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Developing versatile and reliable memristive devices is crucial for advancing
future memory and computing architectures. The years of intensive research
have still not reached and demonstrated their full horizon of capabilities, and
new concepts are essential for successfully using the complete spectra of
memristive functionalities for industrial applications. Here, we introduce two-
terminal ohmic memristor, characterized by a different type of switching
defined as filament conductivity change mechanism (FCM). The operation is
based entirely on localized electrochemical redox reactions, resulting in
essential advantages such as ultra-stable binary and analog switching, broad
voltage stability window, high temperature stability, high switching ratio and
good endurance. The multifunctional properties enabled by the FCM can be
effectively used to overcome the catastrophic forgetting problem in conven-
tional deep neural networks. Our findings represent an important milestone in
resistive switching fundamentals and provide an effective approach for
designing memrristive system, expanding the horizon of functionalities and
neuroscience applications.

M Check for updates

The memristor was proposed by Leon Chua in the 1970s as the fourth  constituting a building unit for new type of hardware, overcoming the

fundamental circuit element complemented by the capacitor, resistor,
and inductor’. It is a two-terminal resistor that exhibits memory func-
tion, that is, the resistance of a memristor is a function of the charge
flown through the system, controlled by the application of external
electrical bias. Despite resistance switching has been observed in
electronic devices back to the nineteenth century?, it was until 2008
that Strukov et al. proposed the link between the theoretical model
and a physical device®. Considerable progress has been made towards
utilizing the unique memristive properties not only for different types
of non-volatile memories but as well as sensors, hardware security,
artificial intelligence, and as well artificial neurons and synapses,

physical limitations of the modern nanoelectronics and considerably
reducing the energy consumption* 2,

Memrristive devices can operate on different physical principles,
and among all the redox-based ones (ReRAM) are considered as one of
the most promising. Here, depending on the operation mechanisms
we distinguish electrochemical metallization (ECM) and valence-
change mechanism (VCM) devices. The devices share identical struc-
ture but differ in the nature of the used materials, electrochemical
processes, and thus, in mechanism. For all types of devices applies one
general rule—the switching mechanism practically determines the
functionalities and therefore the applications.
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In ECM, an essential role plays cations, that are electrochemically
dissolved and transported through the switching film, forming a con-
ductive metallic nanofilament. The filament stability and dynamics are
determined by redox reactions, ionic and electronic transport at/
through the interfaces, and within the volume of the switching film. To
improve and modulate the performance of ECM devices various
metals, such as Ag, Cu, Ni, and their alloys are employed as electro-
chemically active electrodes™ . The high resistive state (HRS) and low
resistive state (LRS) are determined solely by the formation/dissolu-
tion cycles of this filament'®"”.

VCM devices are more complex in mechanism—one of the elec-
trodes must form a Schottky contact with the oxide, required to be a
high-work-function metal such as Pt or Pd""%, This electrode is selected
inert but should have certain catalytic activity towards the main elec-
trochemical reactions which include oxidation/reduction of oxygen
and/or the active metal component and as well parallel reactions of
moisture/protons'. HRS and LRS transition relies on the formation and
modulation of the Schottky barrier between this electrode and the
filament tip, driven by the movement of oxygen ions/vacancies and/or
cations and electrons within this disc’*". The other electrode should
have low-work function and high oxygen affinity such as Ta, Hf, Zr, and
Ti, forming an ohmic contact with the oxide, serving additionally as an
oxygen buffer/reservoir. In VCM, the filament is only partially dissolved
upon the RESET process and remains in reduced length during the
entire device life and operation, leaving a small spacing (disc) of sev-
eral nanometers to the electrode.

Despite significant progress has been reported and the efforts
made to achieve high-performance and reliable electrical properties,
for both ECM and VCM-type memrristive systems, the commercializa-
tion is progressing slowly mainly due to stochasticity and operation
failures. Intrinsic limitations can be pointed for instance the sensitivity
of small volumes towards charge enrichment/depletion. In macro-
scopic systems, electrolytes are considered infinite sources of ions.
Taking or adding some is not influencing the system as a whole. In
contrast, for nanoscale volumes every charge added or extracted may
significantly influence the conductivity, the transference numbers
(ratio of conductivities of different charges), and as well cause a
transition from field accelerated kinetics to low field conditions and
vice versa. In addition, Joule heating and mechanical effects influence
the systems? 22, This complex behavior makes the nanoscale mem-
ristive systems difficult to study and control. These limitations cause
severe device non-idealities in state retention, endurance, and uni-
formity, making the device operation rather complicated. Therefore, a
continued fundamental research in this field is essential in order to
improve the control over the nanoscale processes, reduce the level of
complexity of the systems, exploring new materials and switching
mechanisms.

In this study, we report the discovery of a principally different
electrochemical memristive mechanism, that we term as filament
conductivity change mechanism (FCM) by creating dual ohmic contact
metal/oxide interfaces, instead of one Schottky contact and one ohmic
contact, as used in conventional VCM devices'. The two-terminal
ohmic memristive devices based on OE/Ta,0s/OE junction with var-
ious ohmic electrode (OE) materials were fabricated and character-
ized. Based on electrical, transmission electron microscopy (TEM), and
spectroscopy characterization, we show that the switching mechanism
in our memristive systems relies entirely on redox reactions and ion
transport. Moreover, the design of the OE/oxide/OE structure reduces
the physicochemical complexity of the system by avoiding the pre-
sence of Schottky barrier height modulation. We also discuss in detail
and explain the essential role of the interplay between the Schottky
barrier, and the electrochemical redox barrier influences the processes
and stability of memristive systems and explain the significant
improvement of the devices in terms of complex performance and
reliability. The kinetics studies reveal rich physicochemical dynamics,

implying the presence of migration and redox reactions of both anion
and cation species. This phenomenon is corroborated by the cross-
sectional TEM, by which nanoscale conduction channels were detected
in the oxide layer, bridging the top and bottom electrodes. The various
oxidation states of the conduction channel at the active switching
region allow the programming of the memristive device in a binary
and/or analog manner. Combining the controlled, ultra-stable binary
and analog switching functionalities, we further conduct neural net-
works simulation demonstrating the ohmic memristive device can be
implemented in artificial neural networks model and achieve high
pattern recognition accuracies on multiple image datasets.

