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THE BIGGERPICTURE Spintronics is now a rapidly growing area of research that holds promise to transform
the technological landscape of quantum information science. At the molecular level, understanding the
behavior of stable radicals can lead to fundamental guidelines to control electron spin transport, especially
in metal-molecule-metal junctions. To date, charge transport has played a significant role in molecular elec-
tronics, and turning toward single-electron open-shell molecules can lead to molecular systems for data stor-
age and quantum-enabled devices.

Here, we report the behavior of the Blatter radical embedded in a magnetically controlled break junction,
where the radical remains intact. We also found two different anomalies that we experimentally and theoret-
ically characterized as different configurations within the junction, and importantly, these systems also
exhibit a singlet-triplet Kondo effect. These findings are setting the foundation for investigating structure-
property relationships of stable radicals and can lead to expanding the arsenal of building blocks for
spintronics.

SUMMARY

The Blatter radical has been suggested as a building block in future molecular spintronic devices because of
its radical character and expected long spin lifetime. However, whether its radical character is maintained in
single-molecule junctions depends on the environment. Here, we demonstrate the ability to retain the open-
shell nature of the Blatter radical in a two-terminal device by the appearance of a Kondo resonance in trans-
port spectroscopy. Additionally, a high negative magnetoresistance is observed in junctions that do not
reveal a zero-bias anomaly. By combining distance-dependent and magnetic-field-dependent measure-
ments and accompanying quantum-chemical and quantum-transport calculations, we show that both find-
ings, the negative magnetoresistance and the Kondo features, can be consistently explained by a singlet-
triplet Kondo model. Our findings provide the possibility of using the Blatter radical in a two-terminal system
under cryogenic conditions and also reveal the magnetotransport properties emerging from different config-
urations of the molecule inside a junction.

INTRODUCTION devices.'® They are open-shell systems that do not readily

decompose or chemically react under standard conditions and
Stable organic radical molecules are emerging to become key whose stability can be engineered by virtue of chemical
components for spin-based molecular electronic materials and  design.” '° First reported in 1968,"" the 1,2,4-benzotriazin-4-yl
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Figure 1. lllustration of the Blatter radical molecular junctions
(A) The chemical structure of the Blatter radical molecule used in this study.
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(B) Schematic of the types of Blatter radical molecule junctions formed between two Au electrodes on an MCBJ device. Type M indicates a monomer junction,

and type D indicates a dimer junction.

radical, commonly known as the Blatter radical, is one of such
species and has gained interest because of its many exciting
physical and chemical properties.'? '* The stability of the Blatter
radical under various circumstances enables it to be incorpo-
rated into manifold electronic devices,'®™'" including photode-
tectors'® and thermoelectric devices.'® In addition, the presence
of an unpaired electron in this molecule can lead to interesting
magnetic properties when interfaced with metallic substrates
and electrodes. %7292

