001040968 001__ 1040968
001040968 005__ 20250414120440.0
001040968 0247_ $$2doi$$a10.5194/acp-25-3481-2025
001040968 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02090
001040968 0247_ $$2WOS$$aWOS:001450816600001
001040968 037__ $$aFZJ-2025-02090
001040968 082__ $$a550
001040968 1001_ $$0P:(DE-Juel1)166277$$aRolletter, Michael$$b0
001040968 245__ $$aKinetics of the reactions of OH with CO, NO,and NO2 and of HO2 with NO2 in air attropospheric water vapour concentrations
001040968 260__ $$aKatlenburg-Lindau$$bEGU$$c2025
001040968 3367_ $$2DRIVER$$aarticle
001040968 3367_ $$2DataCite$$aOutput Types/Journal article
001040968 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744212008_31535
001040968 3367_ $$2BibTeX$$aARTICLE
001040968 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040968 3367_ $$00$$2EndNote$$aJournal Article
001040968 520__ $$aThe termolecular reactions of hydroxyl radicals (OH) with carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxides (NO2) and the termolecular reaction of hydroperoxy radicals (HO2) with NO2 greatly impact the atmospheric oxidation efficiency. Few studies have directly measured the pressure-dependent rate coefficients in air at 1 atm pressure and water vapour as third-body collision partners. In this work, rate coefficients were measured with a high accuracy (<5 %) at 1 atm pressure, at room temperature, and in humidified air using laser flash photolysis and detection of the radical decay by laser-induced fluorescence. The rate coefficients derived in dry air are cm3 s−1 for the OH reaction with CO,  cm3 s−1 for the OH reaction with NO,  cm3 s−1 for the OH reaction with NO2, and  cm3 s−1 for the HO2 reaction with NO2. For the OH reactions with CO and NO, no dependence on water vapour was observed for the range of water partial pressures tested (3 to 22 hPa), and for NO2, only a weak increase of 3 % was measured, in agreement with the study by Amedro et al. (2020). For the rate coefficient of HO2 with NO2 an enhancement of up to 25 % was observed. This can be explained by a faster rate coefficient of the reaction of the HO2–water complex with NO2 having a value of  cm3 s−1.
001040968 536__ $$0G:(DE-HGF)POF4-2111$$a2111 - Air Quality (POF4-211)$$cPOF4-211$$fPOF IV$$x0
001040968 588__ $$aDataset connected to DataCite
001040968 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, Andreas$$b1$$eCorresponding author$$ufzj
001040968 7001_ $$0P:(DE-Juel1)7363$$aFuchs, Hendrik$$b2$$eCorresponding author$$ufzj
001040968 7001_ $$0P:(DE-Juel1)166537$$aNovelli, Anna$$b3$$ufzj
001040968 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b4$$ufzj
001040968 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-25-3481-2025$$gVol. 25, no. 6, p. 3481 - 3502$$n6$$p3481 - 3502$$tAtmospheric chemistry and physics$$v25$$x1680-7316$$y2025
001040968 8564_ $$uhttps://juser.fz-juelich.de/record/1040968/files/Invoice_Helmholtz-PUC-2025-36.pdf
001040968 8564_ $$uhttps://juser.fz-juelich.de/record/1040968/files/acp-25-3481-2025.pdf$$yOpenAccess
001040968 8767_ $$8Helmholtz-PUC-2025-36$$92025-03-25$$a1200212763$$d2025-04-01$$eAPC$$jZahlung erfolgt
001040968 909CO $$ooai:juser.fz-juelich.de:1040968$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001040968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166277$$aForschungszentrum Jülich$$b0$$kFZJ
001040968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16326$$aForschungszentrum Jülich$$b1$$kFZJ
001040968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7363$$aForschungszentrum Jülich$$b2$$kFZJ
001040968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166537$$aForschungszentrum Jülich$$b3$$kFZJ
001040968 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b4$$kFZJ
001040968 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2111$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
001040968 9141_ $$y2025
001040968 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001040968 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001040968 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001040968 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
001040968 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001040968 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
001040968 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T09:38:07Z
001040968 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T09:38:07Z
001040968 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
001040968 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-21
001040968 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001040968 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040968 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T09:38:07Z
001040968 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-21
001040968 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001040968 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001040968 9201_ $$0I:(DE-Juel1)ICE-3-20101013$$kICE-3$$lTroposphäre$$x0
001040968 980__ $$ajournal
001040968 980__ $$aVDB
001040968 980__ $$aUNRESTRICTED
001040968 980__ $$aI:(DE-Juel1)ICE-3-20101013
001040968 980__ $$aAPC
001040968 9801_ $$aAPC
001040968 9801_ $$aFullTexts