Results and discussions

Materials design and electrical properties

The ohmic memristor is composed of a thin Ta,Os layer (-8 nm),
sandwiched by two OEs with low-work functions (Supplementary
Table 1). Figure 1a shows a schema of the two-terminal OE/Ta,0s/OE
junction. We used Ta as the bottom electrode, combined with various
top electrodes: Hf, Ta, and Zr, which are commonly used as OEs
(creating nearly ohmic contact with the oxide) in conventional VCM
devices'®*. To compare the electrical/electrochemical properties, we
fabricated reference VCM devices with Pt/Ta,0s/Ta layered structure,
where a Schottky contact is present at the top electrode/oxide inter-
face. For the ohmic memristors, in the first stage, no capping layers
were used for the top (Hf, Ta, or Zr) and bottom (Ta) electrodes. The
Hf(Ta, Zr)/Ta,0s/Ta junctions were directly fabricated on a 430 nm
thermally oxidized SiO,/Si wafer. The purpose was to eliminate any
influence of capping materials on the electrical characteristics of the
device**. We conducted /-V sweep measurements on the fabricated
devices by applying an electrical bias to the top electrode. Figure 1b
shows the corresponding /-V characteristics, with typical counter-
eight-wise (c8w) bipolar resistive switching™'®. The bipolar switching is
determined by the chemical difference of Hf/Zr and Ta electrodes
(ensuring an electromotive force of at least 800 mV) and is supported
by the different water and oxygen partial pressures at the top and
bottom electrodes (pH,O and p0O,), and as well by the different
thickness and/or stoichiometry of the suboxides formed at the inter-
faces during the device preparation. The latter factors are essential for
the Ta/Ta,Os interfaces®. After exceeding a negative threshold vol-
tage, the current increases abruptly (SET transition) shifting the cell
from a HRS to a LRS. A positive voltage sweep induces the RESET
transition, switching the device from LRS to HRS. The material of the
top electrode does not cause significant influence on the switching
behavior (Fig. 1b). This differs from conventional VCM devices whose
electrical characteristics are highly dependent on the class of top
electrode since the oxygen affinity and free energy of oxide formation
of top electrode decides the total amount of created oxygen vacancies
in the metal oxide®.

We noted the electrical characteristics of the ohmic memristive
devices are comparable to that obtained from conventional Pt/Ta,0s/
Ta VCM device (Supplementary Fig. 1b). However, due to the high
oxygen affinity of Hf, Ta, Zr electrodes®”, the ohmic memristive
devices without capping layers are sensitive to surface oxidation when
measured at ambient conditions, leading to electrode passivation®®*’
and eventually resulting in deterioration in electrical properties,
leading to limited electrical stability in endurance and state retention
with time (Supplementary Fig. 2).

To improve the chemical and electrical stability, we have looked
for electrode materials, able to conduct sufficiently good electrons, to
have the ability to exchange oxygen ions and forming no Schottky
barrier. We utilized IrO,/Pt as suitable capping layers for the OEs to
prevent their passivation, however, keeping the performance. The
conductive IrO, buffer layers could act as internal series resistors and
can stabilize the electrical characteristics by improving the electrical
contact and limiting the total current®*’",

Nature Communications | (2025)16:2348


www.nature.com/naturecommunications

Article

https://doi.org/10.1038/s41467-025-57543-w

a b
800 |
__ 400}
<
=
3
-400
-800
-2
Voltage (V)
c d e
10°¢ . 10°F Rigs
404l 4 e ‘
<10 8105k 1 e
< c c10%F il
ut.) 5 il &1104 Device variance
L:) 10°F 100 g 10° : " )
c10° & 10°F 1 10 100 1000
5 @ 104} Bakeat383K Switching cycle
o 19° 400 800 1200 i
R
t(s) 108 MRS
10-7 L 1 1 1 6 L i o L
2 A 0 1 2 3 4 10° 10" 10* 10° 10* 10° 10°
Voltage (V) Switching cycle
f 10° g 8 h 100F
Ioc (WA)
10 HEE S 10° 56 S
£ I
= 102 g g 6o
2 S 4k )
%) i) =
S S B 40}
el 3
c
S 2F g
10" O 20
1 1 0 1 1 1 1 (03 L L 1
0 400 800 1200 0 20 40 60 80 100 0 1 2 3 4
Time (s) Time (s) Conductance (mS)

Fig. 1| Device and electrical properties. a Schematic illustration of the two-
terminal metal-insulator-metal memristive device. The Ta,Os resistive switching
layer is sandwiched by top and bottom electrodes. Optical microscopy image of the
device structure is shown in Supplementary Fig. 14a. b /-V characteristics of the
ohmic memristive devices using Ta as the bottom electrode and Hf, Ta, Zr as top
electrode, respectively. ¢ High-angle annular dark-field TEM image showing the
layered information of the optimized ohmic memristive device. Scale bar, 50 nm.
The inset shows the zoomed-in HRTEM image. Scale bar, 4 nm. EDS elemental
mapping of each layer and EDS line-scan profiling are shown in Supplementary
Fig. 14d. d Consecutive 100 resistive switching cycles of the optimized Hf/Ta,0s/Ta
device. HRS and LRS resistance show no degradation under a constant -200 mV

electrical stress at 383K for over 1200 s. e Endurance result showing one million
pulse resistive switching cycles. The inset shows the endurance results obtained
from ten individual devices. HRS and LRS resistance were collected from -0.2V/
6 ms read pulse after each RESET and SET pulse, respectively. For all devices, the
applied electrical potentials are identical: Vsgr: —1.2 V/30 ms, Vigser: 3.2 V/2 ms.
Statistical analysis on cycle-to-cycle and device-to-device variation is shown in
Supplementary Fig. 6. f Electrical stability of various LRS currents after the device
was programmed using different current compliance in SET operation. g Stability
of 32 (5-bit) distinguishable states which were obtained using the write-verify
program (Supplementary Fig. 11). h Read noise analysis for selected 8 distinguished
states, each state was read 1000 times for 10 devices.

Figure 1c shows the cross-sectional high-angle annular dark-field
(HAADF) TEM image of the optimized ohmic memristive device. The
inset presents a high-resolution transmission electron microscopy
(HRTEM) image, showing the amorphous phase Ta,Os film and clean
electrode/oxide interfaces. The forming and subsequent /-V curves of
the optimized devices are depicted in Supplementary Fig. 3. By com-
paring Fig. 1b and Supplementary Fig. 3¢, it can be seen that the use of
capping layers does not alter the resistive switching behavior. More-
over, the optimized ohmic memristive devices exhibit significantly
improved electrical stability and performance (Fig. 1d-h). They can be
characterized by a much broader voltage stability window, showing
lower forming voltages, high-temperature stability, no current over-
shooting, low variability, and the ability to switch in both binary and