Blatter radicals typically have the unpaired electron delocal-
ized on the molecule (Figure 1A). This spatial delocalization of
the unpaired electron gives rise to the exceptionally high stability
of the radical. Recently, these systems have been subject to
studies under different environments of metal-molecule inter-
faces and have been shown to retain the open-shell nature in
thin films'® and upon adsorption on the Au(111) surface under
high vacuum.'® Typically, Kondo spectroscopy is used as evi-
dence for interrogating the molecular spin of the radical.?**° Pre-
viously, using scanning tunneling microscopy (STM) techniques
under ultrahigh vacuum conditions, Repp and coworkers re-
vealed a Kondo resonance arising from the interaction between
the unpaired electron of the Blatter radical with the conduction
electrons.” The singly occupied molecular orbital (SOMO) of
the Blatter radical lies close to the Fermi level of Au and was sug-
gested to be very sensitive to the environment around the mole-
cule.’® Little emphasis has been given to the study of Blatter
junctions in a two-terminal metal-molecule-metal system, mainly
because of the suspected loss of the open-shell character upon
oxidation, as reported in solution-based STM-break junction
experiments.'® Later studies showed that functionalizing the
radical by adding an electron-withdrawing group lowers the en-
ergy levels inside the molecule, giving more stability and pre-
venting oxidation.'® Recently, Jiang et al. also explored this
problem theoretically by using first-principle quantum-transport
calculations.?* Their calculations suggest that the Blatter radical
can successfully retain its open-shell character in a junction be-
tween Au electrodes irrespective of the environmental condi-
tions since the dative bonding at the molecule electrode inter-
face does not alter the spin states of the radical.
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We posit that stable organic radical junctions can also mani-
fest unconventional magnetotransport behavior in combination
with spectroscopic evidence for the Kondo effect and that
both can be tuned by the coupling strength to the electrodes.
To the best of our knowledge, no experimental magnetoresis-
tance (MR) studies to date have focused on radicals with a delo-
calized unpaired electron in the current pathway by using in situ
tunable yet sufficiently stable electrodes. To better understand
the intrinsic properties of open-shell systems, here, we carried
out the first systematic transport study of the Blatter radical in
a mechanically controlled break junction (MCBJ) operated at
low temperature. We were able to produce Blatter molecule
junctions with increased stability in a two-terminal device and
confirmed the signature of the open-shell nature of the radical
by dl/dV spectroscopy. We synthesized the Blatter radical with
two methylthioether units (-SCHs) to enable coupling with the
Au electrodes.’® We deposited the molecule by using a drop-
casting technique and carried out the electronic transport mea-
surements of the individual junctions in cryogenic vacuum at a
temperature of 4.2 K and under magnetic fields. Kondo reso-
nances and magnetoresistance (MR) originating from stable
organic radical molecule junctions have been studied with the
MCBUJ technique before.'®?°?” However, in all previous cases,
the electronic lone pair was located in a specific site of the mole-
cule and was sterically protected. We have found two types of
Kondo resonances, presumably originating from different con-
figurations of the individual junctions of the Blatter radical mole-
cule. One type of the observed Kondo resonances features a
Kondo temperature (Tx) of 30-35 K with a broad and asymmetric
line shape, and the other type has a Tk of 11-17 K with a more
symmetric and narrow line shape. We confirmed the Kondo na-
ture with the evolution of the zero-bias peak as a function of the
magnetic field. These exhibit only a very weak negative finite-
bias MR, as predicted by the usual Kondo effect at finite bias
(see Figure S1). However, we also observed a significant nega-
tive finite-bias MR in certain junctions without having a zero-
bias peak at the measurement temperature of 4.2 K. We found
a maximum change of 21% in resistance with an applied mag-
netic field of +8 T and a subsequent saturation of MR for higher
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Figure 2. Conductance traces and histograms of Blatter radical at low temperature
(A) Examples of typical opening traces of Blatter radical molecule junctions using the MCBJ method at 4.2 K.
(B) 1D conductance histogram built from 595 opening traces measured at 4.2 K with 100 mV bias.

(C) Two-dimensional histogram calculated from the same data as shown in (B).

fields. These results highlight the stability of the unpaired elec-
tron in the Blatter radical molecule junctions in low-temperature
measurements with an MCBJ device. Finally, the negative MR at
finite bias is explained in the framework of a singlet-triplet Kondo
model. We have illustrated that the presence of an extra side-
coupled molecule in the Blatter junction with an antiferromag-
netic exchange interaction between the unpaired spins on the
two radicals results in a possible scenario of negative MR at
finite-bias voltage and at a temperature similar to the experi-
ment. A summary of our results from different types of junctions
is schematically shown in Figure 1B.

RESULTS

Statistical investigations

The Blatter radical molecule with two methylthioether units was
synthesized and characterized as reported earlier.'® The freshly
prepared solution of the molecule was prepared in tetrahydro-
furan (THF) and dropcast onto a gold (Au) MCBJ sample at
room temperature in a nitrogen atmosphere and properly dried
for 45 min. The sample was then characterized with a dipstick
equipped with an MCBJ mechanism pumped to high vacuum
and cooled down to 4.2 K inside a liquid-He bath cryostat.
More details of sample preparation and measurement tech-
niques are described in the methods section.

First, we measured and analyzed the opening traces of the
Blatter radical molecule with an applied bias of 100 mV at
4.2 K. Figure 2A shows typical examples of these opening
traces as a function of electrode displacement. Au single-
atom contacts with 1Gg are observed in all the opening curves,
where Go = 2€?/h is the conductance quantum. Below 1Gy,
upon further stretching of the electrodes, conductance pla-
teaus are formed corresponding to the single-molecule junc-
tions of the Blatter radical molecule bridged using methyl-
thioether anchoring units. These plateaus show a maximum
displacement up to 0.6 nm before breaking down to the
tunneling regime, with conductance G below 10°Gy. In Fig-
ure 2B, we constructed a conductance histogram with logarith-
mic binning of 595 opening traces without any data selection.
We observed major conductance peaks between 1072 and
1072 G,. We attribute multiple peaks observed in this conduc-

