001     1040969
005     20250416202206.0
024 7 _ |a 10.1103/PhysRevLett.134.043603
|2 doi
024 7 _ |a 0031-9007
|2 ISSN
024 7 _ |a 1092-0145
|2 ISSN
024 7 _ |a 1079-7114
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02091
|2 datacite_doi
024 7 _ |a 39951594
|2 pmid
024 7 _ |a WOS:001438435400002
|2 WOS
037 _ _ |a FZJ-2025-02091
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Grimm, Nick
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Coherent Control of a Long-Lived Nuclear Memory Spin in a Germanium-Vacancy Multi-Qubit Node
260 _ _ |a College Park, Md.
|c 2025
|b APS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744784349_5179
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The ability to process and store information on surrounding nuclear spins is a major requirement for group-IV color center-based repeater nodes. We demonstrate coherent control of a 13C nuclear spin strongly coupled to a negatively charged germanium-vacancy center in diamond with coherence times beyond 2.5 s at mK temperatures, which is the longest reported for group-IV defects. Detailed analysis allows us to model the system’s dynamics, extract the coupling parameters, and characterize noise. We estimate an achievable memory time of 18.1 s with heating limitations considered, paving the way to successful applications as a quantum repeater node.
536 _ _ |a 5214 - Quantum State Preparation and Control (POF4-521)
|0 G:(DE-HGF)POF4-5214
|c POF4-521
|f POF IV
|x 0
536 _ _ |a BMBF 13N16210 - SPINNING – Spin-Photon-basierter Quantencomputer auf Diamantbasis (BMBF-13N16210)
|0 G:(DE-Juel1)BMBF-13N16210
|c BMBF-13N16210
|x 1
536 _ _ |a SPINUS - Spin based quantum computer and simulator (101135699)
|0 G:(EU-Grant)101135699
|c 101135699
|f HORIZON_HORIZON-CL4-2023-DIGITAL-EMERGING-01-41
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Senkalla, Katharina
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Vetter, Philipp J.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Frey, Jurek
|0 P:(DE-Juel1)187412
|b 3
|e Corresponding author
700 1 _ |a Gundlapalli, Prithvi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Calarco, Tommaso
|0 P:(DE-Juel1)176280
|b 5
|u fzj
700 1 _ |a Genov, Genko
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Müller, Matthias M.
|0 P:(DE-Juel1)178646
|b 7
700 1 _ |a Jelezko, Fedor
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1103/PhysRevLett.134.043603
|g Vol. 134, no. 4, p. 043603
|0 PERI:(DE-600)1472655-5
|n 4
|p 043603
|t Physical review letters
|v 134
|y 2025
|x 0031-9007
856 4 _ |u https://juser.fz-juelich.de/record/1040969/files/PhysRevLett.134.043603.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1040969
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)187412
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176280
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)178646
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-521
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Materials
|9 G:(DE-HGF)POF4-5214
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1230
|2 StatID
|b Current Contents - Electronics and Telecommunications Collection
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-21
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-21
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2024-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-12-20200716
|k PGI-12
|l Quantum Computing Analytics
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-20190808
|k PGI-8
|l Quantum Control
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-12-20200716
980 _ _ |a I:(DE-Juel1)PGI-8-20190808
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21