001041099 001__ 1041099
001041099 005__ 20251103202052.0
001041099 0247_ $$2doi$$a10.1109/MGRS.2025.3546527
001041099 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02140
001041099 037__ $$aFZJ-2025-02140
001041099 082__ $$a550
001041099 1001_ $$00009-0004-8444-5759$$aGomes, Carlos$$b0
001041099 245__ $$aLossy Neural Compression for Geospatial Analytics: A review
001041099 260__ $$aNew York, NY$$bIEEE$$c2025
001041099 3367_ $$2DRIVER$$aarticle
001041099 3367_ $$2DataCite$$aOutput Types/Journal article
001041099 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1762157123_16349
001041099 3367_ $$2BibTeX$$aARTICLE
001041099 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041099 3367_ $$00$$2EndNote$$aJournal Article
001041099 500__ $$a This research is carried out as part of the Embed2Scale project and is cofunded by the EU Horizon Europe program under Grant Agreement 101131841. Additional funding for this project has been provided by the Swiss State Secretariat for Education, Research and Innovation and UK Research and Innovation
001041099 520__ $$aOver the past decades, there has been an explosion in the amount of available Earth observation (EO) data. The unprecedented coverage of Earth’s surface and atmosphere by satellite imagery has resulted in large volumes of data that must be transmitted to ground stations, stored in data centers, and distributed to end users. Modern Earth system models (ESMs) face similar challenges, operating at high spatial and temporal resolutions, producing petabytes of data per simulated day. Data compression has gained relevance over the past decade, with neural compression (NC) emerging from deep learning and information theory, making EO data and ESM outputs ideal candidates because of their abundance of unlabeled data. In this review, we outline recent developments in NC applied to geospatial data. We introduce the fundamental concepts of NC, including seminal works in its traditional applications to image and video compression domains with a focus on lossy compression. We discuss the unique characteristics of EO and ESM data, contrasting them with “natural images,” and we explain the additional challenges and opportunities they present. Additionally, we review current applications of NC across various EO modalities and explore the limited efforts in ESM compression to date. The advent of self-supervised learning (SSL) and foundation models (FMs) has advanced methods to efficiently distill representations from vast amounts of unlabeled data. We connect these developments to NC for EO, highlighting the similarities between the two fields and elaborate on the potential of transferring compressed feature representations for machine-to-machine communication. Based on insights drawn from this review, we devise future directions relevant to applications in EO and ESMs.
001041099 536__ $$0G:(DE-HGF)POF4-5111$$a5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x0
001041099 536__ $$0G:(DE-HGF)POF4-5112$$a5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)$$cPOF4-511$$fPOF IV$$x1
001041099 536__ $$0G:(EU-Grant)101131841$$aEmbed2Scale - Earth Observation & Weather Data Federation with AI Embeddings (101131841)$$c101131841$$x2
001041099 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001041099 7001_ $$00009-0005-2137-6167$$aWittmann, Isabelle$$b1
001041099 7001_ $$00000-0003-0983-7053$$aRobert, Damien$$b2
001041099 7001_ $$00000-0002-6235-0300$$aJakubik, Johannes$$b3
001041099 7001_ $$00009-0000-0224-6088$$aReichelt, Tim$$b4
001041099 7001_ $$0P:(DE-Juel1)204210$$aMaurogiovanni, Stefano$$b5$$ufzj
001041099 7001_ $$00000-0002-7306-3403$$aVinge, Rikard$$b6
001041099 7001_ $$00009-0000-0004-0051$$aHurst, Jonas$$b7
001041099 7001_ $$0P:(DE-Juel1)203511$$aScheurer, Erik$$b8
001041099 7001_ $$0P:(DE-Juel1)178695$$aSedona, Rocco$$b9
001041099 7001_ $$00000-0002-7254-3405$$aBrunschwiler, Thomas$$b10
001041099 7001_ $$0P:(DE-Juel1)185654$$aKesselheim, Stefan$$b11
001041099 7001_ $$00000-0002-1803-3658$$aBatic, Matej$$b12
001041099 7001_ $$00000-0002-1191-0128$$aStier, Philip$$b13
001041099 7001_ $$00000-0002-0290-6901$$aWegner, Jan Dirk$$b14
001041099 7001_ $$0P:(DE-Juel1)171343$$aCavallaro, Gabriele$$b15
001041099 7001_ $$00000-0001-8049-7069$$aPebesma, Edzer$$b16
001041099 7001_ $$00000-0003-4646-0136$$aMarszalek, Michael$$b17
001041099 7001_ $$00000-0003-1173-4379$$aBelenguer-Plomer, Miguel A.$$b18
001041099 7001_ $$0P:(DE-Juel1)203513$$aAdriko, Kennedy$$b19$$ufzj
001041099 7001_ $$00000-0002-5213-7071$$aFraccaro, Paolo$$b20
001041099 7001_ $$00000-0002-7145-8225$$aKienzler, Romeo$$b21
001041099 7001_ $$0P:(DE-Juel1)201603$$aBriq, Rania$$b22$$ufzj
001041099 7001_ $$0P:(DE-Juel1)192312$$aBenassou, Sabrina$$b23$$ufzj
001041099 7001_ $$00000-0001-7513-3527$$aLazzarini, Michele$$b24
001041099 7001_ $$00009-0009-2422-7289$$aAlbrecht, Conrad M.$$b25
001041099 773__ $$0PERI:(DE-600)2703053-2$$a10.1109/MGRS.2025.3546527$$gp. 2 - 40$$n3$$p97-135$$tIEEE geoscience and remote sensing magazine$$v13$$x2473-2397$$y2025
001041099 8564_ $$uhttps://juser.fz-juelich.de/record/1041099/files/2503.01505v2.pdf$$yOpenAccess
001041099 909CO $$ooai:juser.fz-juelich.de:1041099$$popenaire$$popen_access$$pdriver$$pVDB$$pec_fundedresources$$pdnbdelivery
001041099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)204210$$aForschungszentrum Jülich$$b5$$kFZJ
001041099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203511$$aForschungszentrum Jülich$$b8$$kFZJ
001041099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178695$$aForschungszentrum Jülich$$b9$$kFZJ
001041099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185654$$aForschungszentrum Jülich$$b11$$kFZJ
001041099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171343$$aForschungszentrum Jülich$$b15$$kFZJ
001041099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)203513$$aForschungszentrum Jülich$$b19$$kFZJ
001041099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)201603$$aForschungszentrum Jülich$$b22$$kFZJ
001041099 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)192312$$aForschungszentrum Jülich$$b23$$kFZJ
001041099 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5111$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0
001041099 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5112$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x1
001041099 9141_ $$y2025
001041099 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-10
001041099 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-10
001041099 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-10
001041099 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE GEOSC REM SEN M : 2022$$d2024-12-10
001041099 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-10
001041099 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bIEEE GEOSC REM SEN M : 2022$$d2024-12-10
001041099 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-10
001041099 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041099 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-10
001041099 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-10
001041099 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-10
001041099 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
001041099 980__ $$ajournal
001041099 980__ $$aVDB
001041099 980__ $$aUNRESTRICTED
001041099 980__ $$aI:(DE-Juel1)JSC-20090406
001041099 9801_ $$aFullTexts