001     1041099
005     20251103202052.0
024 7 _ |a 10.1109/MGRS.2025.3546527
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02140
|2 datacite_doi
037 _ _ |a FZJ-2025-02140
082 _ _ |a 550
100 1 _ |a Gomes, Carlos
|0 0009-0004-8444-5759
|b 0
245 _ _ |a Lossy Neural Compression for Geospatial Analytics: A review
260 _ _ |a New York, NY
|c 2025
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1762157123_16349
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This research is carried out as part of the Embed2Scale project and is cofunded by the EU Horizon Europe program under Grant Agreement 101131841. Additional funding for this project has been provided by the Swiss State Secretariat for Education, Research and Innovation and UK Research and Innovation
520 _ _ |a Over the past decades, there has been an explosion in the amount of available Earth observation (EO) data. The unprecedented coverage of Earth’s surface and atmosphere by satellite imagery has resulted in large volumes of data that must be transmitted to ground stations, stored in data centers, and distributed to end users. Modern Earth system models (ESMs) face similar challenges, operating at high spatial and temporal resolutions, producing petabytes of data per simulated day. Data compression has gained relevance over the past decade, with neural compression (NC) emerging from deep learning and information theory, making EO data and ESM outputs ideal candidates because of their abundance of unlabeled data. In this review, we outline recent developments in NC applied to geospatial data. We introduce the fundamental concepts of NC, including seminal works in its traditional applications to image and video compression domains with a focus on lossy compression. We discuss the unique characteristics of EO and ESM data, contrasting them with “natural images,” and we explain the additional challenges and opportunities they present. Additionally, we review current applications of NC across various EO modalities and explore the limited efforts in ESM compression to date. The advent of self-supervised learning (SSL) and foundation models (FMs) has advanced methods to efficiently distill representations from vast amounts of unlabeled data. We connect these developments to NC for EO, highlighting the similarities between the two fields and elaborate on the potential of transferring compressed feature representations for machine-to-machine communication. Based on insights drawn from this review, we devise future directions relevant to applications in EO and ESMs.
536 _ _ |a 5111 - Domain-Specific Simulation & Data Life Cycle Labs (SDLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5111
|c POF4-511
|f POF IV
|x 0
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 1
536 _ _ |a Embed2Scale - Earth Observation & Weather Data Federation with AI Embeddings (101131841)
|0 G:(EU-Grant)101131841
|c 101131841
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Wittmann, Isabelle
|0 0009-0005-2137-6167
|b 1
700 1 _ |a Robert, Damien
|0 0000-0003-0983-7053
|b 2
700 1 _ |a Jakubik, Johannes
|0 0000-0002-6235-0300
|b 3
700 1 _ |a Reichelt, Tim
|0 0009-0000-0224-6088
|b 4
700 1 _ |a Maurogiovanni, Stefano
|0 P:(DE-Juel1)204210
|b 5
|u fzj
700 1 _ |a Vinge, Rikard
|0 0000-0002-7306-3403
|b 6
700 1 _ |a Hurst, Jonas
|0 0009-0000-0004-0051
|b 7
700 1 _ |a Scheurer, Erik
|0 P:(DE-Juel1)203511
|b 8
700 1 _ |a Sedona, Rocco
|0 P:(DE-Juel1)178695
|b 9
700 1 _ |a Brunschwiler, Thomas
|0 0000-0002-7254-3405
|b 10
700 1 _ |a Kesselheim, Stefan
|0 P:(DE-Juel1)185654
|b 11
700 1 _ |a Batic, Matej
|0 0000-0002-1803-3658
|b 12
700 1 _ |a Stier, Philip
|0 0000-0002-1191-0128
|b 13
700 1 _ |a Wegner, Jan Dirk
|0 0000-0002-0290-6901
|b 14
700 1 _ |a Cavallaro, Gabriele
|0 P:(DE-Juel1)171343
|b 15
700 1 _ |a Pebesma, Edzer
|0 0000-0001-8049-7069
|b 16
700 1 _ |a Marszalek, Michael
|0 0000-0003-4646-0136
|b 17
700 1 _ |a Belenguer-Plomer, Miguel A.
|0 0000-0003-1173-4379
|b 18
700 1 _ |a Adriko, Kennedy
|0 P:(DE-Juel1)203513
|b 19
|u fzj
700 1 _ |a Fraccaro, Paolo
|0 0000-0002-5213-7071
|b 20
700 1 _ |a Kienzler, Romeo
|0 0000-0002-7145-8225
|b 21
700 1 _ |a Briq, Rania
|0 P:(DE-Juel1)201603
|b 22
|u fzj
700 1 _ |a Benassou, Sabrina
|0 P:(DE-Juel1)192312
|b 23
|u fzj
700 1 _ |a Lazzarini, Michele
|0 0000-0001-7513-3527
|b 24
700 1 _ |a Albrecht, Conrad M.
|0 0009-0009-2422-7289
|b 25
773 _ _ |a 10.1109/MGRS.2025.3546527
|g p. 2 - 40
|0 PERI:(DE-600)2703053-2
|n 3
|p 97-135
|t IEEE geoscience and remote sensing magazine
|v 13
|y 2025
|x 2473-2397
856 4 _ |u https://juser.fz-juelich.de/record/1041099/files/2503.01505v2.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041099
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)204210
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)203511
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)178695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)185654
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)171343
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 19
|6 P:(DE-Juel1)203513
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)201603
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 23
|6 P:(DE-Juel1)192312
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5111
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 1
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2024-12-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE GEOSC REM SEN M : 2022
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b IEEE GEOSC REM SEN M : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21