlations and firing rates were generated
through Multiple Interaction Processes (MIP) [42]. Here, a “mother spike train” was first
generated with the same firing rate as the target spike trains. The spike times were generated
through a homogeneous Poisson process using Elephant [63]. For each “child spike train”,

a fraction f of the spikes where randomly selected from the mother spike train, while the
remaining spikes were generated through homogeneous Poisson processes. Consequently,
f varies between 0 and 1, and f= 0 corresponds to uncorrelated homogeneous Poisson pro-
cesses, while f=1 corresponds to fully correlated (identical) spike trains. Since each spike is
copied with probability f2 into two child spike trains, the correlation coefficient of the latter
is given by c = f* (for details see Appendix B).

4.5, Error measures

We define the absolute squared error of the population kernel signal ¥V(r,t) in approximat-
ing the ground truth signal V(r,t) as E*(r) = Var [V(r, t) - V(r, t)], where Var [...] denotes the
variance across time, computed separately for each electrode position r. The relative squared
error is defined as E%,(r) = E*(r) /max,(Var[ V(r, t)]), that is, the absolute squared error at
each electrode, normalized by the maximum (over the electrodes) variance of the ground
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truth signal. Note that the error is normalized by the largest value of the ground truth signal
variance because the ground truth signal will often have electrodes with very near-zero signal
amplitudes, and therefore very high, but irrelevant relative errors. In the case of the toy model
(Fig 10) that is agnostic to spatial positions, the normalization does not involve a maximum
over the electrodes.

4.6. Firing rates

Firing rates are constructed from spike trains by counting the number of spikes within time
steps of length At, and normalizing by At. For kernels generated with the toy model (Figs 3-
5), the time step duration is At = 0.1 ms, while for the simulations with biophysically detailed
kernels (Figs 6-12), itis At =27* ms.

4.7. Point-neuron network simulation

The point-neuron network model was a random balanced network with delta synapses [45],
based on the brunel delta nest.py example that comes with NEST. We used NEST
3.6 [64], with the same network parameters and network states as Brunel [2000] [45], that is,
we extracted spikes from an asynchronous irregular (AI) regime (g= 5,7 =2.0, J = 0.1) [45,Fig
8C], and a slow synchronous irregular (SI) regime (g=4.5,7 = 0.9, J=0.1) [45,Fig 8D]. The
time resolution was 0.1 ms.

4.8. Mathematical derivation of error estimate

In simulations, we measure the squared error
EX(r) = Var [V(r, ) - V(r,0)] = ((V(r,1) - V(r, t))2>t ~((V(r.t) - V(r.0)))

of the population kernel method as the variance of the difference signal V(r,t) - V(r,t) across
time. By definition, due to the time average (-), the error depends on the statistics of spike
trains s. In addition, in principle, it depends on all details of the single-cell spike-LFP kernels
k. Yet, for networks of biologically realistic size, the LFP is made up of many contributions,
such that the squared error E*(r) will not vary too much between different statistically equiv-
alent realizations of single-cell kernels. Therefore, the expectation <E2(r)> , across different
realizations of single-cell kernels k can be assumed to be informative about the error E*(r) for
one particular realization.

The expected squared error is

(B ()= (((V(rn - ¥, t))2>t ~(V(r.0) - V(r,0))7)

k
={([v(r.) - (v(r0),] - [V(n.6) - (V(r.0)) ]) )t‘k (11)
Inserting the definition of the ground truth LFP (equation (3)) and the population-kernel
approximation (equation (6)) yields the error expression (equation (7)) of the main text (for
details see Appendix A).
For the prediction of the relative squared error, we divide the error by the variance of the
ground truth LFP

Var [V(r,0)] = ([V(r,6) - (V(r, t))l]2>t . (12)
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On expectation, the latter time average can be calculated analogously to the error (for
details see Appendix A). This allows us to obtain some intuition on the expected relative
squared error

(E2 (1‘)> _ (Npre_l)de (Ak(r’T)_Ck(r’T)) (AS(T)_CS(T)) (13)
KT Nore [ dT A(r,7)A((T) + Npre(Npre - 1) [ dt Ci(1,7) Cy(7)

in relation to features of single-cell kernels. To do so, we employ equation (4) and write

the single-cell kernel in terms of individual extracellular potential responses h;;(r,t) =
&iliixii(r. 1), where we explicitly split the synaptic strength J;; and the adjacency values §;; €
{0,1} from the impulse response y;;(r, t). The latter characterizes the LFP response, measured
at time ¢ and location r, to a unit input arriving at the synapse between neurons i and j. The
single-cell spike-LFP correlations then read

A7) = f dr' (ki(r 7 )ki(r, T + 7)),
~ Kou (Var(J) + Mean(J)?) Ay (r,7) + Koy Mean(J)* 7 (. 7) ,
Cu(r,7) = [ de’ (k(n T )k (r ' + 7)),

~ K Mean ()27 (r,7),
Ar(1,7) - Ci(r,7) ~ Kout (Var(]) +Mean())*) Ay (r,7),

with Mean(J) and Var(J) denoting the mean and variance of synaptic weights, impulse-
response statistics 7*(r,7) and A, (r,7), and Koy the out-degree of presynaptic neurons
(see Appendix A). Interestingly, the error E ~ \/Ay — Ci (square root of numerator in equa-
tion (13)) - due to cancellations between A and Cy, - scales as O(\/Kou) (Fig 8B2), while
the signal standard deviation ~ \/...A; + ...Cy (square root of denominator in equation (13))
scales as O(Koyt) (Fig 8B1), such that the relative error decreases with the out-degree Koy
as O(1/+/Kou) (Fig 8B3). Furthermore, the signal standard deviation is roughly indepen-
dent of the variability in synaptic strengths (Fig 8C1). This variability Var(J) only enters

in the term of Ay that is proportional to K, and thus subleading compared to the other
terms in Ay and Cy that are proportional to KZ,. In the error these terms proportional to

K2, exactly cancel, such that the error increases with larger variability in synaptic strengths

ut*

(Fig 8C2). The closer the different synaptic locations k and [ are (see narrow vs broad input
region or apical/default vs uniform), the larger the product of different impulse responses
xki(r, ") xu(r, T’ + 7). Therefore, the signal standard deviation, which contains products
of different impulse responses in y*(r,7) (see Appendix A), grows when synaptic loca-
tions become more similar (Fig 8A1,D1). In contrast, the error only depends on A, (1, 7),
which in turn only depends on products of the same impulse responses (see Appendix A).
Therefore, the error is less sensitive to the width of the input region (Fig 8D2). Still, both
impulse response statistics 7*(r,7) and A (r,7) depend strongly on the type of input
region, leading to a strong dependence of the signal standard deviation and error on the
input region (Fig 8A2). Also, both terms increase the smaller the radius of the population,
because LFP-generating sources are closer to the recording electrode. Therefore, both the
signal standard deviation (Fig 8E1) and the error (Fig 8E2) increase with smaller population
radius.
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