001     1040968
005     20250414120440.0
024 7 _ |a 10.5194/acp-25-3481-2025
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02090
|2 datacite_doi
024 7 _ |a WOS:001450816600001
|2 WOS
037 _ _ |a FZJ-2025-02090
082 _ _ |a 550
100 1 _ |a Rolletter, Michael
|0 P:(DE-Juel1)166277
|b 0
245 _ _ |a Kinetics of the reactions of OH with CO, NO,and NO2 and of HO2 with NO2 in air attropospheric water vapour concentrations
260 _ _ |a Katlenburg-Lindau
|c 2025
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744212008_31535
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The termolecular reactions of hydroxyl radicals (OH) with carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxides (NO2) and the termolecular reaction of hydroperoxy radicals (HO2) with NO2 greatly impact the atmospheric oxidation efficiency. Few studies have directly measured the pressure-dependent rate coefficients in air at 1 atm pressure and water vapour as third-body collision partners. In this work, rate coefficients were measured with a high accuracy (<5 %) at 1 atm pressure, at room temperature, and in humidified air using laser flash photolysis and detection of the radical decay by laser-induced fluorescence. The rate coefficients derived in dry air are cm3 s−1 for the OH reaction with CO,  cm3 s−1 for the OH reaction with NO,  cm3 s−1 for the OH reaction with NO2, and  cm3 s−1 for the HO2 reaction with NO2. For the OH reactions with CO and NO, no dependence on water vapour was observed for the range of water partial pressures tested (3 to 22 hPa), and for NO2, only a weak increase of 3 % was measured, in agreement with the study by Amedro et al. (2020). For the rate coefficient of HO2 with NO2 an enhancement of up to 25 % was observed. This can be explained by a faster rate coefficient of the reaction of the HO2–water complex with NO2 having a value of  cm3 s−1.
536 _ _ |a 2111 - Air Quality (POF4-211)
|0 G:(DE-HGF)POF4-2111
|c POF4-211
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Hofzumahaus, Andreas
|0 P:(DE-Juel1)16326
|b 1
|e Corresponding author
|u fzj
700 1 _ |a Fuchs, Hendrik
|0 P:(DE-Juel1)7363
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Novelli, Anna
|0 P:(DE-Juel1)166537
|b 3
|u fzj
700 1 _ |a Wahner, Andreas
|0 P:(DE-Juel1)16324
|b 4
|u fzj
773 _ _ |a 10.5194/acp-25-3481-2025
|g Vol. 25, no. 6, p. 3481 - 3502
|0 PERI:(DE-600)2069847-1
|n 6
|p 3481 - 3502
|t Atmospheric chemistry and physics
|v 25
|y 2025
|x 1680-7316
856 4 _ |u https://juser.fz-juelich.de/record/1040968/files/Invoice_Helmholtz-PUC-2025-36.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1040968/files/acp-25-3481-2025.pdf
909 C O |o oai:juser.fz-juelich.de:1040968
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166277
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)16326
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)7363
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)166537
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)16324
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-211
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Die Atmosphäre im globalen Wandel
|9 G:(DE-HGF)POF4-2111
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-12-20T09:38:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-12-20T09:38:07Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Open peer review
|d 2022-12-20T09:38:07Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
920 1 _ |0 I:(DE-Juel1)ICE-3-20101013
|k ICE-3
|l Troposphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICE-3-20101013
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21