001040969 001__ 1040969
001040969 005__ 20250416202206.0
001040969 0247_ $$2doi$$a10.1103/PhysRevLett.134.043603
001040969 0247_ $$2ISSN$$a0031-9007
001040969 0247_ $$2ISSN$$a1092-0145
001040969 0247_ $$2ISSN$$a1079-7114
001040969 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02091
001040969 0247_ $$2pmid$$a39951594
001040969 0247_ $$2WOS$$aWOS:001438435400002
001040969 037__ $$aFZJ-2025-02091
001040969 041__ $$aEnglish
001040969 082__ $$a530
001040969 1001_ $$0P:(DE-HGF)0$$aGrimm, Nick$$b0
001040969 245__ $$aCoherent Control of a Long-Lived Nuclear Memory Spin in a Germanium-Vacancy Multi-Qubit Node
001040969 260__ $$aCollege Park, Md.$$bAPS$$c2025
001040969 3367_ $$2DRIVER$$aarticle
001040969 3367_ $$2DataCite$$aOutput Types/Journal article
001040969 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744784349_5179
001040969 3367_ $$2BibTeX$$aARTICLE
001040969 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001040969 3367_ $$00$$2EndNote$$aJournal Article
001040969 520__ $$aThe ability to process and store information on surrounding nuclear spins is a major requirement for group-IV color center-based repeater nodes. We demonstrate coherent control of a 13C nuclear spin strongly coupled to a negatively charged germanium-vacancy center in diamond with coherence times beyond 2.5 s at mK temperatures, which is the longest reported for group-IV defects. Detailed analysis allows us to model the system’s dynamics, extract the coupling parameters, and characterize noise. We estimate an achievable memory time of 18.1 s with heating limitations considered, paving the way to successful applications as a quantum repeater node.
001040969 536__ $$0G:(DE-HGF)POF4-5214$$a5214 - Quantum State Preparation and Control (POF4-521)$$cPOF4-521$$fPOF IV$$x0
001040969 536__ $$0G:(DE-Juel1)BMBF-13N16210$$aBMBF 13N16210 - SPINNING – Spin-Photon-basierter Quantencomputer auf Diamantbasis (BMBF-13N16210)$$cBMBF-13N16210$$x1
001040969 536__ $$0G:(EU-Grant)101135699$$aSPINUS - Spin based quantum computer and simulator (101135699)$$c101135699$$fHORIZON_HORIZON-CL4-2023-DIGITAL-EMERGING-01-41$$x2
001040969 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001040969 7001_ $$0P:(DE-HGF)0$$aSenkalla, Katharina$$b1
001040969 7001_ $$0P:(DE-HGF)0$$aVetter, Philipp J.$$b2
001040969 7001_ $$0P:(DE-Juel1)187412$$aFrey, Jurek$$b3$$eCorresponding author
001040969 7001_ $$0P:(DE-HGF)0$$aGundlapalli, Prithvi$$b4
001040969 7001_ $$0P:(DE-Juel1)176280$$aCalarco, Tommaso$$b5$$ufzj
001040969 7001_ $$0P:(DE-HGF)0$$aGenov, Genko$$b6
001040969 7001_ $$0P:(DE-Juel1)178646$$aMüller, Matthias M.$$b7
001040969 7001_ $$0P:(DE-HGF)0$$aJelezko, Fedor$$b8
001040969 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.134.043603$$gVol. 134, no. 4, p. 043603$$n4$$p043603$$tPhysical review letters$$v134$$x0031-9007$$y2025
001040969 8564_ $$uhttps://juser.fz-juelich.de/record/1040969/files/PhysRevLett.134.043603.pdf$$yOpenAccess
001040969 909CO $$ooai:juser.fz-juelich.de:1040969$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001040969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187412$$aForschungszentrum Jülich$$b3$$kFZJ
001040969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176280$$aForschungszentrum Jülich$$b5$$kFZJ
001040969 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178646$$aForschungszentrum Jülich$$b7$$kFZJ
001040969 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5214$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
001040969 9141_ $$y2025
001040969 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-21
001040969 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-21
001040969 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2024-12-21
001040969 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-21
001040969 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
001040969 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-21
001040969 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-21
001040969 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-21
001040969 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-21
001040969 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001040969 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-21
001040969 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-21
001040969 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-21$$wger
001040969 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2024-12-21
001040969 920__ $$lyes
001040969 9201_ $$0I:(DE-Juel1)PGI-12-20200716$$kPGI-12$$lQuantum Computing Analytics$$x0
001040969 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x1
001040969 980__ $$ajournal
001040969 980__ $$aVDB
001040969 980__ $$aI:(DE-Juel1)PGI-12-20200716
001040969 980__ $$aI:(DE-Juel1)PGI-8-20190808
001040969 980__ $$aUNRESTRICTED
001040969 9801_ $$aFullTexts