analog manner. The /-V characteristics exhibit high cycling uniformity
(Supplementary Fig. 3d). Ryrs and R rs show no distinguishable drift
for over 1200 s under the constant electrical stress (200 mV) at 383 K
(see inset of Fig. 1d), demonstrating high-temperature stability. At
room temperature, the HRS and LRS resistance can be retained for
over 2 days (Supplementary Fig. 4). The HRS and LRS resistance ratio
(200-1000) was maintained for over one million pulse switching
cycles (Fig. 1le, Supplementary Fig. 5). Moreover, the devices show
minimal spatial variation (see inset of Fig. le, Supplementary
Figs. 6 and 7) under identical pulse programming conditions. These
electrical properties are superior to that of conventional Ta/Ta,0s/Pt
and Hf/Ta,0s/Pt VCM devices prepared and tested at the same con-
ditions, as shown in Supplementary Fig. 8, which typically suffer from
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RESET failure problem in endurance measurement. Overall, by using
two OEs to minimize the interfacial Schottky barrier height, the ohmic
memristive devices exhibit more reliable forming process (Supple-
mentary Fig. 3a, b), high cycle-to-cycle (Fig. 1d) and device-to-device
uniformity (Supplementary Figs. 6 and 7), good endurance with high
HRS and LRS resistance ratio (Supplementary Fig. 9). The ohmic
memristive device can be also programmed in an analog manner®. In
I-V sweep measurement, by varying the current compliance, multilevel
LRS currents with stable retention stability (biased at 200 mV) can be
obtained, as shown in Fig. 1f and Supplementary Fig. 10. For the analog
switching capability, we further developed a pulse write-verify scheme
(Supplementary Fig. 11) to program the device into the target con-
ductance within given errors. The typical examples of device con-
ductance variation under the negative feedback programming scheme
were shown in Supplementary Fig. 12. Figure 1g shows obtained 32 (5-
bit) distinguished and evenly distributed LRS states with conductance
levels range from uS to mS, and can be retained after writing (see
Supplementary Fig. 13). The device-to-device variation and read noise
for the analog switching are shown in Fig. 1h. We confirmed that by
using the capping layers, the passivation of the OEs has been sup-
pressed, as the energy-dispersive X-ray spectroscopy (EDS) and X-ray
photoelectron spectroscopy (XPS) analysis reveal the presence of the
metallic phase of OEs (Supplementary Figs. 14 and 15).

Interfacial redox reactions and charge transport

The robust device characteristics of ohmic memristors are not relying
on Schottky barrier height modulation, but rather on conductivity
changes induced electrochemically. Therefore, we realized the
importance of analyzing in detail the relation and interplay between
Schottky and redox barriers at the electrode/filament interface,
determining the physics of the filament formation. We have qualita-
tively considered the physical and electrochemical properties of the
metal/oxide interface in both Schottky (Fig. 2a, b) and ohmic systems
(Fig. 2c, d), and studied their dynamic responses by cyclic voltammetry
(CV) measurements (Fig. 2e, f). The discussion and measurements
provide essential conclusions about the charge/mass transfer pro-
cesses, responsible for the resistive switching and are indicative for the
ratio between electronic and Faraday currents.

Considering the transport of mass and charge at the metal/oxide
interface two main equations describe the physical processes, namely
the equation for thermionic emission and the Buttler-Volmer equation,
giving the Faraday currents. The equation for overcoming the Schottky
barrier by electrons is given by:

, . A
JTe=Js {exp <%> - 1} @

wherej; =|A*T? [exp (— %)] is the saturation current density, A* is the

effective Richardson constant, k is the Boltzmann constant, T is the
absolute temperature, e is the elementary charge, egjy is the barrier
height, k is the Boltzmann constant, Ag is the applied voltage. Under

the reverse (negative) bias [exp ("f—}"ﬂ «1, the current density, referred

to as saturation current density, depends on the effective barrier
height.

The equation for charge transfer limited electrode reactions given
by the Butler-Volmer relation®:

, . a,zelA a.zeA
Jion=Jo {exp( akT §0> —exp <— CkT go)} )

where j, =zekc exp(— AkGT“) is the exchange current density, z is the

number of exchanged electrons, k is the rate constant, ¢ is the

concentration of ions at equilibrium, AG,, is the free energy of activa-
tion, a, is the anodic transfer coefficient, a. =1 - a, is the cathodic
transfer coefficient, Ag is the electron-transfer overpotential.

The total steady-state mass and charge transport through this
interface in both type devices is represented as a sum of Schottky-
emission and redox current densities j=jr +j,oy. Despite this was
mathematically included in simulation models®, the physical inter-
pretation and discussion on the interplay between Schottky and redox
barriers have been not considered and analyzed yet. We found this is of
crucial importance for understanding the complex physicochemical
behavior of redox-based memristive devices with essential implica-
tions on materials design and performance.

To account for the complex electrochemical reactions and charge
transport across the interfaces and to formally describe the interplay/
impact of the different energy barriers, we comparatively analyzed the
situations accounting for both thermionic emission and redox reac-
tions contribution at the metal/oxide interface®*** (see Supplemen-
tary Note 1). Four boundary cases were formulated:

(i) System with high Schottky barrier under forward (positive)
bias:

Jj=A*T? {exp (% e> } +2ekc {exp (%) } 3)

(i) System with high Schottky barrier under reverse (negative)
bias:

“@

j= —2ekc exp <7_6M’){; AG")

(i) System with low Schottky barrier under forward (positive)
bias:

R Ap — Ap — AG
Jj=A*T? {exp (q)kiT(pB e) —exp <— %)} +2ekc {exp <e¢k77_“>}
Q)

(iv) System with low Schottky barrier under reverse (negative)

bias:
a2 Ap — ¢g epg
J=AT {exp<?e —exp “kT

— 2ekc {exp <#¥AG">}

(6)

The corresponding energy diagrams for each boundary condition
are provided in Fig. 2a-d.

In case (i) of forward bias, both electronic and Faraday processes
proceed in parallel, where electronic currents are dominating. This
lowers the Faraday current efficiency and suppresses the oxidation/
passivation rate of the OE. High Schottky barrier at metal/oxide
interface at reverse bias significantly suppress electronic currents but
cannot block (case (ii)) the redox process(es) at the electrode surface
as also shown in the CV measurement (inset of Fig. 2e), making the
Faraday efficiency of the electrochemical reaction very high. This will
lead to the formation of much stronger filaments and as well will cause
also faster passivation (blocking effect) of the OE (Fig. 2e and Sup-
plementary Fig. 16). For example, applying a pulse of 1V of 1 mA, for
1us in an oxide memristive system will cause the evolution 0.56 um?® O,
(resulting in forming the corresponding number of oxygen vacancies
and electrons). In practice, this could cause the necessity of using high
RESET voltages. High Schottky barriers are also not beneficial for the
forming process, as for a virgin devices high forming voltages will be
necessary to apply, (because the large voltage drop across the
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Fig. 2| Cyclic voltammograms and charge transfer at interfaces. a Schematic of
energy diagram of the OE/oxide/OE system with one Schottky interface and one
ohmic-like interface. The Schottky interface is positively biased, providing high
electronic current. b Schematic of energy diagram of Schottky system when the
Schottky interface is under reverse bias. This results in a high energy barrier and
blocks the electron movement through the SE/oxide interface. ¢ Schematic of
energy diagram of the OE/oxide/OE system with dual ohmic-like interfaces under
positively biased and reverse biased (d). In these cases, due to the low Schottky
energy barrier and lower level of electrode passivation, higher electronic currents
can flow through the metal/oxide interface, regardless of the applied voltage
polarity. For all systems, when the top electrode (Schottky electrode SE, or ohmic
electrode) is anodically polarized (a, c), the Fermi level of the redox system (g,
repox) is shifted, electrons are transferred from the occupied states (RED) to metal.
Oxidation currents are generated during the anode process. Under the reverse
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biased condition, electrons are transferred from metal to unoccupied states (0X),
reduction process occurred at the cathodic interface. e Cyclic voltammograms
measured in Schottky system-based memristive devices (Pt,Cu/Ta,0s/Ta). The
current densities show diode-like behavior. High currents are observed in positively
biased condition (region I, energy diagram shown in a), and low currents in reverse
bias condition (region II, energy diagram shown in b). The inset shows the current-
voltage characteristics under high-revolution CV sweeps, indicating the presence of
ionic currents originated from electrochemical redox reactions (region II). f Cyclic
voltammograms in ohmic memristive systems. The high current densities shown at
both positive (region I, energy diagram shown in c) and negative biased region
(region IV, energy diagram shown in d) suggest that the Schottky-like barriers at
metal/oxide interfaces are highly reduced. The pronounced current densities peaks
imply strong redox processes at OE/oxide interfaces (see also Supplementary
Figs. 17 and 18).

