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ABSTRACT

Large-scale atomistic simulations rely on interatomic potentials, providing an efficient representation of atomic energies and forces. Modern
machine-learning (ML) potentials provide the most precise representation compared to electronic structure calculations, while traditional
potentials provide a less precise but computationally much faster representation and, thus, allow simulations of larger systems. We present
a method to combine a traditional and a ML potential into a multi-resolution description, leading to an adaptive-precision potential with
an optimum of performance and precision in large, complex atomistic systems. The required precision is determined per atom by a local
structure analysis and updated automatically during simulation. We use copper as demonstrator material with an embedded atom model
as classical force field and an atomic cluster expansion (ACE) as ML potential, but, in principle, a broader class of potential combinations
can be coupled by this method. The approach is developed for the molecular-dynamics simulator LAMMPS and includes a load-balancer
to prevent problems due to the atom dependent force-calculation times, which makes it suitable for large-scale atomistic simulations. The
developed adaptive-precision copper potential represents the ACE-forces with a precision of 10 me V/A and the ACE-energy exactly for
the precisely calculated atoms in a nanoindentation of 4 x 10° atoms calculated for 100 ps and shows a speedup of 11.3 compared with a
full ACE simulation.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0245877

I. INTRODUCTION potentials’] have received a lot of attention for the combination of

computational performance and accuracy. Accurate ML potentials
are often based on large sets of density functional theory (DFT)

4,6-8
" used as a reference, and therefore translate the accuracy

Molecular dynamics (MD) simulations have developed into a
powerful tool to get insight into complex atomistic systems and to data,

£0:6G:80 G202 IdY 62

study their evolution in phase space. The length and time scale,
which can be covered, are strongly dependent on the cost of energy-
and force-computations between the particles. The length and size of
systems have been continuously extended over the years using par-
allel computing. However, the accuracy of the interactions between
particles in long time simulations has been limited in the past
due to the approximative nature of classical force-field descrip-
tions. In recent years, the development and application of machine
learning (ML) potentials [such as the atomic-cluster expansion
(ACE),' moment tensor potentials,” Gaussian approximation poten-
tials,” spectral neighbor analysis potentials,” and neural network

of DFT calculations’ into dynamic simulations. However, there is
still a considerable performance gap between the evaluation of clas-
sical fields and ML potentials, e.g., the force calculation for a classical
EAM potential and the ML-based ACE method differ by a fac-
tor of 100-1000,° which still limits the accessibility of time and
length scales of systems, completely described by highly accurate
descriptions, and therefore poses a conflict between system size and
precision.

Due to the high computational demands of accurate interaction
models, there have been several attempts to couple low- to high-
accurate descriptions adaptively within a simulation. In QM/MM
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simulations, quantum mechanical descriptions based on DFT are
coupled to classical force fields.”'” Due to the large computa-
tional demand, the QM region is limited to a small sub-system.
On a coarser level, e.g., in soft matter,'” ° an adaptive description
has been introduced to reduce the number of degrees of free-
dom in a system to speed up the computations. On even larger
scales, where individual particles can be combined to groups of
particles in specific regions of the system, coupling between classi-
cal atomistic simulations and continuum simulations (such as the
material point method'® or finite element simulations'” or with
coarse-grained systems as in Refs. 18 and 19) is performed. The
commonality of the given examples is that one can separate dif-
ferent subsystems, i.e., one subsystem, which has to be described
with high precision because of high sensitivity of results on the
underlying method, and one subsystem, which serves as a material
background, which is not strongly perturbed and can be described
by cheaper, less accurate methods. Since the perturbation state
of a material might show temporal and spatial dependence, such
a distinction between subsystems ideally works dynamically and
adaptively.

In this article, we present such an adaptive-precision approach
for MD simulations as there is a broad range of applications: In
chemistry, e.g., catalytic reactions at surfaces or interfaces require
a precise treatment of reacting atoms and surface atoms, but not
for atoms far below the surface or far away from reaction centers.
In physics, surface-growth processes, for example, for semiconduc-
tors, require a precise treatment of the surface, but with evolving
growth and agglomeration of many new atoms, the atoms belong-
ing to the original surface layer become less important and can be
calculated with less precision, i.e., they do not contribute actively
any more to the physical growth process. In materials science, e.g.,
dynamical crack propagation requires only a precise simulation of
the crack tip.

Due to the change of energy and force description in the two
regions (high-/low-accuracy), a spatial zone is usually introduced,
which provides a smooth transition from one to the other region.”””
As a first approach, one can weight both energy and force per atom
with a factor that changes from 0 to 1.°! However, this first approach
violates both energy and momentum conservation and is thus lim-
ited to the canonical ensemble. For consistency, either the energy
or force can be weighted by a factor.”’ Since the force is enterlng
directly into the integration of motion, several approaches' ">’ are
based on a weighting of forces. However, it was shown in Ref. 20 that
this approach does not result in energy conservation since the under-
lying potential cannot be properly reconstructed from the weighted
forces. An approach to generate energy conserving dynamics has
been taken in Refs. 18, 24, and 25, where the weighting has been
included in the Hamiltonian description.

With the advent of ML potentials, coupling of different inter-
action models shows strong potential for combining a high accurate
description in small-to-medium sized subsystems with acceptable
computational costs and a low accurate description in large sub-
systems, opening the path to long time and large length scale
simulations, including high accuracy, where it is needed. Such a
coupling between a ML-potential and a classical force-field descrip-
tion has been proposed in Ref. 23 using a force-mixing approach
to simulate a grand-canonical ensemble in the thermodynamic
limit.

ARTICLE pubs.aip.org/aipl/jcp

In contrast, in the present article, we use an energy-mixing
approach that is consistent with a Hamiltonian description and
allows, in principle, the simulation of a microcanonical ensemble. In
so doing, we introduce a method to couple a precise ML-potential
for subregions of atoms of interest and a fast traditional poten-
tial for the remaining system components to overcome the conflict
between system size and precision for classical atomistic simula-
tions. The atoms of interest are thereby automatically detected by
a customizable detection mechanism, and therefore, the method
works autonomously and self-adaptively in space and time. To fur-
ther reduce the execution time, we implemented the method into the
parallel simulation engine LAMMPS.>

The present paper is organized as follows: We first introduce
our adaptive-precision model in Sec. II, whereas we present the
energy-model in Sec. II A, discuss the group of interest detection in
Sec. II B, and the integration of motion in Sec. I C. With adaptive-
precision and dynamic precision-selection in a parallel simulation
comes the need for dynamic load balancing as the compute time
changes over magnitudes between atoms. Therefore, we present
our dynamic load-balancing method in Sec. II D. We applied the
introduced adaptive-precision mechanism and combined an EAM
potential with an ACE potential for copper. The input potentials
are presented in Sec. II1, and the EAM potential is improved to be
used in combination with the ACE potential. Finally, we demon-
strate in Sec. IV the capabilities in terms of precision and efficiency
of the adaptive-precision copper potential for a nanoindentation
of 4 x 10° atoms calculated for 100 ps with LAMMPS.” In Sec. V,
we conclude.

Il. METHOD
A. Representation of energy and force

The total energy of the system is given as H = 3,(T; + E;)
+ Eext, where T; is the kinetic energy and E; is the potential
energy of atom i and Ee: are possibly existing external fields.
The energy of our adaptive-precision approach combines a pre-
cise and a fast energy, E,.(P) and El.(f), per atom i. We will use
the atomic cluster expansion (ACE)' as precise and the embed-
ded atom model (EAM)”’ as fast interatomic potential. Precise and
fast energies are combined with a continuous switching parameter
Ai € [0,1] per atom i, namely, to the adaptive-precision potential
energy,

E = MED + (1-1)E®, (1)

During the course of a simulation, the energy will be switched auto-
matically from fast to precise or vice versa, as required by the local
atomic environment. The switching parameter A; needs to change
continuously to prevent shocks by instant energy changes. One can
save computation time by using the adaptive-precision energy E;

instead of the precise energy Ei(p) since the precise calculation is only
required for a subset of atoms in the adaptive-precision calculation.
One needs to make sure that the energies Ei(f) and Ei(P ) are as
similar as possible for the atoms, which are calculated with the fast
potential, to prevent a systematic energy change due to the change of

the switching parameter. The adaptive-precision energy, according
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to Eq. (1), gives the total potential energy Y Ex =, (/\kE,Ef)

+(1- Ak)E,EP )) from where the adaptive-precision force
Fi = —=ViY_1Ex can be calculated as

F; = ; (“M(ViED) = (1= A)(VEP) + (V) (EP - ED)).
&)

It is important to note that A; = 0 is not the only requirement for
a precise force on atom i since the force F; depends, according to
Eq. (2), on the switching parameters A, of all atoms k within the force
cutoffs of the interatomic potentials. For visualization, we define the

force fk(fi) from atom k on atom i according to the interatomic

model M as Fi(M) =D hsi fk(ﬁ)virik. In contrast to the total force,
the individual pair force contributions of two different interatomic
potentials are not necessarily correlated, as shown in Fig. 1 for an
EAM and an ACE copper potential. Figure 1(a) is point-symmetrical
to the origin due to Newton’s third law of motion. The Pearson
correlation coefficients (PCCs) of the individual pair force contri-
butions { fk(_A:Ii) Viry} between EAM and ACE calculated for the first
four atom neighbor shells are, in ascending order of shells, —0.530,
—0.747, —-0.984, and 0.954. Due to the smaller force-cutoff, the atoms
of the 5th neighbor shell are only partially evaluated by EAM. Thus,
we only calculate the PCCs for the first four neighbor shells. In con-
trast, the Pearson correlation coefficient of the total forces, which
are visualized in Fig. 1(b), is 0.998. The PCCs and the visualization
in Fig. 1(a) show that both potentials have qualitatively differ-
ent mechanisms to construct a quantitatively only slightly different
total force. Therefore, a smooth transition zone between fast and
precise energy description is essential to smoothly transfer the force-
construction mechanism of the precise potential into the one of the
fast potential.

B. Adiabatic switching

The switching function A changes the energy-precision [cf.
Eq. (1)] and thereby also the force-precision during simulation
dependent on the atomic environment. This change of precision is
ideally quasi-adiabatic to prevent perturbations of the system. The
switching function itself generally has no physical meaning; it is only
an auxiliary function to determine the precision. However, the force
on atom i depends, according to Eq. (2), on (ViAx) and, thus, not
only on the value of the switching parameter but also on the cal-
culation mechanism. Therefore, an adiabatically slow change of the
switching parameter is important to minimize the unphysical force
contribution of (ViAg).