tance range to different configurations of molecular junctions
formed between the Au electrodes. Flat plateaus observed in
the opening traces correspond to fully stretched junctions of in-
dividual molecules, while partially connected junctions show
fluctuations in conductance as the electrode displacement is
increased. This behavior is also clearly apparent in the two-
dimensional conductance-distance histogram shown in Fig-
ure 2C. In addition to single-molecule junctions consisting of
one molecule bridging the electrodes (denoted as monomer
or M junctions), there is also the possibility of dimer (or D) junc-
tions with two parallel or side-coupled molecules. To substan-
tiate this possibility, we performed quantum-chemical calcula-
tions using density functional theory (DFT), see Method S4,
the main results of which can be summarized as follows: first,
the Blatter radicals investigated here have an affinity to each
other, as reported earlier for similar species.>?® Second, the
simulated zero-bias conductance values are in the range of
1072 to 103G, with the M junctions at the lower end of this range
(in line with®*), and the higher ones corresponding most likely to
D junctions. The thioether linkage is known to exhibit slight
binding variations, which can arise from the rotation between
the aryl group and -SMe.?® Here, we attribute the difference
in conductance values to the probability of junction formation
of a given conformer. Also, the DFT calculations reported in
the supplemental information show that there are several junc-
tion geometries with slightly different conductance values
(the absolute conductance values are usually overestimated in
DFT models). Regarding the junctions bearing two molecules,
i.e., dimer (D) junctions, we stress that the differences are
not due to the conformations but rather to different types of in-
teractions between two molecules in the junction. Among
the many possible D junctions, we find two particular configura-
tions that are most stable. These are, at first, dimers where
one Blatter radical is bridging between the electrodes, and
the second one is connected with one of its thioether groups
to one of the electrodes. The second type is formed by one
Blatter radical bridging between the electrodes, while the sec-
ond one w-stacks to the first but does not connect to the elec-
trodes (see Method S4 for visuals). Knowing that DFT has the
tendency to overestimate the conductance,®*® it appears
likely that D junctions are also realized in the experiments.
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This interpretation is in line with the relatively strong binding be-
tween the radicals. We will come back to this aspect further
below. Finally, we note the possibility of w-stacked junctions,
where the two radical molecules are connected to different
electrodes each. These junctions are expected to have much
lower conductance®* and might give rise to the faint maxima
around 107 to 103G in the histograms.

The observed conductance peak in the histogram is also in
close agreement with the previous studies of the same molecule
on a solution-based scanning electron microscopy break junc-
tion (STM-BJ) experiment'® and STM studies on thin films of
the Blatter radical on a Au surface at room temperature.’” Jiang
et al. very recently tackled the small conductance obtained from
the Blatter radical molecule junctions theoretically by using first-
principle quantum-transport calculations.? They attribute their
unexpectedly low conductance to singly occupied frontier or-
bitals (SOMO and SUMO, respectively) being weakly electroni-
cally coupled to the Au electrodes. Hence, the Blatter radical
may retain its unpaired spin upon contacting with Au electrodes
in more instances than previously thought. In order to verify this
hypothesis, we carried out several magnetotransport measure-
ments on individual junctions as explained below.

Transport spectroscopy in individual junctions: Kondo
resonances

Differential conductance spectroscopy is performed in order to
understand the properties of individual Blatter radical molecule
junctions in detail. We discuss the dl/dV characteristics
observed in different junctions, which are measured using a
lock-in amplifier technique with 0.1 mV AC amplitude. These
measurements reveal a clear zero-bias anomaly indicating an
electronic resonance formed near the Fermi level for about
20% of single-molecule junctions measured in our study. We
have observed that the line width and the line shape of this reso-
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Figure 3. dI/dV analysis of different single-
molecule junctions of the Blatter radical

(A) dI/dV spectra of a type M1 junction showing a
broad zero-bias anomaly and fitted using the Frota
function.

(B) Spectra of a type M2 junction showing a nar-
row zero-bias anomaly and fitted using the Frota
function.

(C) Magnetic field dependence of the dl/dV
spectra shown in (A) from 0-10 T at 4.2 K. No
splitting of the zero-bias peak is observed here
until 10 T.

(D) Magnetic field dependence of the dl/dV spectra
shown in (B) from 0-10 T at 4.2 K. A splitting of
the zero-bias peak is observed approximately
around 7 T.
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o007  Nance vary among different junctions un-
der the same measurement conditions.
Figures 3A and 3B show examples of
oo two junctions exhibiting different dl/dV
spectra. Junction M1 (3A) shows a broad
and asymmetric line shape, and junction
M2 (3B) shows a narrower and symmetric
resonance. We attribute the origin of these zero-bias anomalies
to Kondo resonances due to the presence of an unpaired
electron in the current pathway, hence indicating that the
open-shell radical nature of the molecule within the two-terminal
device is maintained at low temperature. Furthermore, we argue
that these junctions are monomer junctions, as we will discuss
below.