Schottky interface) which could lead to irreversible breakdown of the
oxide layer by generating high concentration oxygen vacancies.

For low Schottky barrier height (cases (iii) and (iv)), the situation is
similar for both voltage polarities with high electronic currents,

parallel redox reactions and ionic currents, and lower level of passi-
vation of the OEs (Fig. 2f, Supplementary Figs. 17 and 18). The blocking
effect in reverse bias region is low and the electronic currents are
dominating the interface exchange.
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Thus, high Schottky barriers appear not advantageous for the
stability of the cells due to the enhanced rate of passivation of the OEs.

These qualitative models agree with the experimental CV char-
acteristics shown in Fig. 2e, f and confirm the conclusions made by the
analysis of the energy barriers ratio at the metal/oxide interface. Figure
2e shows cyclic voltammograms in a conventional VCM system using
unformed 30-nm Ta,Os switching film and high-work-function metals
i.e., Pt and Cu, respectively, forming a Schottky-contact interface with
the oxide”. At the same time, Pt is electrochemically inert i.e., no redox
reaction is expected, whereas Cu can be oxidized and incorporated
into the oxide. The CV characteristics for both devices are shown in
Fig. 2e and Supplementary Fig. 16. At positive voltages, after over-
coming the energy barrier, the current density increases exponentially
with the applied voltage (Supplementary Fig. 16). The electronic cur-
rent is dominating, covering the ionic currents. In contrast, on the
negative voltage branch, the current density is profoundly reduced
due to the high energy barrier, where electron transport across the
metal-oxide interface is dominated by the Schottky-emission
process™?*,

Analyzing more carefully within the diode (blocking) region we
found current density peaks in both devices under high-revolution CV
sweeps, see insets in Fig. 2e, and Supplementary Fig. 16b, d. In the Cu/
Ta,0s/Ta devices, the reverse current density further increases with
increasing reverse bias (Supplementary Fig. 16c, d), whereas in Pt/
Ta,0s/Ta devices, the current density goes to saturation (Supple-
mentary Fig. 16a, b). We attributed the current density peaks to
reduction reactions of metal ions and H* or H,0%.

The current densities of these reactions, however, decrease with
the increasing number of CV sweep cycles (Supplementary Fig. 16). We
relate this effect to the parallel anodic oxidation of the Ta bottom
electrode, forming a thicker oxide layer that suppresses the total
current”. Not surprisingly, the subsequent CVs show reduced current
density as higher electric potentials are increasing the oxide film
thickness.

The electrochemical behavior in ohmic memristive systems is
principally different. Figure 2f depicts the CVs of differently polarized
(30-nm thick) Ta,Os ohmic cells: Ta vs. Hf, Hf vs. Ta, Tavs. Ta, and Zr vs.
Ta. The XPS depth spectra confirmed the top and bottom OEs are
metallic (Supplementary Fig. 15). We observed high current densities in
both forward and reversed biased conditions (see also Supplementary
Figs. 17 and 18), indicating low Schottky barrier height at the top and
bottom electrode interfaces. Hence, higher concentration charge
carriers can flow across the metal/oxide interface. The ionization of the
OE is clearly evidenced in the Ta vs. Hf system, where distinct oxidation
current density peaks were observed (Supplementary Fig. 17) when Ta
electrode was positively biased. This corresponds to redox processes
at Ta/Ta,0s interfaces. At a higher voltage region, the current density
peaks in Hf vs. Ta, Ta vs. Ta, and Zr vs. Ta system were also observed
(Supplementary Fig. 18b, d, f), suggesting that redox reaction of Hf, Ta,
and Zr OEs were also taking place. The interfacial redox interaction
(ionization of OE and partial reduction of metal oxide) results in sig-
nificant decrease of interfacial barrier height, leading to ohmic-like
electrical contact®. Moreover, in contrast to the CVs in Schottky VCM
systems (Pt/TaOs/Ta, see Fig. 2e), the CVs in ohmic memristive devi-
ces show much higher current densities in the low voltage (-2 to 2 V)
region (Fig. 2f).

Due to the complexity of the system (multiple redox processes),
the clear assignment of the redox peaks is challenging. Possible elec-
trode half-cell reactions are summarized in Supplementary Table 2.
Moreover, the electrode reactions lead to the incorporation of addi-
tional ionic species that can be considered as mobile donors/accep-
tors. Thus, exponential increase in the concentration of ions/vacancies
can lead to same exponential increase of the electronic charge carriers
and even changing the interfacial energy barriers, making analytical
description of the systems extremely complicated.

Resistive switching mechanism and kinetics

The mechanism of the resistive switching in the ohmic memristive
devices is based solely on electrochemical reactions of partial oxida-
tion and reduction of the filament and no Schottky barrier height
modulation is involved. The switching is filamentary type as observed
in the TEM images (Fig. 3). Depending on the applied voltage polarity,
two different SET mechanisms were observed, showing the impor-
tance of the electrochemical properties® of the electrodes. The crucial
factors in determining the mechanism are the difference in the energy
barriers at both interfaces, the standard redox potentials of the half-
cell reactions (see Supplementary Table 2) and the type and transfer-
ence number of the mobile species.