The switching function needs a detection mechanism for par-
ticles that require a precise calculation. This detection mechanism
strongly depends on the simulation. The centro-symmetry para-
meter”’ (CSP) detects, e.g., defects and surface atoms, whereas the
common neighbor analysis (CNA) can characterize grain bound-
ary structures.”’ The common neighborhood parameter (CNP)*
combines CNA and CSP. CSP, CNA, and CNP are implemented
in LAMMPS®* ™ and, therefore, are accessible to a wider commu-
nity. Depending on the underlying physical system and simulation,
other distinctions are possible. To detect, for example, stress-related
events, the von-Mises stress can be used as an indicator. For dynamic

ARTICLE pubs.aip.org/aipl/jcp

simulations of atom bombardment, as in Ref. 36, the particle velocity
can be used, and in simulations of damages, as for crack propaga-
tion, the strain energy can serve as an indicator.”’ For a coating, as in
Ref. 37, one can include only atoms of the same element like the cen-
tral atom i in the calculation of CSP; to make the interface look like
a surface.

The switching parameters {A;} of all atoms k within the force
cutoff of atom i determine the force-precision of atom i, as discussed
in Sec. IT A. Therefore, when an atom i is detected for a precise cal-
culation, the switching function needs to change also the switching
parameters A of the neighboring atoms k to ensure a precise force
calculation of atom i.

To detect defects and surfaces, we assume here the CSP as
detection mechanism. However, it can be changed to other criteria
without big implementation overhead. The CSP is given as

N/2

CSPi(t) = > (7 (t) + Fi,j+N/2(t))

=1

2
>

3)

whereas N is the number of nearest neighbors and j and j + N/2 cor-
respond to a pair of opposite nearest neighbors of the central atom i.
How to identify these pairs is discussed in detail in Appendix A.

The construction of our switching function, taking into account
the requirements discussed, is described in Appendix B.
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FIG. 1. (a) Comparison of the individual pair force contributions fk(_'\f,.) for a system
of 13500 copper atoms at 300 K with periodic-boundary conditions in all spatial
dimensions «. The force contributions are colored according to the equilibrium
distance r;(q of the corresponding atom pair ik. The compared potentials are a
modified EAM2 of Ref. 28 and ACE of Ref. 8, both of which are described in
Sec. IIl. (b) Total force F; on an atom i, which is given by the sum over the individual
pair force contributions of all neighbors k.
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C. Integration of motion
1. Velocity-Verlet integration

With a known velocity v;(t), position x;(t), force F;(t), and
switching parameter 1;(¢) of the last time step ¢, one can propagate
an atom in time. A time step of At according to the velocity-Verlet
integration®® updated for use with an adaptive-precision potential is
given as

1. vi(t+%) :vi(t)+%f)%, (4a)
xi(t+ At) = xi(t) +u,-(t+ %)At, (4b)
2. Ai(t+ At) = Li(Ai(e), {x(t + At)}), (4¢)

3. Fi(t+At) = F({xi(t + Ar) }, {hi(t + A) }), (4d)
Ei(t+ At) = Ei({xi(t + At) }, Li(t + At)), (4e)

4. ’U,‘(t+At) =’U,‘(t+g)+1MAt, (4f)
2 2 m;

whereas step 2 in Eq. (4) is new and required due to the adaptive-
precision potential. The first velocity and position calculations for
vi(t + At/2) and x;(t + At) use the given A;(t). A new switching
parameter A;(t + At) has to be calculated in the second step of the
integration since the positions of the particles have changed and,
thus, also their switching parameter. Therefore, the afterward cal-
culated quantities F;(t + At), E;(t + At), and v;(t + At) depend on
the newly calculated switching parameter A;(t + At).

2. Avoiding unphysical force-contributions by (V)

The force calculation, according to Eq. (4d), requires, accord-
ing to Eq. (2), the knowledge of (Vi);). The force contribution
through this gradient of the switching function should be small as
a slowly changing switching function is used. However, as discussed
in Sec. II B, the switching function generally has no physical mean-
ing but only influences the required precision. Furthermore, the
need to change the switching parameter adiabatically slowly implies
the usage of time averages whose gradient cannot be calculated
consistently. Thus, we want to neglect (V;A¢) in Eq. (2), but this
would violate energy-conservation. The adaptive-precision poten-
tial is conservative for a constant set of {A;} as the calculation of
Vil is not required in this case. This conservative reference system
offers the possibility of neglecting the unphysical force contribution
of (Vily) in an energy and momentum-conserving way. We want
to stress that if A is kept constant per atom over time, we have a
conservative dynamics and, therefore, conserve energy and momen-
tum naturally. Thus, we can use the system with constant switching
parameters as reference system for each atom to apply a momentum-
conserving correction for energy conservation, which is described in
the following. Note that the presented correction approach is inde-
pendent of the calculation of A and can be used for any switching
function.

The energy difference AH; of atom i at the end of a time
step between the conservative reference system and the system with
updated switching parameters is caused by the change of the switch-
ing parameter. To calculate this energy error AH;, one has to finish
the calculation of an integration step for both sets of switching para-
meters. As the forces of the reference system and the dynamic-A
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system depend on the same atomic positions, one can easily
calculate both forces during the force calculation by just summing
up two forces weighted with the corresponding switching parameter.
This energy difference affects both the kinetic energy change AT;
and the potential energy change AE;, namely,

AH;‘ = AT;‘ + AEi. (5)

The potential energy change AE; affects only atoms whose switch-
ing parameter has changed [cf. Eq. (1)]. The kinetic energy change
AT; affects atoms in whose force cutoff a switching parameter has
changed [cf. Eq. (2)]. The calculation of AE; and AT; is described in
Appendix C 1.

We want to add or remove energy to compensate for the work
AH; performed on the system when the switching parameters {;}
are changed. Since one cannot simply change the potential energy
in a predictable way, we change the kinetic energy of particles. The
energy errors are calculated per particle i and should also be cor-
rected locally. Therefore, we need a local thermostat that changes
the kinetic energy of atoms by the measured energy error AH;.
The local thermostat rescales the momenta of a group of atoms
Qi relative to the center-of-mass velocity by the factor f(Q;, AH;).
The rescaling conserves the momentum as the rescaling is relative
to the center-of-mass velocity. The rescaling, including the calcu-
lation of the rescaling factor S(Q;, AH;), is described in detail in
Appendix C 2. The integrator changes the velocity of particles of
mass m according to Av = AtF/m due to a force F. One can under-
stand the energy-error correction as an additional force that is just
used at the end of a time step but not in the next integrator step. The
application of this local thermostat contains a stochastic component,
as the direction of the effectively applied force is in the direction
of the relative momentum and, thus, stochastic. Note that this local
thermostat is not considered to provide a NVT ensemble. It can be
considered as an energy correction but not primarily as a temper-
ature correction, i.e., the objective function is not the temperature
but the energy. Thus, non-equilibrium simulations, non-energy con-
serving simulations such as a NVT ensemble, and simulations with
external forces can be performed with the local thermostat.

D. Load balancing

Time integrating the equations of motion for a set of atoms
described by a short-range interatomic potential requires per atom
only information from neighboring atoms within a cutoff distance.
Thus, LAMMPS uses distributed-memory parallelism via MPIL.*°
The simulation box is divided into disjoint domains that cover the
whole simulation box according to a spatial domain-decomposition
approach.” Each MPI task, in the following denoted as processor, is
assigned to one domain and administers all particles located in this
domain. Our adaptive-precision potential requires a highly different
compute time per atom dependent on the used potential, and that
causes load-imbalances between the domains. Hence, we present a
load-balancing approach to dynamically change the domain sizes
during a simulation.

We calculate the centro-symmetry parameter CSP;(t) accord-
ing to Eq. (3) and the switching parameter A according to Eq. (B4)
within the force-calculation routine to include both in the load
balancing. Thus, we perform four independent calculations dur-
ing the force-calculation routine. We execute first the calculation

J. Chem. Phys. 162, 114119 (2025); doi: 10.1063/5.0245877
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of the fast potential (FP), second the precise potential (PP), third
CSP; (CSP), and fourth A;(A). Since all four calculations are required
only for a subset of particles, as discussed in Appendix G in detail,
the code inherently needs load balancing. Required adjustments
of the interatomic-potentials to allow effective load-balancing for
adaptive-precision potentials are discussed in detail in Appendix H.

We assume per processor p and subroutine 2" an average work
per particle,

2 NG, ©)

(&)

whereas the total duration 7, and the number of calculations

N, €2 are measured within the force-calculation subroutine 2. We

rescale the work p( #) with a constant factor per processor p in order
to match the total work of our model with the also measured total
calculation time 7, of the processor. Thereby, one can assign an indi-
Vldual load pamm to atom i with possible contributions of pﬁfi), PER‘)»

#°™ s used as input for a load-balancing

pp( ), and pp( y- The load p;
algorithm. We use a staggered grid,"” which is used for particle sim-
ulations’' and which is implemented in the load-balancing library
ALL.*

Note that the measured force-calculation times can be used to
estimate on-the-fly the calculation time Tg,[;tem that it would take
to calculate the entire system with the precise potential. As load-
imbalances are negligible when the whole system is calculated only
with the same potential, Tfylztem is given as

Z Py Nps 7

Tsystem =

where N, denotes the number of atoms administered by processor
p and P denotes the number of processors. The estimated speedup S
of the adaptive-precision potential is then

PP
_ Tsystem ( 38 )
max, (7p)

For the adaptive-precision to be beneficial, S > 1 must apply. There-
fore, the on-the-fly speedup estimation can be used to detect on-
the-fly whether the by simplified calculations saved calculation time
outweighs the overhead of calculating detection mechanism and
switching parameter, i.e., whether S > 1 applies. For S < 1, one can
then switch off the adaptive-precision potential and use the precise
potential instead.

lll. ADAPTIVE-PRECISION POTENTIAL
A. Atomic cluster expansion

We use the atomic cluster expansion (ACE) of Ref. 8 as precise
potential, as it is a modern ML-potential with a good representation
of its DFT reference data. The energy E; of an atom i described by
the atomic cluster expansion’ is

EACE - ¢§1) + ¢_(z)’ )
whereas the functions ¢i(p ) are expanded as

9 =% B, (10)
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where Bj,, are product basis functions that describe the atomic

environment and c(p ) are fitted expansion coefficients with the
multi-indices v. We use the copper ACE potential from Ref. 8.

