001     1041045
005     20250610131443.0
024 7 _ |a 10.1002/inf2.70005
|2 doi
024 7 _ |a 2567-3165
|2 ISSN
024 7 _ |a 2770-5110
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02109
|2 datacite_doi
024 7 _ |a WOS:001429146800001
|2 WOS
037 _ _ |a FZJ-2025-02109
082 _ _ |a 621.3
100 1 _ |a Zhang, Jiyun
|0 P:(DE-Juel1)194716
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Advancing perovskite photovoltaic technology through machine learning‐driven automation
260 _ _ |a Weinheim
|c 2025
|b Wiley
336 7 _ |a Output Types/Book Review
|2 DataCite
336 7 _ |a Review
|b review
|m review
|0 PUB:(DE-HGF)36
|s 1743088285_31438
|2 PUB:(DE-HGF)
336 7 _ |a BOOK_REVIEW
|2 ORCID
336 7 _ |a review
|2 DRIVER
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|m journal
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Since its emergence in 2009, perovskite photovoltaic technology has achieved remarkable progress, with efficiencies soaring from 3.8% to over 26%. Despite these advancements, challenges such as long-term material and device stability remain. Addressing these challenges requires reproducible, user-independent laboratory processes and intelligent experimental preselection. Traditional trial-and-error methods and manual analysis are inefficient and urgently need advanced strategies. Automated acceleration platforms have transformed this field by improving efficiency, minimizing errors, and ensuring consistency. This review summarizes recent developments in machine learning-driven automation for perovskite photovoltaics, with a focus on its application in new transport material discovery, composition screening, and device preparation optimization. Furthermore, the review introduces the concept of the self-driven Autonomous Material and Device Acceleration Platforms (AMADAP) laboratory and discusses potential challenges it may face. This approach streamlines the entire process, from material discovery to device performance improvement, ultimately accelerating the development of emerging photovoltaic technologies.
536 _ _ |a 1212 - Materials and Interfaces (POF4-121)
|0 G:(DE-HGF)POF4-1212
|c POF4-121
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wu, Jianchang
|0 P:(DE-Juel1)192542
|b 1
|u fzj
700 1 _ |a Le Corre, Vincent Marc
|0 P:(DE-Juel1)201923
|b 2
|u fzj
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 3
|u fzj
700 1 _ |a Zhao, Yicheng
|0 P:(DE-Juel1)187394
|b 4
|e Corresponding author
700 1 _ |a Brabec, Christoph
|0 P:(DE-Juel1)176427
|b 5
|e Corresponding author
|u fzj
773 _ _ |a 10.1002/inf2.70005
|g p. e70005
|0 PERI:(DE-600)2902931-4
|p e70005
|t InfoMat
|y 2025
|x 2567-3165
856 4 _ |u https://juser.fz-juelich.de/record/1041045/files/InfoMat%20-%202025%20-%20Zhang%20-%20Advancing%20perovskite%20photovoltaic%20technology%20through%20machine%20learning%E2%80%90driven%20automation.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041045
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194716
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)192542
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)201923
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)176427
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1212
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-11
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2024-12-11
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-08-08T17:06:25Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-08-08T17:06:25Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-11
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-11
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-08-08T17:06:25Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-11
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IET-2-20140314
|k IET-2
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 _ _ |a review
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IET-2-20140314
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21