For the junction M1, in Figure 3A, the zero-bias peak resem-
bles a Fano resonance line shape as observed in many previ-
ous mesoscopic and nanoelectronics devices at low tempera-
ture.?>*° This type of spectrum was also previously reported
with STM-based studies of the Blatter radical molecule.'®'” A
Fano line shape typically occurs when there is an interference
between resonant transport channels and non-resonant direct
tunneling pathways through the device under study.*®>” Here,
these are the transport assisted through the SOMO due to an
unpaired spin, interfering with the continuum tunneling chan-
nels. The first pathway is responsible for the Kondo resonance,
while the latter corresponds to the broad conductance back-
ground. This is often described by a Fano lineshape of the
form dl/dV ~ (g+€)?/(1 +€), with ¢ = (eV — Ek)/Tk. The
Fano parameter, q, defines the ratio of transmission amplitudes
through the resonant and non-resonant tunneling channels and
hence the peak asymmetry. Within this approach, the Kondo
resonance is assumed to be a Lorentzian at energy Ex with
halfwidth T'x. However, numerical renormalization group
(NRG) calculations show that the Kondo resonance has a
non-Lorentzian lineshape with logarithmic tails decaying as
1/In?(leV| /kaTk) at |eV| > kgTk.*® The Frota function,*® which
interpolates the low-temperature NRG spectra in the experi-
mentally relevant range |eV|< 10kg Tk, approximately captures
this non-Lorentzian lineshape. Including the Fano effect within
a Frota function description of the Kondo resonance yields
for dl/dv®**°
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where Tk = T'x/2.542 and ¢ = ¢(q) are related to the Fano
parameter g (see supplemental information and Figure S11)
and constants b and ¢ describe the background and Kondo
peak amplitude, respectively. Equation 1 holds at low-tempera-
ture T < Tk, where I'k acquires its zero-temperature value. This
assumption holds in this experiment (as verified a posteriori by
our fits to Equation 1). A comparison between the Lorentzian
(Fano)- and Frota-based procedures is given in the Figure S3
and Table S1 lists all parameters extracted from fitting junctions
M1 and M2 to Equation 1.

For the junction shown in Figure 3A, we find the energy width
'k = 4.5 mV. We can extract the Kondo temperature by using the
result kgTx = 2I'/m,*" and find it to be approximately 34 K. This is
in good agreement with the values obtained in previous STM-
based studies.’” For junction M2, with T'x = 2.2 mV, we find Tk
to be approximately 17 K.

The Kondo conductance and the lineshape depends on the
strength of the coupling between the molecule and the elec-
trodes and thus on the bonding sites of the molecule with the
electrodes.”*® Hence, we argue that the resonances in cases
M1 and M2 originate from different configurations of the molec-
ular junction. Since we observed both flat and slanted opening
traces in our study, the formation of single-molecule junctions
with different configurations giving rise to different T is a likely
scenario. For Blatter radicals, it is known that the spin density
is mostly centered around the fused benzene ring, benzotriazinyl
core and is partially delocalized to one of the phenyl rings
attached with the thiomethyl groups.'”?' The third aromatic
ring is spin-isolated. Hence, the difference in electronic coupling
with both ends of the electrodes can lead to varying coupling
strengths and transport pathways. Consequently, the junctions
with metal electrodes having a direct interaction with one of
the higher-spin-density sites can display strong zero-bias reso-
nances. Since the Fano line shape results from interference
with another transport path, it is possible that M1 junctions arise
from configurations where the open-shell radical interacts alone
with the electrode. We analyzed many individual junctions with
conductance values between 1072 and 103G, but found no clear
correlation with Tk and G, whereas 70% of them show asym-
metric resonance with a Ty of more than 30 K (type M1). An in-
depth theoretical calculation is necessary to distinguish between
different Kondo states and junction structures.

To further validate the presence of the Kondo resonance and
the extracted I'k (and Tk = 2T'«/wkg) in these junctions, we re-
corded the evolution of dI/dV spectra at various magnetic fields
from0to 10 T at 4.2 K. A magnetic field typically splits the Kondo
resonance due to the Zeeman effect. Figures 3C and 3D show
the corresponding spectra for junction M1 and junction M2,
respectively. We observed no splitting or suppression of the
zero-bias peak in junction M1 while a clear splitting of the peak
is visible for junction M2. Theoretical predictions suggest that
this splitting follows the relation gugB. = I'k/2.***® For the junc-
tion M2, the splitting appears around the field B, of =7 T
compared with the theoretical prediction 9.9 T using the ex-
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tracted I'k = 2.29 mV. We did not observe any changes with
increasing magnetic field up to the maximum experimentally
accessible field of 10 T for junction M1. This is in agreement
with the estimation from theory (using the extracted T'k =
4.57 mV) suggesting that the splitting is expected to occur only
after =20 T, which is above our experimental limit. We thus infer
that these junctions are similar to those reported earlier in Patera
etal.'” that were identified as Kondo junctions. Further examples
for the evolution of dl/dV spectra under magnetic field for both
types of junctions is given in the Figure S4. We found that the
experimental field dependence of the dl/dV for all the measured
junctions shows a remarkable agreement with the theoretical
predictions,***> showing a splitting close to the predicted B,
when this lies in the experimentally accessible field range and
no splitting when B is predicted to lie outside this range.