Applying voltage bias to the Ta electrode results in pronounced
oxidation and reduction currents as shown in Fig. 2f, and Supple-
mentary Fig. 17 indicating the electrochemical ionization reactions. We
conducted cross-sectional TEM and confirmed the formation of Ta-
rich conduction channel in the oxide layer. Figure 3a shows the HAADF
TEM image of the ohmic memrristive device at LRS. As indicated by the
dashed oval, a nanoscale channel was detected within the thin Ta,Os
film, connecting the Hf and Ta electrodes. The nanoscale conduction
channel is responsible for the robust c8w resistive switching observed
in the ohmic memristive devices (see Figs. 1d, e and 3e). The EDS
elemental mappings show the composition of the conduction channel
is rich in tantalum (Fig. 3b), and deficient in oxygen (Fig. 3c). This is
further evidenced by the EDS line-scan analysis, as shown in Fig. 3f. No
incorporation of Hf into Ta,0s film was detected inside or outside the
conduction channel (see Fig. 3d). It should be noted that the con-
duction channel has highest diameter (-3 nm) at Hf interface, and the
diameter gradually decreases when approaching Ta electrode. This is
in line with the classical reduction electrode reaction, in which the Ta
cations first nucleate at Hf electrode (cathode) interface, followed by
the growth process towards Ta (anode). The negative standard elec-
trode potentials of Ta*/Ta (-0.6 V) and Ta**/Ta (-0.75 V) and negative
free energy of oxide formation (Ta,0s, =760.5 k) mol™) indicate the Ta
nucleus has a high tendency to get oxidized, creating Ta-rich (O-defi-
cient) conduction channel. The read currents at LRS and HRS show
linear dependence with applied voltage, indicating that the electron
transport in the oxide is dominating conduction mechanism More-
over, the HRS and LRS currents increase with increasing temperature,
suggesting the conduction behavior is non-metallic (Supplementary
Fig. 19). Additional TEM images and quantitative analysis also reveal
other, partially formed Ta-rich conduction channels at Hf interface
(Supplementary Fig. 20a).

The transient electrical characteristics of the optimized Hf/Ta,0s/
Ta device were monitored in pulse measurement mode, varying the
SET voltage amplitude (Vsgr). The resulting SET time (¢sgt) is defined as
the time difference between the half of the SET pulse rising edge and
the half of the SET current rising edge (Supplementary Fig. 21). Figure
4a depicts the semilogarithmic plot of SET time as a function of applied
SET voltage. Three regions can be distinguished as indicated at the
linear fit: region I from Vsgr 0.35 to 0.8V, with a slope of -50 mV;
region Il from Vger 0.8 to 1.2V, with a slope of —155 mV per decade;
region Ill where Vser is above 1.2V, and the slope is -1100 mV/decade.
The results fit well with the model presented previously for ECM
devices, distinguishing three electrochemical processes: nucleation of
metal ions at low voltage regime, electron-transfer reaction at inter-
mediate voltage regime, and ionic transport for high voltage regime.
The nucleation time of the metal ions at the counter electrode is given
as*’:

t=t, {exp <(NC + o’(:7)_zeA(pc>} @

where ¢, is a pre-dominant factor depending on the cation concentra-
tion and number of active sites for nucleation, N, is the nucleus
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Fig. 3 | Observation of conducting channel by cross-sectional transmission
electron microscopy. a HAADF TEM image of the nanoscale Ta-rich conduction
channel. b-d Corresponding EDS elemental mapping of Ta, O, and Hf, respectively.
e c8w /-V curves obtained from the ohmic memristive device when Hf metal
electrode were negatively biased (Ta electrode positively biased) for SET operation.
The inset shows the resistance as a function of applied voltage. f EDS line-scan
analysis of the conduction channel region (oval area in b). g /-V characteristics of
the ohmic memristive device when operating at high current and voltage ranges.
This leads to another SET mode resulting in 8w switching polarity (see also
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Supplementary Fig. 3f). Both HRS and LRS are highly conductive. The inset shows
the corresponding R-V plot. h EDS line-scan analysis (see oval area in j) of the
conduction channel region, showing that a larger Ta-rich filament is formed in
ohmic memristive devices when operated in 8w polarity (as shown in g). i HAADF
image showing Ta-rich cluster observed in 8w switching polarity. j-1 EDS elemental
mapping of Ta, O, and Hf; respectively. Scale bars, 10 nm. It can be clearly observed
that the O migrates from the bottom electrode to the anode (k), generating oxygen-
deficient and tantalum-rich filament at the bottom electrode interface.

number, Ag,. is the cathodic potential (¢.<0), a. is the cathodic
transfer coefficient. Equation 7 suggests an exponential dependence of
the nucleation time on applied potential, that is, nucleation time
decreases exponentially with increasing (absolute) cathodic potential.
This agrees with the linear fitting in the region I (Fig. 4a). We employed
the slope 50 mV to Eq. 7 to calculate(N, + ), and got (N, +a,) = 0.24.
Thus, the number of atoms in the critical nucleus N, is derived to be O,
indicating each metal cation that is reduced at the cathode can further
grow as a new phase. Nevertheless, we cannot clearly distinguish from
the Tafel plot whether we have nucleation limitations with N, taking
statistically O/1, or electron-transfer limits at the metal/oxide interface.
The value for the transfer coefficient alpha is around 0.2, comparable
to that determined for other ECM systems. From the applied electrical
polarity, we attributed the nucleus to Ta, which was generated through
the reduction of Ta cation under the cathodic potential. Using the
same method, we got (N, +a,) - 0.1 in region II. Here we assume the
charge transfer control is dominating as under voltage pulse, we
observed quantized conductance (Fig. 4b) that rather suggests that
charge transfer (that also can be influenced by Joule heating) is the
limiting step. From the cyclic voltammograms and SET kinetics, we are
convinced that the ionization of the Ta electrode, nucleation of the Ta
atom, and the formation of Ta-rich conduction channel are crucial in
conductance modulation in the fabricated ohmic memristive devices
(Fig. 4c). The results also indicate Ta has similar electrochemical
mentalization dynamics with Cu that can be ionized and incorporated

into the oxide layer. This is further evidenced by the electrical
characteristics observed in Cu/Ta,Os/Ta devices (Supplemen-
tary Fig. 22).

Based on the information from the cyclic voltammograms, I-V
sweeps, and cross-sectional TEM characterization, we concluded
that the SET/RESET transitions in the reliable counter-eight-wise
(c8w) switching originate in the conductivity change of the fila-
ment. This change of the conductivity and therefore, of the resis-
tance is determined by two factors as shown in Fig. 4c—the
oxidation state of the metal ions and related TaO, stoichiometry,
and the length. The oxidation state of the TaOy is changed by the
redox reaction, which is a function of the applied voltage. Ta-ions in
the filament of lower oxidation state (e.g., 4+ and/or 3+ and/or 2+
and/or 1+) are oxidized to higher oxidation state e.g., Ta*,
accompanied by additional incorporation of oxygen ions and the
oxide transits to its stoichiometric form. The oxidation will affect
not only the first layers of the tip but also expand, reducing the
effective length of the (TaO,) filament, being however, not com-
pletely dissolved (transformed to Ta,Os) during this process. The
shorter the length the higher the resistance. The change in oxida-
tion state/stoichiometry and length is determined by the redox
reaction rate and mobility of the ions, where these two processes
occur most probably in parallel. The differences in FCM mechan-
ism, compared to ECM and VCM switching processes are summar-
ized in Supplementary Table 3.
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various lengths and oxidation states of the conduction channel which can be
achieved by the electrical programming enable the multi-bit switching capability, as
shown in Fig. 1f-h.