B. Embedded atom model

We use the EAM2 potential of Ref. 28 as a starting point for
the fast potential since it is widely used.”” *° The energy of an atom i
described with the embedded atom model”” (EAM) is

ez o)

j#i

2 @ (ry), (11)

]#1

where £ is the embedding function, { is the electron density, and ©
is a pair potential. We use a copper potential from Ref. 28, which is
described in Appendix E. We need to optimize the EAM potential
to minimize systematic energy differences between the used EAM
and ACE potentials. Furthermore, the optimization gives the pos-
sibility to improve the forces as well. The EAM potential is fitted
for applications with surfaces, vacancies, and interstitials that are
detected for a precise calculation and, therefore, do not need to be
described by the fast and less accurate EAM potential. To correct an
energy offset, we introduce & to the original embedding function
&£(x) [Eq. (E4)], namely, £(x) = £(x) + &" and use £™(x) instead
of £(x). The set of parameters .o (cf. Appmdix E) is optimized by
minimizing a loss function . with atomicrex.”’ The loss function
includes atomic energies Es; and forces F;; of different structures s
with N atoms as well as scalar properties A,. We use the lattice para-
meter ay-C, the cohesive energy, and elastic constants as the scalar
properties. The target values denoted with “targ” are the correspond-
ing values calculated with the highly accurate ACE potential. The
predicted values denoted with “pred” are calculated with the current
set of parameters «/. The differences between predicted and target
values are per quantity weighted with a tolerance 6'". The used tar-
get values and tolerances of the loss function are listed in Table I.
The minimized loss function is

1 N, Etarg Epred N, ”Ftarg Fpred ”
L(o) = Z N, z ( 5};01 + 6t(])id

e s\ iml i=1

2
Atarg 7Apred
+ Z : tol : > (12)
3% 80

TABLE |. Target values with tolerance used in the loss function Eq. (12) for the
optimization of the EAM potential.

Bulk property Target value Tolerance 6'!
Lattice parameter aSCC 3.6309 A 0.001 A
Cohesive energy Ecqn —-3.6995 eV/atom 0.01 eV/atom
Bulk modulus B 138.2 GPa 1 GPa
Elastic constant Cy; 173.8 GPa 1 GPa
Elastic constant Ci» 120.5 GPa 1 GPa
Elastic constant Cy4 77.8 GPa 1 GPa
Force Fpq MD simulation 0.01eV A™!
Atomic energy Emq MD simulation 0.01eV
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TABLE II. Comparison of quantities calculated with EAM, optimized EAM, and ACE with DFT and experimental reference

values.

EAM EAM

ACE Original Fit DFT Exp.

Lattice constant/A 3.6309 3.6149 3.6305
Cohesive energy/eV -3.6995 -3.5579 -3.6957
Vacancy formation energy/eV 1.1285 1.2735 1.0589 1.07° 1.27¢
Surface energy 111/Jm > 1.3566 1.2443 0.8802 1.36°
Surface energy 100/Jm™> 1.5111 1.3515 0.9765 1.51°
Surface energy 110/Jm™> 1.5889 1.4822 1.1225 1.57¢
Interstitial formation energy/eV
100-dumbbell 3.1025 3.0809 2.9662 3.10% 2.8-4.2%
Octahedral 3.3392 3.2559 3.1303 3.35%
Tetrahedral 3.6217 3.5655 3.4240 3.64%
Elastic constant C;;/GPa 173.8 171.5 171.3 177¢ 177°°
Elastic constant Ci2/GPa 120.5 124.2 120.1 1328 125"
Elastic constant C44/GPa 77.8 76.2 80.6 82" 81"

with the set of scalar observables ¢ and the set of structures .. We
use two snapshots of a NVE simulation of copper with 10 x 10 x 10
unit cells at 300 K and periodic boundary conditions as structures for
the fit. These structures are sufficient since we start with an already
tested and validated EAM potential, and the optimized EAM poten-
tial is for use only with atomic configurations similar to the used
structures. We start the fitting with the parameters of EAM2 from
Ref. 28 and & = 0 V. In a first run, only the energy offset &"
is fitted. Afterward, all parameters, including &, are fitted. The
optimized parameters are listed in Appendix E in Table III. Scalar
properties calculated with the optimized EAM potential are shown
in Table II. Lattice constant and cohesive energy of the optimized
EAM potential match through the optimization. The elastic con-
stants of ACE are in good agreement with both EAM and optimized
EAM potential. The phonon spectra are compared in Fig. 2 and are
in good agreement.

— EAM original ACE
—— EAM fit O experiment

frequency / THz

wave vector

FIG. 2. Phonon spectra calculated with ASE>? of the fitted EAM potential, original
EAM potential, the ACE potential, and experimental values® measured by neutron
diffraction at the temperature of 80 K.

C. Combined EAM and ACE potential

We combine the ACE potential and the optimized EAM poten-
tial into an adaptive-precision copper potential according to Eq. (1)
with the switching function A, which is described in Sec. II (b) and
Appendix B. There are parameters in three components: first, in the
mechanism used to detect atoms that require a precise calculation;
second, in the switching function; and third, in the local thermostat
used to avoid unphysical force contributions by (V). We discuss
how to select these parameters in Appendix F, whereas the para-
meter set is listed in Table TV. We refer to the adaptive-precision
potential with this parameter set as Hyb1.

IV. DEMONSTRATION

We calculated a nanoindentation with 4 x 10° atoms and
a (100)-surface at 300 K for 100 ps on JURECA-DC* with the
adaptive-precision copper potential Hybl (cf. Table IV) to ana-
lyze precision and saved computation time compared to a full ACE
simulation.

A. Precision

The force difference AFY®! = RMSE(F::Ybl — FA°EY of rescaled
atoms, including the theoretical rescaling force according to
Eq. (F1), of the adaptive-precision potential Hybl compared to ACE
forces during the nanoindentation is shown in Fig. 3(a). The force
difference AF™! is calculated from force components Fj, in the
spatial dimension «. For defects and surface atoms, the forces are
within a tolerance of up to 10 meV/A compared to the precise ACE
forces for most cases, while the exact potential energy of ACE is used
according to Eq. (1).

We changed single parameters of the parameter set Hybl and
performed simulations with otherwise identical parameters to per-
form a sensitivity analysis on the results of the selected parameters.
The influence of the changed parameters is shown in Fig. 3(b).
Increasing the thresholds CSPy, and CSPy; by 0.5 A? decreases the

J. Chem. Phys. 162, 114119 (2025); doi: 10.1063/5.0245877
© Author(s) 2025

162, 114119-6

£0:6G:80 G202 IdY 62


https://pubs.aip.org/aip/jcp

The Journal

of Chemical Physics

) CSPypi/A”
0 5 10 15 20
1 1 1 1 1
10? 4
ot E
=
T 10 4
g 103
~ E
5 ]
100 4
<0.51
thermal dislo- surface
fluctuations | cations

-5 0 5 10 15 20
indentation depth / A
2
CSPuygi/A
b) o 5 10 15 20
1 1 1 1
15 - 10°
o< — 2 2 g
S04 = CSPo= 3.0A%,CSP,; =3.5A o £
al5 4 =
'8 — 0 £
=04 = Ncspavg = 220 10° £
2154
Z15 —10° 7
= = N, =220 =
80 = A.avg 10! 3z
E15 A =
S
. = g0 =8A,r) i =20A e 2
thermal dislocations surface
fluctuations

FIG. 3. (a) Force error AF™" = RMSE(F!*' — FACE) of rescaled atoms depen-
dent on CSP,,q; and indentation depth of a nanoindentation. (b) Force error

AP compared with the force error AF*T of another simulation with the
parameter set Hyb1, whereas the parameters in the lower right corner of the
corresponding plot are different than in Hyb1. The force error difference AFH!

— AF1 is color-coded, whereas blue and red colors correspond to a smaller
force error of Hyb1 and Hyb1, respectively. The simulations for (a) and the lowest
plot of (b) are calculated in a cubic system with 100° unit cells; 68° unit cells are
used for the remaining simulations.

force precision for thermally fluctuating atoms and dislocations with
CSPaygi < 4.5 A2, The decreased force precision for the dislocations
is expected as these are the atoms that are simulated with the fast
potential due to the increased CSP thresholds. Thus, the only advan-
tage of increasing the CSP thresholds is performance. Doubling the
averaging time of the centro-symmetry parameter Ncsp,avg decreases
the force precision on thermally fluctuating atoms. The force pre-
cision of dislocations increases in most snapshots. As dislocations
are in contrast to the surface, not stationary, increasing the CSP
averaging time may reduce the detection possibility for moving dis-
locations. Thus, one can adjust Ncsp,avg dependent on the expected
dislocation dynamics. Doubling the averaging time of the switch-
ing parameter N ., decreases the force precision of dislocations
with CSPayg; < 4 A?, but increases the force precision of dislocations
with a larger time-averaged CSP. The force precision for dislocations
decreases with an increasing CSPayg, according to Fig. 3(a) and this
effect is enhanced by doubling N 4. Thus, increasing N) avg is not
beneficial. Increasing the cutoffs ), and 7) pi f Amini by 4 and 8 A,
respectively, increases the number of precise calculations and, thus,
the force precision for all atoms apart from surface atoms, which

ARTICLE pubs.aip.org/aipl/jcp

are already treated with the precise potential. The only disadvan-
tage is the increased compute time due to more precise calculations.
Therefore, the cutoffs of Amin; can be adjusted depending on the
performance requirements.

B. Computational efficiency

max

The processor p with the highest work 7,”*" restricts the speed
of a simulation since faster processors need to wait due to commu-
nication and synchronization. Thus, the imbalance, as defined in
LAMMPS,>

I= T}nax/(rp)p (13)

of the force calculation time 7, gives a measure for the quality of
the load balancing, whereas an imbalance of 1 corresponds to a per-
fectly balanced system. The mean imbalance in the nanoindentation
is 1.41 with a standard deviation of 0.26. Dynamic load-balancing
of an adaptive-precision potential is challenging as the work distri-
bution changes drastically when the precision of atoms is switched
from fast to precise or vice versa, as discussed in Appendix |
in more detail. The average work per atom for the four subpro-
cesses is (phy)pe = 9.6 us, (ppy )pe = 1.7 ms, (pﬁ),)P,t = 48.6 us, and
(pgﬁp )pt = 5.6 us, whereas the processor-dependency is discussed
in Appendix L.

a)
EAM 2.4x10?
Hybl 1.8x10%
11.3 times less
ACE 2.1x10°

T T T T
100000 150000 200000 250000
core-h

b)
copper
Y surface

(001) #7

T—> (010) é‘\x\f

T
0 50000

FIG. 4. (a) Total computation time of a nanoindentation with 4 x 10 atoms (100°
unit cells) simulated for 100 ps with the adaptive-precision potential Hyb1 com-
pared to ACE and EAM nanoindentations. EAM, hybrid, and ACE simulations
are calculated on 128, 384, and 2048 cores of JURECA-DC,** respectively. (b)
Visualization of the dislocation line defects that occur in a nanoindentation. The
visualization is done with OVITO,%¢ and the dislocations are identified by the
dislocation analysis®” of OVITO.
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The motivation to use an adaptive-precision potential is to
save computation time compared to a precise potential while pre-
serving accuracy in regions of the simulation where it is required.
The nanoindentation with 4 x 10° atoms calculated for 100 ps
on JURECA-DC* with the adaptive-precision potential Hybl (cf.
Table IV) shows a speedup of 11.3 compared to a full ACE sim-
ulation as visualized in Fig. 4(a). We calculated the surface and
dislocations, which developed during the nanoindentation as visu-
alized in Fig. 4(b), precisely with the ACE-potential and saved
computation time for the remaining atoms by using the fast EAM-
potential. Note that the amount of saved computation time strongly
depends on the number of not required evaluations of the pre-
cise and expensive potential, as discussed in Appendix K, using the
equilibration of the nanoindentation as an example.

