000010411 001__ 10411
000010411 005__ 20200423202758.0
000010411 0247_ $$2pmid$$apmid:21389005
000010411 0247_ $$2DOI$$a10.1093/treephys/tpq106
000010411 0247_ $$2WOS$$aWOS:000288272100010
000010411 037__ $$aPreJuSER-10411
000010411 041__ $$aeng
000010411 082__ $$a630
000010411 084__ $$2WoS$$aForestry
000010411 1001_ $$0P:(DE-HGF)0$$aNieves, M.$$b0
000010411 245__ $$aLeaf nitrogen productivity is the major factor behind the growth reduction by long term salt stress
000010411 260__ $$aVictoria, BC$$bHeron$$c2011
000010411 300__ $$a92 - 101
000010411 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000010411 3367_ $$2DataCite$$aOutput Types/Journal article
000010411 3367_ $$00$$2EndNote$$aJournal Article
000010411 3367_ $$2BibTeX$$aARTICLE
000010411 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000010411 3367_ $$2DRIVER$$aarticle
000010411 440_0 $$016581$$aTree Physiology$$v31$$x0829-318X$$y1
000010411 500__ $$aThis work was supported by CDTI Project (IDI-20070868).
000010411 520__ $$aPlant growth response to salinity on a scale of years has not been studied in terms of growth analysis. To gain insights into this topic, 2-year-old Mediterranean Fan Palm (Chamaerops humilis L.) and Mexican Fan Palm (Washingtonia robusta H. Wendl) seedlings, each with its own distinct plant morphology, were grown for 2 years in a peat soil and irrigated with water of 2 dS m(-1) (control) or 8 dS m(-1) (saline). Plants were harvested on seven occasions and the time trends in relative growth rate (RGR, the rate of increase of biomass per unit of biomass already existing) and its components were analysed. In the long term, salinity produced a slight reduction in the mean RGR, values in both species. In the short term, salinity caused a reduction in RGR. However, during the second year, plants irrigated with 8 dS m(-1) grew somewhat more quickly than the control plants, probably as a result of delay in the growth kinetics due to salinity. Regarding RGR components, leaf nitrogen productivity (the rate of biomass gain per unit leaf N and time) was the major factor causing the differences in RGR resulting from salinity. Washingtonia robusta showed a relatively high plasticity in plant morphology by increasing root and decreasing stem biomass allocation in the presence of salinity. However, the long-term response of W. robusta to salinity, based to a great extent, on this morphological plasticity, was less effective than that of C. humilis, which is based mainly on the contribution of leaf N to RGR values.
000010411 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000010411 588__ $$aDataset connected to Web of Science, Pubmed
000010411 65320 $$2Author$$abiomass allocation
000010411 65320 $$2Author$$aChamaerops humilis
000010411 65320 $$2Author$$agrowth analysis
000010411 65320 $$2Author$$aRichards function
000010411 65320 $$2Author$$aWashingtonia robusta
000010411 650_2 $$2MeSH$$aArecaceae: drug effects
000010411 650_2 $$2MeSH$$aArecaceae: growth & development
000010411 650_2 $$2MeSH$$aArecaceae: physiology
000010411 650_2 $$2MeSH$$aBiomass
000010411 650_2 $$2MeSH$$aNitrogen: analysis
000010411 650_2 $$2MeSH$$aNitrogen: metabolism
000010411 650_2 $$2MeSH$$aPlant Leaves: drug effects
000010411 650_2 $$2MeSH$$aPlant Leaves: growth & development
000010411 650_2 $$2MeSH$$aPlant Leaves: physiology
000010411 650_2 $$2MeSH$$aPlant Roots: drug effects
000010411 650_2 $$2MeSH$$aPlant Roots: growth & development
000010411 650_2 $$2MeSH$$aPlant Roots: physiology
000010411 650_2 $$2MeSH$$aPlant Stems: drug effects
000010411 650_2 $$2MeSH$$aPlant Stems: growth & development
000010411 650_2 $$2MeSH$$aPlant Stems: physiology
000010411 650_2 $$2MeSH$$aSalinity
000010411 650_2 $$2MeSH$$aSeedling: drug effects
000010411 650_2 $$2MeSH$$aSeedling: growth & development
000010411 650_2 $$2MeSH$$aSeedling: physiology
000010411 650_2 $$2MeSH$$aSodium Chloride: pharmacology
000010411 650_2 $$2MeSH$$aSpain
000010411 650_2 $$2MeSH$$aStress, Physiological
000010411 650_2 $$2MeSH$$aTime Factors
000010411 650_2 $$2MeSH$$aWater: metabolism
000010411 650_7 $$07647-14-5$$2NLM Chemicals$$aSodium Chloride
000010411 650_7 $$07727-37-9$$2NLM Chemicals$$aNitrogen
000010411 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000010411 650_7 $$2WoSType$$aJ
000010411 7001_ $$0P:(DE-HGF)0$$aNieves-Cordones, M.$$b1
000010411 7001_ $$0P:(DE-Juel1)129384$$aPoorter, H.$$b2$$uFZJ
000010411 7001_ $$0P:(DE-HGF)0$$aSimón, M.D.$$b3
000010411 773__ $$0PERI:(DE-600)1473475-8$$a10.1093/treephys/tpq106$$gVol. 31, p. 92 - 101$$p92 - 101$$q31<92 - 101$$tTree physiology$$v31$$x0829-318X$$y2011
000010411 8567_ $$uhttp://dx.doi.org/10.1093/treephys/tpq106
000010411 8564_ $$uhttps://juser.fz-juelich.de/record/10411/files/FZJ-10411.pdf$$yRestricted$$zPublished final document.
000010411 909CO $$ooai:juser.fz-juelich.de:10411$$pVDB
000010411 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000010411 9141_ $$y2011
000010411 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000010411 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000010411 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$gIBG$$kIBG-2$$lPflanzenwissenschaften$$x1
000010411 970__ $$aVDB:(DE-Juel1)120722
000010411 980__ $$aVDB
000010411 980__ $$aConvertedRecord
000010411 980__ $$ajournal
000010411 980__ $$aI:(DE-Juel1)IBG-2-20101118
000010411 980__ $$aUNRESTRICTED