Negative magnetoresistance and singlet-triplet Kondo
effect

It was reported earlier that for single-radical molecular junctions
without showing any Kondo features, a very pronounced MR
can be observed at larger bias.”® MR is defined here as the
relative change in resistance of a molecule junction at an
applied magnetic field with respect to zero field. In order to
study the magnetotransport on molecular junctions, which do
not show any zero-bias peak in our measurements (denoted
as type D junctions), we studied the evolution of the resistance
under magnetic field applied perpendicular to the sample plane
from —10 to 10 T (red) and 10 to —10 T (black) at a rate of
50 mT/min and measured with a constant bias voltage of
30 mV at 4.2 K. Figure 4 shows MR curves obtained from three
such type D junctions.

We observed a strong negative MR (i.e., decrease of resis-
tance with increasing field strength) with a maximum change
of =21%. Besides a small hysteresis, we observed no clear
change in MR amplitude with the sweep direction. MR curves
tend to saturate after approximately +8 T. We note that in previ-
ous studies of radical molecule junctions, this kind of saturation
or maxima/minima of the resistance were also observed, but at
different field value. We also found that all measured Blatter
radical single-molecule junctions show exclusively negative
MR in our study. In addition, MR measured on type M1 or M2
junctions show only a very small change in resistance of less
than 2%, as given in the Figure S1, hence revealing an anti-cor-
relation between Kondo behavior and strong MR. This behavior
was first explored in junctions of the perchlortrityl radical mole-
cule®® and is now confirmed for Blatter junctions.

The origin and mechanism of large MR in molecule junctions
are still under debate. Various mechanisms have been reported
based on the studies of different organic radical molecules with
regard to the exact structure of the molecule and anchoring
groups. Most of these mechanisms rely heavily on the influence
of molecule-electrode interface scattering and changes in the
electronic coupling strength.?®*”-*¢ In our study, we used meth-
ylthioether anchoring units to couple the Blatter radical to the Au
electrodes. The previous study on the perchlortrityl radical mole-
cule using the same anchoring groups yielded both positive and
negative MR that was assigned to spin-dependent scattering at
the molecule-electrode interfaces and resulting in a quantum
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Figure 4. Magnetoresistance measurements of Blatter radical
junctions without a zero-bias anomaly (type D junctions) at different
conductances

The magnetic field is swept from —10 T to 10 T and back with a sweep rate of
50 mT/min at 4.2 K, and the resistance is measured with an applied bias of
30 mV. The maximum MR% observed is indicated for each junction. Black
curves represent a magnetic field sweep direction from 10 Tto —10 T and red
curves from —10 T to 10 T. MR scale bar corresponds to 3% as indicated.

interference effect.*® In the case of Blatter molecule junctions,
we observed exclusively negative MR, and the theoretically re-
ported weak electronic coupling of SOMO and SUMO orbitals
with gold electrodes suggests the above MR mechanisms may
not be prominent.

Hence, we propose a possible explanation of the significant
negative MR of type D junctions, assuming the junctions actually
consist of a double quantum dot system: a Blatter molecule in
the junction side-coupled to a second quantum dot, also having
a S =1/2, resulting in an antiferromagnetic exchange interaction
of strength J between the two (see Equation 2 in theoretical
methods and the Method S2). The second quantum dot could
be, e.g., a gold atom or a cluster with unpaired spin, a molecular
fragment, or a second Blatter radical. As mentioned above, the
existence of structures in which a second Blatter radical couples
with the first is supported by our quantum-chemical calculations
(see Method S4). Furthermore, we found most such pairs to pref-
erentially couple antiferromagnetically, with a coupling constant
J' (for a Hamiltonian of the form H = —2J'S,Sy,) in the range of
around —90 to —140 cm~", which translates in our Kondo dimer
model notation to antiferromagnetic couplings J = —2J' of order
20-40 meV, i.e., 200-400 K. Examples of the optimized struc-
tures of the possible dimer (D) junctions, the resulting transmis-
sion functions and the information about energies and spin pop-
ulation are given in the Method S4. Weak ferromagnetic coupling
could also occur for some junctions based on our DFT calcula-
tions but could be pushed to more antiferromagnetic by binding
to the electrodes. The latter possibility is also interesting as the D
system would form a S=1, which would result in an un-
derscreened Kondo effect.*®