V. CONCLUSION

We introduced a method that allows us to compute adaptive-
precision interatomic potentials to speedup large-scale atomistic
simulations with a region or atoms of special interest. The atoms of
special interest are automatically detected by a customizable detec-
tion mechanism and simulated with the precise potential, while the
fast potential is used for the remaining atoms. The energy model
[Eq. (1)] ensures precise energies for the detected atoms, while
the switching function (cf. Sec. I B) is used to get precise forces.
We presented a load-balancing method with subroutine specific
per-atom works per processor using a staggered grid to prevent
the load-balancing issues arising from combining two potentials of
different costs. We demonstrated the presented adaptive-precision
method by creating the copper potential Hybl (Table IV) from
an EAM and an ACE potential. We explained how the fast EAM
potential is optimized to match bulk properties with the precise
ACE potential.

A nanoindentation with 4 x 10° atoms calculated for 100 ps was
used to demonstrate the capabilities of the method. The achieved
accuracy of Hybl for the detected atoms of interest during the
nanoindentation is for forces 10 meV/A, while the exact poten-
tial energies of the ACE potential are obtained by design. The
nanoindentation showed a speedup of 11.3 compared to a full ACE
simulation.

Note that the amount of computation time that can be saved
heavily depends on the number of not required precise calculations
and, therefore, on the simulation setup and the detection mech-
anism for atoms of interest. Hence, the expected speedup cannot
be generalized. Our adaptive-precision method includes overhead
in the form of the detection mechanism and the calculation of the
switching parameter. Therefore, in both limits, when all or no atoms
require a precise calculation, using an adaptive-precision potential
is not beneficial. Between both limits, however, there will be a range
in the fraction of precise atoms, where the adaptive-precision poten-
tial becomes beneficial, as demonstrated with the nanoindentations
in which the majority of precise calculations could be accelerated.
Since the force-calculation time of the precise potential is measured
to enable dynamic load-balancing, one can, as discussed in Sec. IT D,
decide on-the-fly whether or not to apply the adaptive precision, i.e.,
whether the overhead dominates the computational benefit. In this
case, it is a simple switch to compute all atoms in the simulation via
the accurate potential.
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The force on an atom depends, according to Eq. (2), on the
switching parameters of all neighboring atoms. Therefore, we use a
spatial switching-zone to ensure a smooth transition of the potential
from the precisely to the fast calculated atoms. The size of this spatial
switching zone, 8 or 12 A in this paper, should be small in compar-
ison to the system size. Otherwise, a single atom that is identified
for a precise potential description would cause the computation of a
majority of the system atoms with the precise potential since atoms
in the transition zone require the computation of both the precise
and fast potential in order to be weighted according to Egs. (1)
and (2). As mentioned earlier, an optimization of compute time
would then suggest applying the precise potential for the complete
system in order to reduce or avoid computational overhead. This
case study shows that an adaptive-precision potential is best suited
for large-scale atomistic simulations where a decision can be made
about which atoms require a high precision description. In many
simulations, a large speedup can be achieved then by skipping
most of the precise calculations. Furthermore, an adaptive-precision
potential allows us to embed precisely calculated atoms of interest
at low cost into millions of quickly calculated atoms and thereby
allows larger simulations, for which nanoindentations serve here
as an example. The dislocation loops nucleate below the inden-
ter and glide away from there [cf. Fig. 4(b)]. This type of system,
considered on a longer time scale, definitely requires a very big
system since dislocation loops evolve in each spatial dimension
and should not artificially interact with themselves via periodic
boundary conditions, which is quite likely if the system size is
too small.

As discussed, our method needs a detection mechanism for
atoms of interest that need to be calculated precisely. We selected the
centro-symmetry parameter (CSP) as detection mechanism as we
were interested in defects and surface atoms for the nanoindentation
demonstration. However, one can replace this detection mechanism
easily depending on one’s own needs, as discussed in Sec. II B,
where we suggest detection mechanisms for grain-boundary struc-
tures, coatings, interfaces, and cracks, among others. However, our
proposed dynamical adjustment of the group of atoms is not appro-
priate for spontaneous phenomena that cannot be anticipated by
the detection mechanism, as one cannot ensure a smooth tran-
sition from the fast to the precise potential, which would result
in artifacts.

The application of an adaptive-precision potential for other sit-
uations where the highest precision is required only locally but not
globally, such as interfaces, cracks, and grain boundaries, is straight-
forward, while the generalization of the detection mechanism for
non-crystalline systems such as amorphous solids is a natural next
question. Automated training of the fast potential would improve
the usability of adaptive-precision potentials. The present work is
based on a CPU-version of our method. A GPU-version is planned
for the future.
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APPENDIX A: CENTRO-SYMMETRY PARAMETER

To calculate the CSP according to Ref. 29, initially reference
Vectors 7; j rf from the central atom i to its closest neighboring atoms
j are determined in an undistorted lattice. In the distorted lattice,
one uses the distorted vectors 7;; closest in distance to the undis-
torted reference vectors to calculate the centro-symmetry parameter

CSpf = Zl;jz/lz (Fij + Fi,j+N/2)2, whereas j and j + N/2 correspond to
a pair of opposite nearest neighbors of the central atom i. The set
of distorted vectors used to calculate CSP!*f may contain a neighbor
multiple times and non-nearest neighbors.

LAMMPS™ uses a different definition for the centro-symmetry
parameter CSP'™P, which does not require a reference system. At
first, one searches the set .4 of the N nearest neighboring atoms
of the central atom i, whereas N is the number of nearest neigh-
bors in the undistorted lattice. Afterward, the N/2 pairs with the
smallest |7; j, + 7 j,| with j1, j2 € 4f are used to calculate the centro-
symmetry parameter. This definition may also contain duplicates,

FIG. 5. Snapshot of BCC tungsten at 300 K. The eight nearest neighbors (white)
of the central atom (blue) do not contain all neighboring atoms required to calcu-
late the centro-symmetry parameter CSP™®. The ninth-nearest neighbor (red) is
missing. Thus, one needs to evaluate more than the 8 nearest neighbors for the
CSP™P-calculation.
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but relevant non-nearest neighbors may be neglected. This neglec-
tion of non-nearest neighbors is relevant for the computed CSP™
of tungsten in a BCC lattice at 300 K, as shown in Fig. 5. The
effect of this neglection is reduced by searching N + Npyfer rather
than N nearest neighbors for .4;. Thus, we calculate CSP™P accord-
ing to the LAMMPS-definition but use N + Npyer atoms for the
identification of the N/2 relevant opposite-neighbor pairs denoted
asj,j+ N/2.

The switching parameter needs to detect atoms for the precise
calculation precisely to prevent too many evaluations of the precise
and expensive potential. This requirement is fulfilled by the CSP
since only neighboring atoms similar to the expected neighbors in an
undistorted lattice are used for the calculation. Missing or displaced
atoms in the second neighbor-shell of the central atom do not influ-
ence the CSP. Hence, the nearest neighbor-shell of a defect, vacancy,
or surface atom is detected, but the second-nearest neighbor-shell is
not. The latter behavior might not be useful when low angle sym-
metric tilt grain boundaries, for example, are of interest, as only a
subset of atoms may be detected.”® However, one can use the CSP to
detect some grain boundaries.”

APPENDIX B: CONSTRUCTION OF THE SWITCHING
FUNCTION

The centro-symmetry parameter, according to Eq. (3), detects
defects and surface atoms, which need to be calculated by the precise
potential. Therefore, we use the CSP as starting point to construct
the switching function for a nanoindentation. The centro-symmetry
parameter fluctuates over time as atoms fluctuate, dependent on
their temperature. Since the thermal fluctuations of atoms should
not be detected, we introduce a moving average,

1 Ncspavg
CSPan,i(t):NCSP ) > CSPi(t - nAt), (B1)
,avg  p=1

of Ncspavg time steps At. The time-averaged centro-symmetry
parameter can be used to calculate a switching parameter Ag; as

CSPaygi(t) — CSP,
Noa(t) = ““0(—& °), B2
wil(t) = f CSPy; — CSPy, (B2)
where we use the radial function,
1 forx <0,
w 0.5 +0.9375y — 0.625y°
£ (x) = e (83)
+0.1875y° withy =1 - 2x for0<x<1,
0 forl < x.

£ is taken from Ref. 60 as the first and second derivatives of
£ are smooth at 0 and 1. Ag;(t) = 1 applies for all atoms with
CSPavg,i(t) < CSPy,. The use of a continuous switching function for
CSPayg,i € [CSPy,, CSPy;i | ensures a smooth transition from the fast
interatomic potential to the precise one and vice versa for all atoms.
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One can change the argument of f“ in Eq. (B2) to use a dif-
ferent detection mechanism and use the following definitions of the
switching function as presented without further changes. The argu-
ment must be 0 for atoms to be calculated exactly and 1 for atoms to
be calculated quickly.

Since the force on an atom depends on all switching parameters
within its force cutoff, as discussed in Sec. II A, we introduce

/\mm’i(t) - min ({1 _ (1 —/\o,j(t))f(cut)(ﬁ](t) 7’/110) e QA,i})>

"Lhi = Tl

(B4)
where Q) ; = {j: rjj < rapi} is the set of neighboring atoms. As A,
€ [0,1] applies, Amin,i € [0, 1] follows. For both the calculation and
understanding of Amin,i(t), it is useful to start with do;(t) as ini-
tial value for the minimum search. Atoms j that were not detected
for a precise calculation have Aoj(t) = 1. Their contribution to the
minimum search is 1 independent of r;; and, thus, negligible. Only
neighbors j that were detected for a precise calculation and, thus,
have A0j(t) <1 and Ao;(t) can be the searched minimum. Atoms
with Ao,i(f) =0 set Aminj(f) =0 for all neighboring atoms j with
rij < Tyjo and may set Aminj € (0,1) for neighboring atoms with
rij € (TAJo> ahi)- Thus, Eq. (B4) decreases the switching parameter
for neighbors of atoms, which needs to be calculated precisely to
ensure a higher fraction of precise force contributions for these
atoms. Since the radial function f“Y (r;) used in Eq. (B4) also
fluctuates due to atomic fluctuations, we use a moving average,

Niavg

> Amini(t — nAt), (B5)

avg p=1

hasi(8) = 1

of Njag time steps. To prevent unnecessary fluctuations of the
switching function further, we introduce a minimum step size AAmin
and neglect changes smaller than this step size in the form of

/\avg,i(t) fOI‘ ‘/\avg,i(t) - Aavg,msz,i(t - At)|
> Admin O Aavg,i(t) € {0, 1},
Aavgmszi(t — At), otherwise.