Superior analog switching capability (Fig. 1f-h) of the ohmic
memristive devices can be obtained depending on the /-V sweeping
and pulse programming conditions. This is enabled by the ability of the
ohmic memristor to form conduction channels of different lengths,
and with different valences in the oxide (Fig. 4¢, right panel). These two
factors in combination allow to achieve various conductance levels in
the device.

The second electrochemical mechanism was observed when the
devices were operated at high current and voltage ranges (Supple-
mentary Fig. 3e, f) in already-formed devices. This results in the tran-
sition from c8w switching to 8w switching polarity with highly
conductive HRS and LRS (Fig. 3g). As we were not able to identify Hf
conduction channels from the TEM measurement, we concluded that
no Hf-ions are injected into the switching film. Instead, a large oxygen-
deficient cluster was found in Ta,Os (Fig. 3h-I). At the same time a
decrease in Hf concentration (Fig. 3I) and an increase of oxygen con-
centration (Fig. 3k) at the Hf electrode interface was observed,
implying the migration of oxygen anions (0*) towards Hf and the
formation of substoichiometric hafnium oxide. Thus, in this voltage
polarity the conduction channel seems to be predominantly formed
due to scavenging of oxygen ions from the thin Ta,Os (-8 nm) layer
into Hf electrode, generating a large oxygen-deficient TaO, cluster in
the oxide layer as shown in Fig. 3h-1 and Supplementary Fig. 20b (more
TEM images, EDS elemental mapping and line scans are shown in
Supplementary Figs. 23 and 24). The formed Ta-rich cluster is highly
conductive, explained by the high oxygen scavenging capability and
negative defect formation energy (-1.5eV)*?* of the Hf metal elec-
trode. We also observed the migration of oxygen ions from the IrO,

layer toward the upper layers (Fig. 3k). In contrast to Hf, Ta has positive
formation energy of oxygen vacancies (0.1eV) when in contact with
Ta,05", making it difficult to create oxygen vacancy defects in
the oxide layer. Despite resistive switching using this voltage
polarity is possible, the devices suffer from high currents (Fig. 4g) and
limited stability, which can also be justified by the larger size/volume
of the oxygen-deficient filament (Fig. 3h-l, Supplementary
Figs. 23 and 24).

The difference in the two mechanisms and respectively SET
modes can be explained by the energy diagram shown in Fig. 2¢c, d,
accounting for the standard redox potentials and dominating mobile
species. Ta/Ta,0s interface has a less negative standard electrode
potential, compared to Hf/Ta,0s. Applying a positive voltage to Ta
(negative to Hf) allows for electronic currents through both interfaces
and does not enhance the oxidation reaction of Ta, being ionized and
incorporated into the oxide layer. Here the ions responsible for the
filament formation appeared to be predominantly Ta-ions. In contrast,
when positive bias is applied to Hf (negative to Ta) the much more
negative standard electrode potential of Hf/HfO, half-cell reaction
(Supplementary Table 2), is a reason for enhanced electrochemical
oxidation of Hf (as evidenced by Hf EDS spectra, see Fig. 3f). Here
oxygen ions appear to be predominantly responsible for the switching
as TEM images have not detected Hf-ions within Ta,0Os. This is also a
reason for the different shapes and sizes of the filaments and also
demonstrates that Hf-ions are not incorporated into the filament, and
have no influence on its defect chemistry and resistance. Moreover, in
contrast to eight-wise (8w) switching (Fig. 4g) that relies on high cur-
rents operation, the c8w operation (Figs. 1d and 4e) provides more
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Fig. 5 | Overcome catastrophic forgetting in deep neural networks.
aSchematics of catastrophic forgetting problems when neural networks are trained
by different tasks sequentially. b The testing accuracies for three different tasks
during the sequential training of the neural networks, whose weights were set as
float point or binary values respectively. ¢ Schematics of the hidden states within
synapses, which can influence the plasticity of each synapse. d Diagrams of the

neural networks implementation inspired by the higher order synaptic plasticity.
e, fFinal testing accuracies of all the trained tasks concerning the quantized bounds
and bit precision. g Neural network performances for different devices’ fail ratios
during the continual training process. h The impacts on the continual learning
capacity of the neural network model under the different multilevel programming
errors.

reliable and stable switching characteristics. The positive oxygen
vacancy defects formation energy of Ta also suppresses the generation
of defects which may lead to device failure®.

Neural network application

On the basis of well-defined resistive switching mechanisms and
electrical characteristics, the ohmic memristors were programmed in a
versatile way between two (binary) or more states (analog) in an ade-
quate condition, as shown in Fig. 1d-h. The binary and analog
switching capability in the ohmic memristive device enables energy-
efficient neuromorphic computing hardware acceleration which

requires different-precision memory modules. In the human brain,
some neuroscience research*”** suggested there existed higher order
plasticity variables that can control synaptic weight changes, which
were also termed as “metaplasticity”. The multiple degrees of plasticity
enable advanced cognitive abilities, one of which includes learning
new tasks continually without forgetting old contents. However, for
most of the modern deep neural networks, it is hard to keep “memory”
for the learned tasks when trained by a new task, one of the most
important reasons is that the networks” weights were optimized into
another subspace to accomplish this new task without protected
within previous subspaces (Fig. 5a)*>. Only when the networks’ weights
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converge to the intersection of these tasks, can the network finally
learn all the trained tasks simultaneously.

Recently, synaptic metaplasticity in binarized neural networks
has been introduced to overcome catastrophic forgetting
problems*®. In this neural network model, there were two groups of
different-precision weights, including floating-point hidden weights
and binary-value inference weights. To test if the model can learn
different tasks continually, three nonoverlapping datasets, involving
the Modified National Institute of Standards and Technology
(MNIST) database, Fashion MNIST (F-MNIST), and Kuzushiji MNIST
(K-MNIST) (Supplementary Fig. 25)**°, were fed into the neural
network sequentially. The superior characteristics and functionalities
measured on individual ohmic memristors were implemented in a
neural network model simulation. Firstly, we studied the neural
network performances when their weights were just used floating-
point values or binary values (Supplementary Fig. 26, details can be
found in the Supplementary Materials). The results presented in
Fig. 5b show that the catastrophic forgetting problems still cannot be
avoided. We then incorporated the two different switching modes
using the unique properties of our ohmic memristors, to emulate the
modulation effects between synaptic plasticity and hidden para-
meters behind the biology synapses (Fig. 5¢), in which the hidden
parameters can decide the degree of the synaptic weights’ change.
The forward and backward procedures for the calculation process
were based on different-precision weights (Supplementary Fig. 27),
in which the backward updating steps included a nonlinear function
fmeta that will give a certain punishment when the signs of the hidden
weight and the gradient are the same, which is aiming to reduce the
proportion of weight sign changes in the binarized neural network
and keeps the network performances stable on the trained tasks. In
conventional deep neural networks, in addition to reloading old
tasks, which will cause much more extra storage resources and time
wasting for retraining, the pre-trained weights between two neurons
are hard to keep “memory” for previous training experience after
being trained by the new tasks. Therefore, we adopted hidden
weights behind inference weights to control their updated direc-
tions, the analog-value weights represent the importance factors of
the corresponding inference weights about the old tasks, in which
the larger the absolute value of the hidden weights is, the more
important the associated inference weights are with respect to the
trained tasks. Through the updated punishment under the nonlinear
function when the backward gradients will cause the sign changes of
the inference weights, the important weights can be protected. As
illustrated in Fig. 5d, through different operation ranges to control
the conductive filaments formation, the ohmic memristor can
simultaneously work in the binary-switching mode or the multilevel
transition, which can separately act as inference weights and hidden
weights.