6 Chem 11, 102500, September 11, 2025
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For antiferromagnetic couplings J, the double-dot system
would exhibit the so-called singlet-triplet Kondo effect, which
would provide a mechanism for understanding the observed
negative MR in the absence of a zero-bias peak in dl/dV. Organic
radical dimers, exhibiting a field-induced singlet-triplet Kondo ef-
fect have been investigated previously, however, the MR was not
discussed.”® Within this picture, see Figure 5A, the ground state
of the isolated dimer at B = 0 is a singlet S = 0 state with a triplet
S =1 state lying at an energy J above it. Upon coupling the dimer
to the leads, the Kondo effect at low energies, temperatures, and
voltages (E,kgT,eV « J) is therefore suppressed and a zero-
bias peak in dl/dV is absent for |eV| < J. Instead, the differential
conductance exhibits a gap of order 2J, which at high tempera-
tures kgT > J could be smeared out (see Figure S8A). Despite
the non-magnetic ground state, the system is still strongly
affected by a magnetic field via the effect of the latter on the
polarizable triplet state: the magnetic field splits the triplet state
and decreases the splitting 6(B) = Es - 1s,|-1 — Es-ogs, -0 be-
tween the lowest component of the triplet state (S, = +1 forB>0
or S, = —1 for B < 0) and the singlet state as shown in Figure 5A.
This splitting eventually vanishes at a sufficiently large magnetic
field B = B* where B* is of the order of J/gug (B* = J/gug exactly
when the molecule plus side-coupled quantum dot is detached
from the leads but is slightly reduced when it is attached to
the leads®®). Fluctuations between the degenerate states at B =
B* lead to a fully developed singlet-triplet Kondo effect via
the hybridization of these states to the leads.®" In this scenario,
increasing B from zero toward B* induces the singlet-
triplet Kondo effect and thereby enhances the conductance
G(B) = dl/dV, implying that G(B = 0) — G(B) is negative (i.e., pos-
itive magnetoconductance), resulting in a negative MR for the
field range —J < gugB < +J (see Figure 5B and S10). This is oppo-
site to the usual S = 1/2 Kondo effect where a magnetic field
reduces the conductance (resulting in a positive MR, see
Figure S10).

Figure 5B shows the NRG calculations of the MR at several
dimensionless voltages eV/kg Tk for J/kgTx = 100. For all voltages,
the MR is negative and exhibits a similar dependence on the mag-
netic field as in the experiment. It is largest at V = 0. Finite V
introduces decoherence, leading to a suppression of the MR.
Nevertheless, even at eV/kgTx = 30, the MR reaches 10% at
gusB/ksTk = 10. The magnitude of the MR is sensitive to the pre-
ciseJ/kgTk and T/Tk (see Figure SO for J/kgTx=30and T/T=10).
The effect of a longitudinal or transverse spin-exchange
anisotropy (Jj/J.=2 and J;/J = 1/2, respectively) is shown
for the largest bias voltage (eV/kgTk = 30) and found to be small.
Its effect is even smaller for smaller bias voltages (see supple-
mental information). Ingeneral, for |eV| < J, its effect is to enhance
the magnitude of the MR, but its sign remains negative.
Similarly, the effect of the Dzyaloshinskii-Moriya (DM) interaction
enhances the magnitude of the MR, as shown in Figure 5 for two
bias voltages (dotted lines) and a large D/J = 0.5. Importantly, the
DM interaction does not affect its overall B-dependence or the
negative sign of the MR (for smaller D/J = 0.2, the enhancement
is much smaller, see Figure S9A). The enhancement in the magni-
tude of MR = 1 — G(V, 0)/G(V, B) is due to the reduction of G(V, B)
in the presence of a finite Dzyaloshinskii vector (D), relative to its
value for D = 0O (since, a finite D enhances the pseudo-magnetic
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Figure 5. Singlet-triplet Kondo effect and negative magnetoresistance
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(A) Magnetic field dependence of the lowest energy singlet (black, So) and triplet states (T4, T_1, To) of a quantum dot with level energy ¢q = —20J exchange
coupled to a second S = 1/2 quantum dot with antiferromagnetic coupling with J = 10 meV, in the absence and in the presence of a Dzyaloshinskii-Moriya (DM)

interaction, Hp = D-sq X S.

(B) Magnetoresistance at temperature T = 0.4Tx = 4 K for different values of the bias voltage eV/kgTx = 0, 1, ..., 30 corresponding (approximately) to V = 0,
1, ..., 30 mV and isotropic exchange J/kgTx = 100 (solid lines). The effect of anisotropic spin exchange is also shown for the largest voltage V = 30 mV:
isotropic case J/J . = 1 (magenta solid line), longitudinal anisotropy J; /J . = 2 with J; /ke Tk = 100 (magenta dashed-dotted line), and transverse anisotropy
Jj/JL =1/2 with J, /keTk = 100 (magenta dashed line). For completeness, although most likely not relevant for molecules solely composed of light atoms
(e.g., the Blatter radical), we also show the effect of the Dzyaloshinskii-Moriya (DM) interaction. In order to discern the trends, this is shown for an unusually

large D/J = 0.5 for both V = 10 mV and V = 30 mV (dotted lines).