/lavg,msz,i ( t) =

(B6)
When an atom is detected for a precise calculation according to
Amin,i (), it takes N Lavg time steps until A4y is changed completely
due to the time average. Therefore, a change of A4y, in the order of
magnitude of 1/N, Lavg 18 expected. Changes of Aavgmsz,i smaller than
1/Njavg can be neglected without disturbing the smooth transition
from the fast interatomic potential to the precise one or vice versa in
a relevant way. Thus, the use of an appropriately small Ay, pre-
vents only A changes due to atomic fluctuations. We use Aavgmsz,i
according to Eq. (B6) as switching function for energy- and force-
calculations as the CSP precisely detects defects and surface atoms,
and the switching function ensures precise forces on these detected
atoms.

APPENDIX C: LOCAL THERMOSTAT

The local thermostat needs to change the kinetic energy of par-
ticles in order to correct the energy error AH; according to Eq. (5)
introduced by changed switching parameters and thereby conserve
the energy.
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1. Error calculation

AH; is the energy difference of atom i at the end of a time step
between the conservative reference system with constant switch-
ing parameters and the system with updated switching parameters.
Therefore, one has to finish the calculation of an integration step for
both sets of switching parameters. The quantities of the conservative
reference system calculated with the constant switching parameter
A (t+ At) = Ai(t) are denoted with ... . In contrast, the quanti-
ties calculated with the dynamically updated switching parameter
M (¢ + At) are denoted with . .. . The non-energy conserving force
on an atom with the updated switching parameter under neglection
of Vidg in Eq. (2) is

F =3 (AUVED) - (1-2D)((ViEP)). ()
k

With the same force equation like Eq. (C1) but /li instead of Ai,
we get the conservative reference force F;. Since the form of the
equation is the same and both forces depend on the same atomic
positions x;(¢ + At), one can easily calculate F{ and F{ during the
force calculation by just summing up two forces weighted with the
corresponding switching parameter.

To measure the violation of energy conservation [cf. Eq. (5)]
by neglecting V;A; and using F; according to Eq. (C1), we calculate
both the potential energy difference AE;(t+ At) = E;(f + At)
~El(t+At) and the kinetic energy difference AT;(t+ At)
= (|55(t + AP = |52 (t + At)[*)mi/2 at the end of the time step.
The potential energy difference is given as

AE(t+At) = (Af(t +AE) = AN+ At))

x (EO(t+a0) - EP (14 41)).  (C2)

One should note that Eq. (C2) only uses already calculated poten-
tial energies and does not introduce further overhead. The switching
parameter is known for all atoms, and one does not need any poten-
tial energies for atoms i with A(t + At) = A{ (¢ + At). The kinetic
energy difference is given as

(At) ((Ffa(t +a)) = (Fi(e+ At))z)

t

ATi(t+At) = Z (

At\ At
+ (Ff,,(t+ At) - Fa(t+ At)) x U,a(t+ 7)? )

(C3)

whereas a denotes the spatial component of a vector. It is important
to use only the forces of the interatomic potential as F{ and F{' and to
neglect any present external forces since such additional forces may
not be energy- and momentum-conserving.

2. Error correction

Coupling particles to a local heat bath through collisions of
two particles, according to Lowe-Andersen,®’ for example, is, there-
fore, impractical since the direction of the momentum change of
the two particles is in the direction of the relative distance of
both particles. This predefined direction of a momentum change
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for two particles may result in very high and unphysical forces
when the relative momentum of the two considered particles is
not parallel to the direction of the momentum change. Thus, one
needs to apply a correction to the set ; of atoms rather than
to a pair of atoms to distribute the additional force over multi-
ple atoms. We get a minimum additional force when a particle’s
momentum is rescaled since the direction of force and momen-
tum change is equal in this case, but this would violate momentum
conservation. Thus, we need to rescale with respect to the center-of-
mass velocity Uem(Qi) = (X jeq, mjU;)/(X jeq, mj) of the rescaled
atoms. We want to rescale only the relative momentum pi ()
=p;i(Qi) - mjUem() of all particles j € Q; by the factor S(€),
namely,

ﬁj,resc(Qi) = mjﬁcm(Qi) + ﬁ(Qi)ﬁrel,j(Qi)- (C4)

The total relative momentum Y ;cq, Prel,j = 0 vanishes, and the
rescaling, according to Eq. (C4), therefore conserves the momentum.
The kinetic energy change in ); due to the rescaling is

ATresc(Qi) = (ﬁ(Ql)z - 1) Z ﬁprel,j(ﬂi)z- (CS)
jEQ; ]

To correct the detected energy error AH; according to Eq. (5), we
need to select f(€2;) to satisfy AH; = ATresc (Qi), namely,

AH;
Q) = _——— + 1 (Ce6)
ﬁ( ) \} ZjeQ, ﬁprel,j(gi)z

We neglect f(Q;) = - although it fulfills AH; = ATresc(Q),
because it alters the momentum direction for AH; = 0. Rescaling,
according to Eq. (C6), conserves the momentum for AH; = 0. It
is important to note that the rescaling factor  depends on the
momentum before the rescaling. Therefore, our method presents
challenges in terms of parallelization, as one needs a sub-domain
decomposition with sub-domains that can be treated independently.
We did not develop and implement such a sub-domain decompo-
sition as it is not the focus of our work. Instead, we only rescale
locally administered particles and no ghost particles. We use a
random selection of locally administered particles of the neigh-
bor list of particle i and the particle i itself as ;. Thereby, the
energy correction by rescaling relative momenta can be applied
per processor without communication for all particles with an
energy error of AH; # 0. Note that the application of this local
thermostat contains essentially two stochastic components. First,
the selection of neighboring atoms that are rescaled is stochastic,
namely, Q;. Second, the direction of the effective force is the direc-
tion of the relative momentum prey, () [cf. Eq. (C4)], and thus
stochastic.

The maximum possible decrease in the relative momentum
per particle is to decrease the relative momentum for all parti-
cles j € Q; to 0 kgm/s with () = 0. Thus, according to Eq. (C6),
energy errors AH; < =3 jcq, Prel, i(Q)?/(2m;) cannot be corrected
as they correspond to a negative radicand in Eq. (C6) and imply
B ¢ R. Hence, one needs to include more particles in the rescal-
ing in this case. Concrete prevention strategies and workarounds
in LAMMPS for negative radicands are discussed in Appendix D.
However, the occurrence of negative radicands depends on the
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simulation setup and the combined potentials and is, by our obser-
vation, an extremely rare event that does not occur at all in many
simulations.

The presented rescaling approach fulfills momentum conser-
vation as only relative momenta are rescaled and results in energy
conservation for the forces according to Eq. (C1). One can then use
Fl(t + At) as Fi(t + At) and the rescaled velocities as v;(t + At) at
the beginning of the next integration step.

This local thermostat is a tool to correct locally a known energy
gain or loss of an atom i during the integration step by adjusting
the kinetic energy in the local environment of this atom. We know
exactly the energy error due to the neglection of V;A; in Eq. (2)
and correct this error to conserve the energy within numerical
precision.

APPENDIX D: HANDLING NEGATIVE RADICANDS
IN LAMMPS

Energy errors AH; < =Y jeq, Pretj(Q1)*/(2m;) cannot be cor-
rected by the local thermostat as they correspond to a negative
radicand in Eq. (C6) and imply f ¢ R. Hence, one needs a larger
neighbor list to randomly draw atoms as €); in case of a negative
radicand. As a dynamic neighbor-list cutoff is not implemented in
LAMMPS, one needs to use the last restart file to run the simulation
with a larger neighbor-list cutoff. Requesting a larger neighbor-list
cutoff as a precautionary measure is possible, but it would reduce the
performance of the whole simulation rather than just of a small sub-
set of time steps. As we use a parallel-computing approach, including
a load-balancing scheme, problems due to the domain geometry are
possible. When the load balancer reduces the size of a domain, it also
reduces the number of local particles that are available for rescal-
ing. Thus, in case of a negative radicand, one can also restart the
simulation with temporarily disabled load balancing to avoid the
existence of small domains. For details regarding the load balancing,
see Sec. 11 D.

APPENDIX E: OPTIMIZING THE EAM POTENTIAL

A EAM potential is given according to Eq. (11) by an embed-
ding function &, an electron density {, and a pair potential ®. We use
a copper potential from Ref. 28, which is given by the pair potential,

O(x) = (EM(x ) + E:M (6, a2) + )

x w(’“;“) _i (" —x)su (i - x)',  (ED
where
y(x) = x'/(1+x")O(~x) (E2)
and

M(x,r0,a) = exp (—2a(x —19)) = 2 exp (—a(x —19)) (E3)
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TABLE lIl. Optimized parameters of the EAM Copper potential compared with the original values of EAM2 of Ref. 28.

Parameter ~ Value original Value fit 300K Parameter Value original ~ Value fit 300 K
EileV 2.01458 x 10° 2.01486 x 10° S/A 8.62250x107°  2.18016x107°
Ex/eV 6.59288x 107>  6.44057x107° Fi'/eV  0.00000x10°  -1.50036x 107"
9%V -230000x10°  -2.30089 x 10° h/A 500370x 107" 5.00370x 107"
£9/ev 1.40 000 x 10° 1.39912x10°  gq,/eV  -1.30000x10°  -1.29894 x 10°
Q 4.00000x107"  3.99178x10”"  g,/eV  -9.00000x 107" -8.99672x 107"
Q 3.00000x 107" 3.00455x 107" gy/eV  1.80000 x 10° 1.79 940 x 10°
Si/eVA™"  4.00000x10°  4.00000x10°  g,/eV  3.00000x10°  2.99944 x 10°
S,/eVA™  400000x10'  4.00000x10'  r$P/A 835910x107"  8.36347x 107!
Ss/eVA™  1.15000x10°  115000x10° /A 446867x10° 446690 x 10°
a 380362x10°  3.80541x10° /A —2.19885x10° 219834 x 10°
ar/A™ 297758 x10°  2.96972x10°  r$V/A -2.61984x10°  -2.61984x 107
o /A7! 1.54927 x 10° 1.55510 x 10° DR 224000 x 10° 2.24 000 x 10°
/A2 1.73940x 107" 1.66589x 107" rP/A 1.80 000 x 10° 1.80 000 x 10°
1
JAT! 5.35661 x 10> 535661x102 /A 1.20000 x 10° 1.20 000 x 10°
2
relA 5.50 679 x 10° 5.50 679 x 10°

with the Heaviside step function ®(x) = 1 for x > 0,0 for x < 0. The
embedding function is

(O 4 %gm(x, 1) ifx<1,
4 n
b -] o 0" (B4)
= (E(O) " E5(2) (x- 1)2 +qi(x- 1)3 otherwise.