In other words, the hidden weights store the memory for all the
trained tasks, which require floating-point storage format in the algo-
rithms and should be retained without memory loss, however, it will
cause much more latency and memory sources when this model is
employed in conventional computing architecture. By adopting the
energy-efficient computing-in-memory (CIM) architecture’®”, with
both hidden weights and inference weights stored by the ohmic
memristor, it can enable more compact and energy-saving continual
learning (Supplementary Fig. 28a).

In the hardware mapping of the hidden weights, we quantized
them into limited states to avoid floating-point storage wasting, when
considering that the hidden weights are also the variables of the meta
function fiew, the quantized bounds and bit precision both have
impacts on the neural network performances (Supplementary Fig. 29).
Figure Se, fillustrated the final testing accuracies of all the trained tasks
about the quantized bounds ranging from 0.05 to 6 and bit precisions
with the highest precision set at 5-bit, and the digital baseline

performances of the neural network can be found in Supplementary
Fig. 28b, in which all the weights are implemented at the software
platform. At the largest fixed quantized bound, high bit precision can
guarantee better continual learning results with lower precision loss of
the hidden floating-point weights. For the quantized bit precision, it
can cover most of the studied quantized bounds from 3-bit to 5-bit,
which all can be easily achieved by our ohmic memristors, more
information about the network performances with different quantized
bounds and bit precisions can be found in Supplementary
Figs. 30 and 31. When the quantized bounds are limited within small
areas, such as smaller than 0.25 in Fig. 5f, followed by the meta func-
tion, the value of fiera almost keeps at 1, which nearly loses the reg-
ulation capacity for the analog weight updating and continual learning
ability, so it is necessary to the set the quantized bound in a
proper range.

The ohmic memristors have excellent endurance properties, and
the low failure ratio can help neural networks keep better continual
learning capacity. The results are shown in Fig. 5g, and the simulation
details can be found in Supplementary Note 2 or Supplementary
Fig. 32. As the failure ratio increases from 0.05% to 0.8%, the network
implemented by the memristors almost loses continual learning
capacity, in which the number the programmable devices is decreas-
ing. On the other hand, when we increase the training epochs for
learning each task under the 0.1% fail ratio, as shown in Supplementary
Fig. 33, the final network performances will also degrade for the less
programmable devices. So, as for this kind of continual learning
application required for frequent training, the excellent stability of
ohmic memristors is more suitable for it. The comparison of neural
networks performance between conventional VCM and ohmic mem-
ristors is shown in Supplementary Fig. 34.

Given the realistic array implementation, the effects of line resis-
tance and cell shape design were explored in Supplementary
Figs. 35 and 36, owing to the relatively small neural network structure,
the hardware design can tolerate a large range of line resistances.
When considering the programming errors about the target con-
ductance, we conducted experiments exploring the relationship
between network performances and writing noises ranging from 0.01
to 0.2. Asillustrated in Fig. 5h, the model can keep learning continually
when writing noise standard variation is less than 0.15. For picked write
noise standard variation at 0.02, the evolution of the weight distribu-
tions in the hidden layer in the training process indicated the model
can not only have consolidated weights for learned tasks but can also
have unconstrained weights for learning new tasks. Other final weight
distributions of the hidden layer for the different programming errors
were shown in Supplementary Fig. 37, the obvious overlapping
between different states illustrated the robustness of the model to
tolerate some noises in the hidden weights to a greater extent, which
can save much cost in writing and verifying the analog hidden weights.

In summary, we have reported a new type of ohmic memristive
device based on an oxide film sandwiched by two electrodes with low-
work functions. The use of tantalum as an active electrode, and the
minimization of Schottky barrier heights at metal/oxide interfaces
provide improved electrical stability in device performance such as
cycling uniformity, multilevel switching, retention, and endurance. We
analyze in detail the interfacial energy barriers and demonstrate that
for reliable switching one does not necessarily need Schottky barrier
and barrier height modulation, but solely an asymmetry in the elec-
trochemical interfaces and redox reactions. The mixed-precision
neural network computing based on configurable switching modes
between binary and multilevel can help overcome the catastrophic
forgetting problem, and the robustness of network performances got
verified by discussing myriad potential impacting factors. Our findings
provide a new methodology for the design paradigm of memristive
devices and will further advance the development of electronics for
computation-in-memory applications.
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Methods

Devices fabrication

The samples fabrication starts from ultrasonic cleaning of the ther-
mally oxidized SiO, (430 nm)/Si wafers (one-inch diameter) in acetone,
isopropanol, and deionized water for 10 min, respectively. Afterwards,
a sequence of optical lithography, layer deposition, and lift-off pro-
cesses were conducted to structure the geometry of the crossbar
devices. The active area of the fabricated devices ranges from 4 to
2500 pm? The electrical results reported in the main text and Sup-
plementary information were collected from 50 x 50 um? size devices.
For TEM characterization, the devices have a junction size of 2 x 2 um?.
For the uncapped ohmic memristive devices (no capping layers were
used for the top and bottom electrodes), the Ta electrodes were
deposited directly on SiO,/Si wafers and were used as the bottom
electrodes. The Ta,Os layer was subsequently deposited, followed by
lithography and top electrode deposition, eventually leading to devi-
ces with Hf(Ta, Zr)/Ta,0s/Ta stacks (Fig. 1b). Note that in the absence
of capping layers, as the top electrodes suffer from strong passivation
when exposed at ambient condition (see Supplementary Fig. 2), we
measured the devices immediately after the deposition of top elec-
trodes and the lift-off process. To improve the electrical stability, IrO,/
Pt layers were deposited in-situ to protect the OEs from passivation,
leading to Pt/IrO,/Hf/Ta,05/Ta/lrO,/Pt layer stacks. Pt/TiN/Cu/Ta,0s/
Ta/IrO,/Pt devices (see Supplementary Fig. 22) were also fabricated
using the same fabrication flows. For the comparison of resistive
switching characteristics, conventional VCM devices with Pt/Ta,0s/
Ta(Hf) structure were fabricated, where Ta and Hf electrodes were
used as top electrodes, respectively. For all memristive devices, the
thickness of the Pt, Ta, Hf, and Zr electrodes is 30 nm, the thickness of
the Ta,Os resistive switching layer is ~8 nm, and the thickness of the
IrO, layer is 15 nm. The CV measurements were performed on 30-nm
thick Ta,Os before the forming process. Thin film deposition was
realized by the magnetron sputtering technique. The Pt, Ta, Hf, and Zr
electrodes were deposited by radio frequency (RF) magnetron sput-
tering. The Cu electrode was deposited by electron-beam evaporation,
followed by TiN (DC magnetron sputtering) and Pt (DC magnetron
sputtering) capping layers deposition. The Ta,0Os resistive switching
layer was reactively sputtered by RF magnetron sputtering using Ta
metal target in mixed Ar (60%) and O, (40%) atmosphere. The IrO,
buffer layer was reactively sputtered by RF magnetron sputtering
using an Ir metal target in a mixed Ar (90%) and O, (10%) atmosphere.
The purity of the Ta, Zr, Hf, Cu, Pt, and Ir metal targets is higher than
99.95%. Details about layer deposition conditions are shown in Sup-
plementary Table 4.