field 6(B)/gug in the singlet-triplet Kondo effect, thereby reducing
G as discussed in®°). The intrinsically negative MR seen for dimer
systems is in stark contrast to the positive (low bias) MR of a sin-
gle Kondo-correlated quantum dot described by the Anderson
impurity model in Figure S10, which is also in clear agreement
with the previously reported studies.*®

DISCUSSION

We have developed single-molecule junctions of the Blatter
radical molecule using a mechanically controlled break junction
setup at low temperature in a cryogenic vacuum environment.
Our detailed magnetotransport measurements suggest that the
open-shell nature of the Blatter junction remains intact in a
two-terminal junction. Differential conductance spectroscopy
studies on individual contacts reveal two different types of
zero-bias anomalies originating from the different configurations
of the metal-molecule-metal junction. They are attributed to a
Kondo resonance arising from the delocalized unpaired electron
orbital situated in the current pathway. In addition, Blatter radical
molecular junctions without a zero-bias peak showed strong
negative MR with a maximum change of 21% in resistance
measured at high bias voltage. We modeled the origin of these
high negative MR toward junctions involving a Blatter molecule
with strong correlation with a side-coupled quantum dot config-
uration, which results in a singlet-triplet Kondo effect. The
detailed quantum-chemical calculations show qualitative agree-
ment between the experiment and theoretical predictions. Our
findings reconcile earlier, seemingly contradictory findings on

Blatter radical molecular junctions studied in different environ-
ments and will open up several experimental and theoretical av-
enues to revisit the transport and magnetotransport properties of
other radical molecular junctions. They also pave the way for
studying various fundamental aspects of the Blatter radical
and its derivatives to tailor their properties for spintronic
applications.

METHODS

Device fabrication

The break junction devices were fabricated on a 500 um thick,
polished insulating Cirlex (Kapton laminate) substrate. 2 um pol-
yimide sacrificial layer was spin-coated on the substrate, baked
at 130°C for 5 min, then hard-baked at 430°C for 90 min under
vacuum. Next, a double-layer resist consisting of methylmetha-
crylat-methacrylic acid/polymethylmethacrylate (MMA-MAA/
PMMA) is spin-coated on top and baked in an oven at 170°C
for 30 min. Electron beam lithography was performed on these
substrates of size 3 x 18 mm? in a Zeiss Cross Beam machine
at 10 kV acceleration voltage and was developed using 1:3
methyl isobutylketon: isopropylalcohol (MIBK:IPA) solution for
30 s and rinsed with pure IPA. 80 nm of Au were later deposited
using the electron beam evaporation. The samples were then
etched using anisotropic reactive ion etching in a mixture of ox-
ygen and sulfur hexafluoride at 1 mbar with a power of 50 W for
30 min. This process removes about 600 nm of the polyimide
layer below the electrodes. We prepared a 0.2 mM solution of
Blatter molecules in tetrahydrofuran (THF) and then dropcast it
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onto a freshly prepared MCBJ substrate in nitrogen atmosphere
at room temperature and dried for =1 h.

Transport measurements

All experimental measurements were carried out using a
custom-made cryogenic vacuum dipstick equipped with an
MCBJ at 4.2 K in a He bath cryostat. The sample is shielded us-
ing a copper cap to prevent stray electromagnetic fields. The
electrode displacement, éd, is calibrated by analyzing the open-
ing curves of a bare Au break junction using the tunneling
conductance expression G(dd) « exp (— 26d+/2m¢ /h), where
¢ is the work function of Au approximated as 5.0 eV and mis the
electron mass. At base temperature (4.2 K), sample is repeatedly
opened and closed to form atomically sharp Au electrodes, and
this method allows to form molecular junctions at low tempera-
ture.®? Electronic transport measurements were carried out us-
ing a Yokogawa 7651 as a DC voltage source. The wiring is
composed of homemade coaxial cables and SMA connectors.
Current and voltage across the sample are recorded using
Femto DLCPA and Femto DLPVA low noise amplifiers and
measured with the help of Agilent 34410A multimeters. di/dV
measurements were carried out using HF2LI Zurich Instruments
lock-in amplifiers by applying an AC modulation voltage of
0.1 mV at 317 Hz. Magnetotransport measurements were per-
formed with an applied magnetic field up to +10 T perpendicular
to the sample plane produced from a superconducting magnet
inside the liquid-He dewar. All measurements and devices
were remotely controlled using a custom Python program. Con-
trol experiments utilizing helium exchange gas for thermalization
confirmed that eddy-current heating effects were negligible in
our experiments.