FQi(x- 1)4)/(1 FQx-1)")
The electron density is

0= (o e (File- ") s e (fale=r))
xy((x=re) h). (£5)

The EAM potential is optimized as described in Sec. I1I with atom-
icrex. The target values and tolerances for the minimized loss func-
tion (12) are shown in Table I. The fitted parameters are shown in
Table III.

APPENDIX F: PARAMETER SELECTION
FOR AN ADAPTIVE-PRECISION POTENTIAL

The parameters of the hybrid potential are listed in Table IV
and will be explained in more detail in this appendix.

1. Centro-symmetry parameter

Nbuffer is used to ensure all relevant neighboring atoms are used
in the calculation of the centro-symmetry parameter according to
Eq. (3). For copper, we have not observed the case of unexpected
high centro-symmetry parameters we discussed in Fig. 5 for tung-
sten. Therefore, we use Npyfrer = 0. An unexpected high CSP is less
likely for copper as the distance in lattice constants between the first

TABLE IV. Parameters of the adaptive-precision model and values of the parameter
set Hyb1 for copper at 300 K.

Parameter Value Parameter Value Parameter Value
Npufter Oatoms  CSPy  3.0A%  Nja, 110
NCSP,avg 110 rA,lo 4.0 A AAmin l.O/N,Lan
CSPj, 2.5 A? Lhi 120 A || 800 atoms

and second neighbor shell is for BCC with 1 —/3/4 ~ 0.13 smaller

than for FCC with 1 — \/1/_2 ~ 0.29.

The centro-symmetry parameter of an atom i fluctuates due to
atomic fluctuations. To suppress these fluctuations, we use a time
average of Ncspavg time steps in Eq. (B1). To determine Ncsp,avg,
we measured autocorrelation functions (acf) for 5 ps near a (100)-
copper surface, as shown in Fig. 6, as a mean per (100) atom
layer dependent on the distance to the surface. The acf of the CSP
has a peak at about 110 fs for all layers apart from the surface
layer. As the CSP depends on the local environment, a different
acf for the surface atoms is expected. Since the time averaging
of the centro-symmetry parameter is used to average out ther-
mal fluctuations, we want to average the CSP up to the peak of
the acf of non-surface atoms at 110fs. With the used time step
At = 1fs, Ncspavg = 110 follows.

The distribution of the centro-symmetry parameter CSP; in
the training data is used to set the thresholds CSP;, and CSPy;
for Eq. (B2). The fast potential is optimized for usage at a target
temperature with MD data of the precise and expensive potential.
The training data contain only thermal fluctuations of atoms with
observed CSP; € [0 A% 3 AZ]. Therefore, we distinguish between
a small CSP of the thermal fluctuations and all other atoms with
a higher CSP. As atoms with CSPay; > CSPy; are detected for a
precise calculation according to Eq. (B2), we select CSPy,; = 3 A”.
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FIG. 6. Mean autocorrelation functions of the centro-symmetry parameter CSP;
according to Eq. (3). Each shown graph is the mean of the autocorrelation func-
tions (acf) of one atom layer in the z-direction. The mean distance (Az;); of the
corresponding atom layer to the (100)-copper surface is given in the legend. The
autocorrelation functions are calculated from data of a 5 ps simulation with an
adaptive-precision potential.

Thereby, we do not detect atoms with expected thermal fluctuations
but all other atoms. We use CSP,, = 2.5 A? since the difference
of 0.5 A? between the thresholds allows a smooth transition for
atoms from the fast to the precise potential. One might use a slightly
different value for CSPy,, but far lower values limit the possible
performance gain since thermally fluctuating atoms are treated par-
tially with the precise potential. It is essential to treat the majority
of the thermally fluctuating atoms completely with EAM, as one
can only save compute time when ACE is not evaluated for most
atoms at all.

2. Switching function

The cutoff radii r)), and r)p; are used in the calculation of
Amini according to Eq. (B4) to decrease the switching parameters
for neighboring atoms of atoms, which require a precise calculation.

S
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The force on an atom depends on all switching parameters within
the force cutoff. Thus, 7)), and r); increase the force precision
for precisely calculated atoms. To determine the cutoff radii ),
and 7 i, we calculate energies and forces according to Egs. (C1)
and (1) for one time step with Amin; as switching function under
the neglection of (V) as discussed in Sec. II C. However, we
do not apply a local thermostat to prevent random influence in
this parameter study and calculate only one time step. We use a
snapshot of a nanoindentation, including dislocations. The energy
error compared to the precise ACE energy, as shown in Fig. 7(a),
vanishes by design for precisely calculated atoms independently
of the varied parameters since it depends only on Amin; of the
corresponding precisely calculated atom i. The force error com-
pared to the precise ACE forces is shown in Fig. 7(b) and depends
for the case of thermal fluctuations mainly on the width 7y
— 150 Of the switching zone between precise and fast atoms but is
independent of r,,. The force error for thermal fluctuations can
be larger than for the EAM reference force since only the total
forces rather than the force contributions of EAM and ACE are
fitted, as shown in Fig. 1. Therefore, a switching zone is needed
to change smoothly between EAM and ACE atoms. The larger
the switching zone, the smaller the force error on thermal fluc-
tuations, but the more computationally expensive the calculation
becomes since more precise calculations are required. We selected
a switching zone width of ryp; — 130 =8 A. The force error for
precisely calculated atoms depends primarily on r)),. We selected
rlo = 4 A

The switching parameter Amini> according to Eq. (B4), of atom
i fluctuates as it depends on the distance r;; to neighboring atoms
j» which require a precise calculation. Thus, we use a time aver-
age of Nj,, time steps in Eq. (B5) to average out these fluctua-
tions of the switching parameter. As this is the same motivation
as for the time averaging of the centro-symmetry parameter in
Eq. (B1), we use the same number N) ovg = Ncsp,avg = 110 of averaged
time steps.

oL
~ 4
>
g 102 5
~ E
Qo
2z ]
o2
10! 4
3 E
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2 1079b)
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thermal dislo- surface
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FIG. 7. Root mean square error (RMSE) of the (a) potential energy and (b) forces of the adaptive-precision potential compared with the precise ACE potential for a snapshot
of a nanoindentation dependent on ry, and ry ;. All atoms whose forces are influenced by both EAM and ACE are grouped dependent on CSP,y,; and the RMSE is
calculated per group. Atoms with pure EAM or ACE force-contributions are not considered since their energies and forces are good. The RMSE of ACE compared to
EAM2?6 is shown as a reference. The cutoff r, |, is represented by different symbols, and the width ry 5 — ry o of the switching zone is color-coded.
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3. Local thermostat

An energy error AH; according to Eq. (5) of atom i is cor-
rected by rescaling momenta of the set of random neighboring
atoms €); according to Eq. (C6). The distribution of AH; in Fig. 8(a)
for a snapshot of a copper nanoindentation at 20 A indenta-
tion depth and 300 K shows that energy corrections need to be
applied up to an order of magnitude of 1 meV due to changes
in the potential energy. The energy difference between ACE and
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FIG. 8. Rescaling-related quantities of a nanoindentation at 300 K and 20 A inden-
tation depth. (a) Histogram of potential energy change AE; according to Eq. (C2),
kinetic energy change AT; according to Eq. (C3), and kinetic energy change
AT esc due to the applied rescaling according to Eq. (C4) separated for positive val-
ues denoted with “heat” and negative values denoted with “cool.” (b) 2D-Histogram
of the velocity |v;7*°| before the rescaling step compared with the velocity change
[vi7%¢ — v7*¢| during the rescaling step, where i denotes a particle and « denotes
a spatial dimension. (c) Root mean square error (RMSE) of different forces com-
pared with the precise ACE potential. All rescaled atoms are grouped dependent
on CSP,q, and the RMSE is calculated per group. The applied forces, accord-
ing to Eq. (C1), are denoted with “unscaled.” The graph denoted with “rescaled”
corresponds to the applied forces plus theoretical forces according to Eq. (F1)
due to the rescaling. The forces of the optimized EAM potential used for the
adaptive-precision potential are denoted with “EAM” and given as a reference.
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EAM is in the order of 100 meV according to Fig. 7(a), and the
minimum change of the switching parameter is Alyin = 1/N Lavg

~ 1072, Thus, the energy fluctuations due to the change of A; in the
order of 1 meV are expected. The kinetic energy T; of an atom at
300 Kis T; = (3/2)ks T ~ 39 meV, where kg is the Boltzmann con-
stant and T is the temperature. The kinetic energy changes only
slightly with an appropriate time step, and the influence of a A
update on the forces and, therefore, on the kinetic energy change
is even lower. Therefore, the contribution of the kinetic energy to
the energy error is magnitudes smaller than the potential-energy
contribution, as shown in Fig. 8(a). Nevertheless, a kinetic energy
change due to rescaling in the order of 1 meV is not negligible com-
pared to an average kinetic energy of 39 meV at 300 K. Hence, we
need to distribute the effect of rescaling onto a larger number of
particles in order to minimize effects on single atoms. In simula-
tions, we use a maximum number [Q;| = 800 of rescaled neighbors.
The velocity change due to rescaling is shown in Fig. 8(b)
for the snapshot of the nanoindentation. The absolute veloc-
ity change |vjy™ — vj°°| is smaller than 0.1%wjy* for vjy* > 0.1
A/ps and smaller than 0.1 mA/ps for about v} < 0.1 A/ps. Thus,
the velocity changes are small but, nevertheless, may influence
the dynamics of the system. To characterize this effect further,
we translate the velocity changes into effective forces. Velocities
are updated by the integrator according to Av = (F/m)At [cf.
Egs. (4a) and (4f)]. Hence, the additional force contribution is
given as

AFiy = (0™ — vy )mif At (F1)

for all particles i and spatial dimensions a. The force AF;, according
to Eq. (F1), however, is a result of the neglection of V;A; in Eq. (2) as
discussed in Sec. IT C. The velocity updates in Fig. 8(b) correspond
to the theoretical forces in Fig. 8(c). These forces, including rescal-
ing, on precisely calculated atoms are within a tolerance of up to 10
meV/A compared to the precise ACE forces. The potential energy
E; depends, according to Eq. (1), only on the switching parameter
Ai of atom i. Therefore, the precision of the potential energies E; is
unaffected by the rescaling.