Electrical measurements

Cascade SUMMIT 9600 probe station was used for electrical char-
acterization. The CV measurements were carried out using Keithley
6430 Sub-FemtoAmp Remote SourceMeter with a triaxial cable con-
nection. This system allows providing triangular voltage sweep with
sweeping rate ranges from 1 to 3000 mVs™. For cyclic voltammo-
grams, 130 mV's™ were used. Potentiodynamic /-V sweeps were per-
formed using Keithley 2636 A SourceMeter with triaxial cable
connections. In total 230 ohmic memristive devices have been mea-
sured. Pulse measurements were conducted using Keithley 4225 ultra-
fast pulse measure units with Keithley 4200 semiconductor parameter
analyzer and Agilent BISO0OA semiconductor parameter analyzer.
Wavetek 395 Arbitrary Waveform Generator was also used for applying
voltage pulses to the devices. In this case, the current signals were
recorded in real-time by monitoring the voltage drop across the input
channel (50Q shunt resistor) of the Tektronix DPO7254C storage
oscilloscope. Unless otherwise specified, the voltages were always
applied to the top electrode of the device. The devices were measured
in ambient condition at humidity of ~35%.

X-ray photoelectron spectroscopy

The XPS experiments were performed with Phi5000 VersaProbe Il
(ULVAC-Phi Inc.) system using a monochromatic aluminum K-alpha
(Ex=1.486 keV) X-ray source.

TEM characterization

To characterize the chemical change of the switching matrix, cross-
sectional TEM characterization was conducted with Talos F200X TEM.
The energy-dispersive X-ray spectroscopy was also employed to reveal
the specified elements distribution and variation by Super-X with SDD
detector (Thermofisher). Before the cross-sectional TEM character-
ization, the devices were programmed into LRS. Then the devices were
cut by a focus ion beam followed by lift-out processing (Thermofisher
Helios G4 UX DualBeam). Subsequently, the obtained lamellae were
replaced on the TEM grid for inspection.

Metaplasticity-inspired continual learning

By incorporating the “metaplasticity” concept in neuroscience into a
binary neural network (BNN) during the training process, the dynamic
changes of neural network weights can be modulated, which aims to
overcome catastrophic forgetting problems*’. In the specific hardware
acceleration of this algorithm, the CIM architecture and mixed-
precision memristive synapses are both the major points. Based on
the well-defined ohmic memristor that uses low-work-function OEs,
the configurable and stable binary and analog switching could be
adopted as inference weights and hidden weights in the framework of
metaplasticity-inspired continual learning.

As shown in Supplementary Fig. 28, the main body of this algo-
rithm is the BNN, whose weight values and neuron activations are
limited at1 or -1, the differences between that with a conventional BNN
are reflected in the training process whose updated gradients need to
be multiplied by a nonlinear function. The nonlinear function feta,
which is also referred to as meta function, is relevant to the hidden
weight values and one hyperparameter m.

To test the continual learning capacity of the network based on
the devices’ characteristics, the chosen datasets include MNIST, F-
MNIST, and K-MNIST, which are in the same image size of 28 x 28 and
the same 10 categories, so the network structure needs no change
during the training sequences.

In the comparison with the conventional neural networks, which
used only float-point weights or binary weights, the network structure
was set as 784-4000-4000-10, 10 fully-connected format, in which the
numbers of neurons in the two hidden layers were both set as 4000,
and the numbers of neurons in the input layer and output layer were
fixed at 784 and 10. The large neural network can better confirm the
necessity of metaplasticity in overcoming the catastrophic forgetting
problem. When only float-point weights were used in the neural net-
work, there would be no conversion between the analog weights and
binary weights and inference weights were analog values; similarly, for
only using the binary weights, the training and inference were both
based on the binary value.

For all the simulation experiments of continual learning, fully-
connected neural network structure was kept as 784-500-200-10
(Supplementary Fig. 28), in which the numbers of neurons in the two
hidden layers were set as 500 and 200, respectively, and the numbers
of neurons in the input layer and output layer were fixed at 784 and 10,
respectively. In the above experiments, the noise levels added at the
hidden weights were all in the standard variation of 0.05. For the
research into the impacts of the network performances under the
different multilevel programming errors, the quantized bound and bit
precision were set 1.5 and 3, while the hyperparameter m was still kept
at 3. When considering the differential conductance distribution errors
(Supplementary Fig. 6), for all the experiments, the weight values
transfer from hidden weights to binary inference weights were all
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added extra Gaussian noise at an average standard variation level
of 0.1457.

Endurance requirement for continual learning

For continual learning applications, the weights need to be updated
continually along with the network optimization, hence the high
endurance of devices is crucial for the online training. The endurance
is associated with the resistance-switching window, therefore the
endurance for the binary-switching devices is the bottleneck in this
application. Generally, the maximum number of the binary resistance
switching can be derived as:

T S X

Nmax = Z total 1 ><Etraini
=7 Sbatch, i '
i=1 “batch,i

Where S, ; is the total number of samples in the ith trained task,
Sacch,i 1S the batch number of samples in the ith trained task, E, 4, ;
denotes the training epochs for the ith trained task, hence the
endurance of the device should be more than the maximum binary-
switching number N, during training all the tasks from the first to the
Tth. By taking the experimental values in this work into the equation
and assuming that the parameters of each dataset are consistent, the
endurance of more than 10° can be trained for more than 83 tasks,
which can meet most needs in the edge platform, and the maximum
number of trained tasks can be further increased by adjusting related
parameters.

Data availability

All data that support the findings of this study are available within the
paper and Supplementary Information file, or are available from the
corresponding authors upon request. Source data are provided with
this paper.

Code availability
The codes that support the findings of this study are available in
Zenodo with the identifier https://doi.org/10.5281/zenodo.14849157.
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