Hauptseite > Publikationsdatenbank > Advancing perovskite photovoltaic technology through machine learning‐driven automation > print |
001 | 1041045 | ||
005 | 20250610131443.0 | ||
024 | 7 | _ | |a 10.1002/inf2.70005 |2 doi |
024 | 7 | _ | |a 2567-3165 |2 ISSN |
024 | 7 | _ | |a 2770-5110 |2 ISSN |
024 | 7 | _ | |a 10.34734/FZJ-2025-02109 |2 datacite_doi |
024 | 7 | _ | |a WOS:001429146800001 |2 WOS |
037 | _ | _ | |a FZJ-2025-02109 |
082 | _ | _ | |a 621.3 |
100 | 1 | _ | |a Zhang, Jiyun |0 P:(DE-Juel1)194716 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Advancing perovskite photovoltaic technology through machine learning‐driven automation |
260 | _ | _ | |a Weinheim |c 2025 |b Wiley |
336 | 7 | _ | |a Output Types/Book Review |2 DataCite |
336 | 7 | _ | |a Review |b review |m review |0 PUB:(DE-HGF)36 |s 1743088285_31438 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a BOOK_REVIEW |2 ORCID |
336 | 7 | _ | |a review |2 DRIVER |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |m journal |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Since its emergence in 2009, perovskite photovoltaic technology has achieved remarkable progress, with efficiencies soaring from 3.8% to over 26%. Despite these advancements, challenges such as long-term material and device stability remain. Addressing these challenges requires reproducible, user-independent laboratory processes and intelligent experimental preselection. Traditional trial-and-error methods and manual analysis are inefficient and urgently need advanced strategies. Automated acceleration platforms have transformed this field by improving efficiency, minimizing errors, and ensuring consistency. This review summarizes recent developments in machine learning-driven automation for perovskite photovoltaics, with a focus on its application in new transport material discovery, composition screening, and device preparation optimization. Furthermore, the review introduces the concept of the self-driven Autonomous Material and Device Acceleration Platforms (AMADAP) laboratory and discusses potential challenges it may face. This approach streamlines the entire process, from material discovery to device performance improvement, ultimately accelerating the development of emerging photovoltaic technologies. |
536 | _ | _ | |a 1212 - Materials and Interfaces (POF4-121) |0 G:(DE-HGF)POF4-1212 |c POF4-121 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |a Wu, Jianchang |0 P:(DE-Juel1)192542 |b 1 |u fzj |
700 | 1 | _ | |a Le Corre, Vincent Marc |0 P:(DE-Juel1)201923 |b 2 |u fzj |
700 | 1 | _ | |a Hauch, Jens |0 P:(DE-Juel1)177626 |b 3 |u fzj |
700 | 1 | _ | |a Zhao, Yicheng |0 P:(DE-Juel1)187394 |b 4 |e Corresponding author |
700 | 1 | _ | |a Brabec, Christoph |0 P:(DE-Juel1)176427 |b 5 |e Corresponding author |u fzj |
773 | _ | _ | |a 10.1002/inf2.70005 |g p. e70005 |0 PERI:(DE-600)2902931-4 |p e70005 |t InfoMat |y 2025 |x 2567-3165 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/1041045/files/InfoMat%20-%202025%20-%20Zhang%20-%20Advancing%20perovskite%20photovoltaic%20technology%20through%20machine%20learning%E2%80%90driven%20automation.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:1041045 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)194716 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)192542 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)201923 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)177626 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)176427 |
913 | 1 | _ | |a DE-HGF |b Forschungsbereich Energie |l Materialien und Technologien für die Energiewende (MTET) |1 G:(DE-HGF)POF4-120 |0 G:(DE-HGF)POF4-121 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-100 |4 G:(DE-HGF)POF |v Photovoltaik und Windenergie |9 G:(DE-HGF)POF4-1212 |x 0 |
914 | 1 | _ | |y 2025 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2024-12-11 |
915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2024-12-11 |w ger |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2024-08-08T17:06:25Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2024-08-08T17:06:25Z |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2024-12-11 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2024-12-11 |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Anonymous peer review |d 2024-08-08T17:06:25Z |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2024-12-11 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2024-12-11 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IET-2-20140314 |k IET-2 |l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien |x 0 |
980 | _ | _ | |a review |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)IET-2-20140314 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|