APPENDIX G: ATOM SUBGROUPS FOR LOAD
BALANCING

We execute first the calculation of the fast potential (FP), sec-
ond the precise potential (PP), third CSP; (CSP), and fourth Amin,
from Aoj (A). Which potential needs to be calculated depends on
the switching parameter A. The centro-symmetry parameter is calcu-
lated for the group of atoms with a changeable switching parameter.
The CSP is not calculated for atoms with a constant switching para-
meter, which is useful for static atoms used at an open boundary. The
fourth subroutine is decreasing, if possible, the switching parameter
Amin,i compared to Ag; for neighboring atoms of atoms, which need
to be calculated precisely by calculating Amin,; according to Eq. (B4).
Atoms i with Ag; = 1, which do not require a precise calculation, do
not influence Apin,i of neighboring atoms. As Ag; = 1 should apply for
most of the atoms, these atoms should not cause a load for the calcu-
lation of Amin,i, Which is achieved by iterating over the neighboring
atoms of atoms with Ag; € [0,1).
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APPENDIX H: ADJUSTING POTENTIAL CALCULATION
FOR LOAD BALANCING

For all four force subroutines to be executed independently one
after the other on all processors, it is important that none of the
subroutines contains communication with other processors, as com-
munication is a synchronization point within a force-calculation
subroutine and may include high additional waiting times. Thus,
avoiding communication during the force-calculation subroutines
is essential to allow effective load balancing. The EAM calculation in
LAMMPS includes communication of the derivative of the embed-
ding function and the electron density within the force-calculation
routine. In order to avoid communication during the force calcula-
tion subroutines, we compute the corresponding quantities on all
processors that require them. This results in double calculations,
but it is acceptable in our case to achieve proper load balanc-
ing. The ACE calculation did not require any adjustments due to
communication.

APPENDIX I: PROCESSOR DEPENDENCY
OF SUBPROCESS WORK

Histograms of the work p‘g‘% according to Eq. (6) used at all

load balancing steps of a nanoindentation calculated on 384 proces-
sors on JURECA-DC™* are shown in Fig. 9. pg,t with (pﬁ,t)p,t =48.6 us
is distributed over four orders of magnitude since the calculation
time required on atom i also depends on Ao of neighboring atoms.
Since the number of atoms with Ag; # 1 should be small compared
with the number of all atoms, we iterate over all atoms with Ag; # 1
and calculate Ayin, for all neighbors j of i. As we search a minimum
switching parameter Amin; per neighbor, we can abort the calcu-
lation for Amin; < A # 1 without calculating r;; and ﬂcut). As the
calculation of Amin; is only required on the processor that admin-
isters particle j, it is not required to compute the parameter Amin
for ghost particles. Thus, the work caused by an atom i depends
on the neighboring atoms and is not constant for all processors.
The histograms show (py} ). = 9.6 s, (ppy )p.t = 1.7 ms, and (p5;" )ps
= 5.6 us, whereas there are two peaks next to each other since the
calculation times are dependent on the number of neighbors, which
is about a factor of two smaller for surface atoms. Therefore, one
cannot use one constant processor-independent time per atom. The
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FIG. 9. Histogram of the average work pg;%) for all load-balancing steps of a

nanoindentation in a cubic system of 100° unit cells and load balancing with a
staggered grid domain decomposition.
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histograms show the need to measure the required work per atom
per processor. Furthermore, the histograms show that the fraction
of surface atoms is non-negligible. The atoms at the surface are
detected by the centro-symmetry parameter and, thus, require a pre-
cise calculation; hence, the domains administered by a processor are
small. Note that excluding surface atoms from the precise calculation
is possible by comparing the CSP to a given reference configuration,
for example, initial or equilibrium configuration, instead of using
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FIG. 10. (a) Number of atoms per processor, which require the calculation of the
fast potential (FP) and the precise potential (PP) for all load-balancing steps of
a nanoindentation in a cubic system of 100° unit cells and load balancing with a
staggered grid domain decomposition. (b) Imbalance / according to Eq. (13) and
core-h per time step during equilibration of a surface in a NVT ensemble compared
for different load-balancing methods. The staggered grid method (SG) uses per

processor p the work p;% of all four force subroutines 2", whereas the recursive
coordinate bisectioning (RCB) method only uses one work P, Per processor and
is thus worse balanced. The number behind the load balancing method in the
legend is the number of time steps, after which the corresponding load balancer is
called. (c) Load balancing in the system of (b) but with static atoms only to test the
behavior of the load balancers.
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the absolute value of the CSP as input for the switching function in
Eq. (B2).

APPENDIX J: DYNAMIC-LOAD BALANCING DETAILS

We use a nanoindentation to discuss the challenges of dynamic
load-balancing of a simulation with an adaptive-precision poten-
tial in the following. The numbers of precise and fast calculations
per processor are shown in Fig. 10(a) as a 2D-histogram of all
load-balancing steps, whereas load-balancing is done as described
in Sec. IT D. The 2D-histogram shows that balancing a few precise
calculations on some processors with many more fast calculations
on other processors works. More precisely, the domains with the
fewest fast calculations perform, on average, 568 precise calculations,
whereas the domains with the fewest precise calculations perform,
on average, 44 245 fast calculations.

To analyze dynamic load balancing further and also include
non-performant load-balancing strategies, we only use the start of
the equilibration instead of a whole nanoindentation. The required
core-hours per time step during the equilibration of a surface in a
NVT ensemble and the imbalance are shown in Fig. 10(b) for differ-
ent load-balancing strategies. Our load-balancing method applying
a staggered grid (SG) and estimating the work per particle with
the four force-subroutine times pl(,%) [cf. Eq. (6)] results in an
imbalance of 1.88 when used every 100 time steps. Not estimat-
ing the work per particle but per processor p with only one time
measurement of the total force-calculation time 7, means that the
actual load distribution on the processor is unknown to the load
balancer. Thus, load balancing with only one average work p, [cf.
Eq. (6)] per processor using the recursive coordinate bisection-
ing (RCB) method of LAMMPS results in an imbalance of 6.17.
The imbalance difference between SG and RCB demonstrates the
benefit of using one average work p per individual force sub-
routine 2. The imbalance 1 of a perfectly balanced system is not
reached since the system is dynamic and changes the workload at
each time step.

ARTICLE pubs.aip.org/aipl/jcp

An atom i in a bulk of only thermally fluctuating atoms can
change its value Ao, to a value smaller than 1 due to a spontaneous
fluctuation, which might be reversed in one of the next time steps
and, therefore, produces workload fluctuations due to changes in
the neighboring Amin; parameters according to Eq. (B4). More con-
cretely, the atom changes the switching parameter of all neighboring
atoms within the cutoff r) ; to a value smaller than 1, which implies

a precise and expensive ACE calculation. Within the cutoff ri{:iyl

= 12 A are 626 atoms at 0 K, which is more than the 568 precise
calculations for the processors with the fewest fast calculations in
Fig. 10(a). Thus, one atom with Apin; < 1 can double the work of
its processor, and one cannot expect an imbalance of 1 according
to Eq. (13) for such a dynamic system. However, the staggered-
grid load balancer reaches a better imbalance with 1.47 when called
every 25 time steps since it can better follow the dynamics of the
system. When we freeze all atoms in the NVT equilibration of the

surface, we get a static force calculation after Nf Zl’gl + Ngsyll,’,lavg =220
time steps. The SG method reduces the imbalance of this static
system up to 1.02, as shown in Fig. 10(c). Hence, the staggered-
grid-load balancer works, but the system dynamics is challenging.
In contrast, the RCB-load balancer cannot balance the static sys-

tem due to the missing per atom and subroutine 2" force-calculation
times pl(,‘%/) [cf. Eq. (6)].

APPENDIX K: SIMULATION DEPENDENCY
OF THE SAVED COMPUTATION TIME

A nanoindentation with 4 x 10° atoms calculated on JURECA-
DC** with the adaptive-precision potential Hybl (cf. Table 1V)
requires 11 and 13 times less core-h for equilibration and nanoin-
dentation itself, as visualized in Fig. 11. The amount of saved
computation time depends on the system itself. Dislocations develop
during a nanoindentation, and therefore there are more precisely
calculated atoms at the end of a nanoindentation than at the begin-
ning or during the equilibration of the surface. Hence, one requires
59 and 33 times less core-h for the simulations with periodic

100

3 11
59 =
1072
103
) G
ACE

fraction
ACE atoms

core-hpot per step/
core-hcg per step
N EAM
N Hybl 25
Hybl 100
Hyb2 100

NVT PPP NPT PPP

NVT PPS

NVE PPS

FIG. 11. Total computation time of nanoindentations with 4 x 10° atoms (100° unit cells) simulated with adaptive-precision potentials compared to ACE and EAM nanoinden-
tations. The number behind the potential in the legend is the number of time steps, after which the staggered-grid load balancer is called. EAM, hybrid, and ACE simulations
are calculated on 128, 384, and 2048 cores of JURECA-DC, respectively. The fraction of used core-h compared to ACE is given on top of the bars. The approximated fraction
of ACE atoms is given in gray to visualize the overhead induced by the method. The times are given for all four parts of a simulation separately. NVT and NPT ensembles
are simulated with periodic boundaries (PPP) to prepare a surface (PPS). The surface is equilibrated in an NVT ensemble. The nanoindentation itself is calculated in an NVE

ensemble.
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boundaries in all spatial directions since there are no precisely calcu-
lated atoms at the surface. One saves even computation time for all
simulation parts for Hyb2, where we increased the cutoffs ), = 8 A
and ) 1, = 20 A and used the remaining parameters of Hyb1.

REFERENCES

'R. Drautz, Phys. Rev. B 99, 014104 (2019).

ZALV. Shapeev, Multiscale Model. Simul. 14, 1153 (2016).

3 A. P. Bart6k, M. C. Payne, R. Kondor, and G. Csényi, Phys. Rev. Lett. 104, 136403
(2010).

“A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker,
J. Comput. Phys. 285, 316 (2015).

57. Behler, J. Chem. Phys. 134, 074106 (2011).

5A. Seko, A. Togo, and I. Tanaka, Phys. Rev. B 99, 214108 (2019).

7C. van der Oord, G. Dusson, G. Csényi, and C. Ortner, Mach. Learn.: Sci.
Technol. 1, 015004 (2020).

8Y. Lysogorskiy, C. van der Oord, A. Bochkarev, S. Menon, M. Rinaldi, T. Ham-
merschmidt, M. Mrovec, A. Thompson, G. Csanyi, C. Ortner, and R. Drautz, npj
Comput. Mater. 7, 97 (2021).

9P. Verma and D. G. Truhlar, Trends Chem. 2, 302 (2020).

19 A. Warshel and M. Levitt, ]. Mol. Biol. 103, 227 (1976).

"G. Moras, R. Choudhury, J. R. Kermode, G. CsAnyi, M. C. Payne, and A.
De Vita, “Hybrid quantum/classical modeling of material systems: The ‘learn
on the fly’ molecular dynamics scheme,” in Trends in Computational Nanome-
chanics: Transcending Length and Time Scales, edited by T. Dumitrica (Springer,
Netherlands, Dordrecht, 2010), pp. 1-23.

2], R. Golebiowski, J. R. Kermode, P. D. Haynes, and A. A. Mostofi, Phys. Chem.
Chem. Phys. 22, 12007 (2020).

13C. Peter and K. Kremer, Soft Matter 5, 4357 (2009).

Te4M. Praprotnik, L. D. Site, and K. Kremer, Annu. Rev. Phys. Chem. 59, 545
(2008).

5R. Cortes-Huerto, M. Praprotnik, K. Kremer, and L. Delle Site, Eur. Phys. . B
94,189 (2021).

T8N He, Y. Liu, and X. Zhang, Int. |. Numer. Methods Eng. 112, 380 (2017).

17 A. Tabarraei, X. Wang, A. Sadeghirad, and J. Song, Finite Elem. Anal. Des. 92,
36 (2014).

8R. Potestio, S. Fritsch, P. Espanol, R. Delgado-Buscalioni, K. Kremer, R.
Everaers, and D. Donadio, Phys. Rev. Lett. 110, 108301 (2013).

19U. Alekseeva, R. G. Winkler, and G. Sutmann, J. Comput. Phys. 314, 14 (2016).
201, Delle Site, Phys. Rev. E 76, 047701 (2007).

M. J. Buehler, A. C. T. van Duin, and W. A. Goddard, Phys. Rev. Lett. 96, 095505
(2006).

22M. Praprotnik, L. Delle Site, and K. Kremer, J. Chem. Phys. 123, 224106 (2005).
1. Zhang, H. Wang, and W. E, |. Chem. Phys. 149, 154107 (2018).

24 A. Heyden, H. Lin, and D. G. Truhlar, ]. Phys. Chem. B 111, 2231 (2007).

25p, Espaiiol, R. Delgado-Buscalioni, R. Everaers, R. Potestio, D. Donadio, and K.
Kremer, . Chem. Phys. 142, 064115 (2015).

267, Pp. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P.
S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J.
Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, Comput. Phys. Commun. 271,
108171 (2022).

27M. W. Finnis and J. E. Sinclair, Philos. Mag. A 50, 45 (1984).

28y Mishin, M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress,
Phys. Rev. B 63, 224106 (2001).

29C. L. Kelchner, S. J. Plimpton, and J. C. Hamilton, Phys. Rev. B 58, 11085 (1998).
30]. D. Honeycutt and H. C. Andersen, . Phys. Chem. 91, 4950 (1987).

3TE. R. Homer, Comput. Mater. Sci. 161, 244 (2019).

ARTICLE pubs.aip.org/aipl/jcp

32y, Tsuzuki, P. S. Branicio, and J. P. Rino, Comput. Phys. Commun. 177, 518
(2007).

33LAMMPS, LAMMPS documentation - compute centro/atom command, 2024,
https://docs.Jammps.org/compute_centro_atom.html.

34LAMMPS, LAMMPS documentation - compute cna/atom command, 2024,
https://docs.Jammps.org/compute_cna_atom.html.

35LAMMPS, LAMMPS documentation - compute cnp/atom command, 2024,
https://docs.Jammps.org/compute_cnp_atom.html.

36M. Li, J. Cui, J. Wang, and Q. Hou, J. Nucl. Mater. 433, 17 (2013).

37H.-T. Luu, S. Raumel, F. Dencker, M. Wurz, and N. Merkert, Surf. Coat.
Technol. 437, 128342 (2022).

38w, C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson, ]. Chem. Phys.
76, 637 (1982).

395, Plimpton, J. Comput. Phys. 117, 1 (1995).

“OR. Halver, “Adaptives Lastbalance-Verfahren fiir Gebietszerlegung in der
Molekulardynamik,” M.S. thesis, FH Aachen University of Applied Sciences, 2010.
“TH. Tliev, M.-A. Hermanns, J. H. Gébbert, R. Halver, C. Terboven, B. Mohr, and
M. S. Miiller, in High-Performance Scientific Computing: First JARA-HPC Sympo-
sium, JHPCS 2016, Aachen, Germany, October 4-5, 2016, Revised Selected Papers
1 (Springer, 2017), pp. 187-199.

“2R. Halver, S. Schulz, and G. Sutmann, “ALL—A loadbalancing library,”
C++/Fortran library, https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-
/releases

“3A. Hernandez, A. Balasubramanian, F. Yuan, S. A. Mason, and T. Mueller, npj
Comput. Mater. 5,112 (2019).

44H.S. Huang, L. Q. Ai, A. C. T. van Duin, M. Chen, and Y. J. L, J. Chem. Phys.
151, 094503 (2019).

“5D. Geissler, J. Freudenberger, A. Kauffmann, S. Martin, and D. Rafaja, Philos.
Mag. 94, 2967 (2014).

“6E. M. Bringa, J. U. Cazamias, P. Erhart, J. Stolken, N. Tanushev, B. D. Wirth, R.
E. Rudd, and M. J. Caturla, ]. Appl. Phys. 96, 3793 (2004).

“TR. W. Siegel, ]. Nucl. Mater. 69-70, 117 (1978).

“8p__W. Ma and S. L. Dudarev, Phys. Rev. Mater. 5, 013601 (2021).

3 Atomic Defects in Metals, Landolt Bornstein, New Series, Group III, Vol. 25:
Crystal and Solid State Physics, edited by H. Ullmaier (Springer, Berlin, 1991),
p. 88.

SOH. Ledbetter, Physica Status Solidi A 66, 477 (1981).

5T A. Stukowski, E. Fransson, M. Mock, and P. Erhart, Modell. Simul. Mater. Sci.
Eng. 25, 055003 (2017).

52A. Hjorth Larsen, J. Jorgen Mortensen, J. Blomgqvist, I. E. Castelli, R. Chris-
tensen, M. Dutak, J. Friis, M. N. Groves, B. Hammer, C. Hargus, E. D. Hermes,
P. C. Jennings, P. Bjerre Jensen, J. Kermode, J. R. Kitchin, E. Leonhard Kolsb-
jerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. Bergmann Maronsson, T. Maxson, T.
Olsen, L. Pastewka, A. Peterson, C. Rostgaard, J. Schiotz, O. Schiitt, M. Strange,
K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter, Z. Zeng, and K. W. Jacobsen,
J. Phys.: Condens. Matter 29, 273002 (2017).

53G. Nilsson and S. Rolandson, Phys. Rev. B 7, 2393 (1973).

54D. Krause and P. Thornig, J. Large-Scale Res. Facil. 4, A132 (2018).
SSLAMMPS, LAMMPS documentation - fix balance command, 2024,
https://docs.Jammps.org/fix_balance.html.

56 A. Stukowski, Modell. Simul. Mater. Sci. Eng. 18, 015012 (2009).

57 A. Stukowski, V. V. Bulatov, and A. Arsenlis, Modell. Simul. Mater. Sci. Eng. 20,
085007 (2012).

583, P. Coleman, D. E. Spearot, and L. Capolungo, Modell. Simul. Mater. Sci. Eng.
21, 055020 (2013).

595, Li, L. Yang, and C. Lai, Comput. Mater. Sci. 161, 330 (2019).

9 A, Bochkarev, Y. Lysogorskiy, S. Menon, M. Qamar, M. Mrovec, and R. Drautz,
Phys. Rev. Mater. 6, 013804 (2022).

81C. P. Lowe, Europhys. Lett. 47, 145 (1999).

J. Chem. Phys. 162, 114119 (2025); doi: 10.1063/5.0245877
© Author(s) 2025

162, 11411917

£0:6G:80 G202 I4dY 62


https://pubs.aip.org/aip/jcp
https://doi.org/10.1103/physrevb.99.014104
https://doi.org/10.1137/15M1054183
https://doi.org/10.1103/PhysRevLett.104.136403
https://doi.org/10.1016/j.jcp.2014.12.018
https://doi.org/10.1063/1.3553717
https://doi.org/10.1103/physrevb.99.214108
https://doi.org/10.1088/2632-2153/ab527c
https://doi.org/10.1088/2632-2153/ab527c
https://doi.org/10.1038/s41524-021-00559-9
https://doi.org/10.1038/s41524-021-00559-9
https://doi.org/10.1016/j.trechm.2020.02.005
https://doi.org/10.1016/0022-2836(76)90311-9
https://doi.org/10.1039/d0cp01841d
https://doi.org/10.1039/d0cp01841d
https://doi.org/10.1039/b912027k
https://doi.org/10.1146/annurev.physchem.59.032607.093707
https://doi.org/10.1140/epjb/s10051-021-00193-w
https://doi.org/10.1002/nme.5543
https://doi.org/10.1016/j.finel.2014.07.013
https://doi.org/10.1103/PhysRevLett.110.108301
https://doi.org/10.1016/j.jcp.2016.02.065
https://doi.org/10.1103/physreve.76.047701
https://doi.org/10.1103/physrevlett.96.095505
https://doi.org/10.1063/1.2132286
https://doi.org/10.1063/1.5042714
https://doi.org/10.1021/jp0673617
https://doi.org/10.1063/1.4907006
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1080/01418618408244210
https://doi.org/10.1103/physrevb.63.224106
https://doi.org/10.1103/physrevb.58.11085
https://doi.org/10.1021/j100303a014
https://doi.org/10.1016/j.commatsci.2019.01.041
https://doi.org/10.1016/j.cpc.2007.05.018
https://docs.lammps.org/compute_centro_atom.html
https://docs.lammps.org/compute_cna_atom.html
https://docs.lammps.org/compute_cnp_atom.html
https://doi.org/10.1016/j.jnucmat.2012.09.024
https://doi.org/10.1016/j.surfcoat.2022.128342
https://doi.org/10.1016/j.surfcoat.2022.128342
https://doi.org/10.1063/1.442716
https://doi.org/10.1006/jcph.1995.1039
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-/releases
https://gitlab.version.fz-juelich.de/SLMS/loadbalancing/-/releases
https://doi.org/10.1038/s41524-019-0249-1
https://doi.org/10.1038/s41524-019-0249-1
https://doi.org/10.1063/1.5112794
https://doi.org/10.1080/14786435.2014.944606
https://doi.org/10.1080/14786435.2014.944606
https://doi.org/10.1063/1.1789266
https://doi.org/10.1016/0022-3115(78)90240-4
https://doi.org/10.1103/physrevmaterials.5.013601
https://doi.org/10.1002/pssa.2210660209
https://doi.org/10.1088/1361-651x/aa6ecf
https://doi.org/10.1088/1361-651x/aa6ecf
https://doi.org/10.1088/1361-648x/aa680e
https://doi.org/10.1103/physrevb.7.2393
https://doi.org/10.17815/jlsrf-4-121-1
https://docs.lammps.org/fix_balance.html
https://doi.org/10.1088/0965-0393/18/1/015012
https://doi.org/10.1088/0965-0393/20/8/085007
https://doi.org/10.1088/0965-0393/21/5/055020
https://doi.org/10.1016/j.commatsci.2019.02.003
https://doi.org/10.1103/physrevmaterials.6.013804
https://doi.org/10.1209/epl/i1999-00365-x