Theoretical methods

Singlet-triplet model

We model the singlet-triplet Kondo effect by the Anderson impu-
rity model side-coupled to a second S = 1/2 quantum dot via an
antiferromagnetic exchange interaction of strength J. The Hamil-
tonian is given by

H = Hgot + Hieads +Htunneling +H,y+Hsg. (Equation 2)

The first term, Hyot = Zoeodid,ﬁUndTndl, describes the
dot Hamiltonian, representing the S = 1/2 degrees of freedom
of the Blatter molecule, where ¢4 is the level energy, measured
relative to the Fermi level Eg, ny, is the occupation number for
spin ¢ = 1, | electrons on the dot, and U is the local Coulomb
repulsion on the dot. The second term describes the Hamilto-
nian of the leads and is given by Hieags = kaekc,ﬁmckw,
where o = L, R labels the two leads and ¢, is the kinetic
energy of the lead electrons. The third term, Hiunneling =
kata(c,twd,, +H.c.), describes the tunneling of electrons
from the leads onto and off the dot with tunneling amplitudes
t, and tunneling rates T, = mpet2, with pe the lead electron
density of states at the Fermi level. The term H; = Js4-S de-
scribes an antiferromagnetic (J > 0) coupling between the
spin sy of the Blatter molecule and the spin S of the side-
coupled quantum dot. Finally, Hg = — gugBS!®* describes a
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magnetic field acting on the combined spin of the quantum
dot and side-coupled quantum dot via the total z-component
S = 5,4 +S,. The above is a minimal model for the singlet-
triplet Kondo effect.”*® We have generalized it to include the
effects of spin-orbit coupling via an anisotropic spin exchange
Jsq-8—%(s4S™ +5;S) +J)s42S; and the DM term Hpy =
D-sy % S.

The total dot-lead tunneling rate is denoted by I' =T"|_+ I'g. For
a strongly correlated quantum dot, we have that U/T" > 1. We
shall use U/T" = 24 for the calculations, a typical value expected
for molecular junctions. For example, estimates of T from
the experiment yielded for the Blatter molecular junction 50—
60 meV. For U/T" = 24 this implies that U = 1.2-1.4 eV, which is
areasonable value for a single-molecule device. The relevant en-
ergy scales of the above model are J and kgTk, where T is the
Kondo temperature for the Anderson impurity model (obtained
by setting J = D = 0 in the model). Specifically, our Tk is defined
as ksTk = (gug)?/4x(0), where x(0) is the zero-temperature
spin susceptibility of the Anderson model. This Tk is close
to that of the well-known Haldane expression Tl =
/TU/2exp(mey(ep +U) /2TU).°* See Method S3 for other
definitions of Kondo scales used in the literature and their inter-
relationships. Calculations are presented for several values of
the dimensionless ratio J/kgTk ranging from 1 to 100.
Numerical renormalization group method
The model (Equation 2) is diagonalized to obtain its many-body
eigenstates and eigenvalues via the numerical renormalization
group method.®® Briefly stated, this approach consists of three
steps: (1) the conduction electron kinetic energy of the leads
kaekc}mckw is logarithmically discretized about the Fermilevel
Er, taken as zero of energy, ex— e, = +tDA™ ", n = 0,1,..., with
D the half-bandwidth of the leads and A > 1 the logarithmic
discretization parameter, (2) the discretized leads are then
transformed to a (tridiagonal) linear chain form using a Lanczos
procedure, and (3) the resulting linear chain form of (2) is itera-
tively diagonalized on successively lower energy scales to obtain
the eigenvalues Eg:1,2 and eigenstates |p), on all energy

een

scales £, = DA~"? n = 0,1,.... Knowledge of the eigenstates
and eigenvalues on all energy scales then allows physical
properties such as thermodynamics and Green functions to be
calculated. Within this approach, with refinements described
in Method S2, we calculate the magnetic field, bias voltage,
and temperature dependence of the differential conductance
G(V, T, B) = dl/dV via

GW.T.B) - / Kis ;Eev, T)

A(E,T,B)dE,
(Equation 3)

where fis the Fermi function and A(E, T, B) is the spectral func-
tion of the impurity level. The general dependence of the spectral
function and differential conductance on field, temperature, and
energy E = eV is shown in Figures S6-S8. From G(V, T, B), we
extract the magnetoresistance (MR) value at bias voltage V
and temperature T via

MR[%] = 100 x (R(B) — R(0))/R(0), (Equation 4)
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=100x (G(V,T,B = 0) — G(V,T,B))/G(V,T,B).
(Equation 5)

First-principle calculations
All molecular structures were optimized using Kohn-Sham
density functional theory (KS-DFT) as implemented in the
program package TursomoLE 6.6.°° The B3LYP®" %0 ex-
change-correlation functional was used, along with Ahlrichs’
def2-TZVP®' single-particle atom-centered basis set, and
Grimme’s empirical dispersion corrections (DFT-D3)%? with
Becke-Johnson damping.®® Convergence criteria of 1077
a.u. for the energy in the self-consistent-field (SCF) algorithm
and 10~ for the gradient in the molecular structure optimiza-
tions were applied, in combination with m4 integration grids.
The coupling constants J are obtained using the Yamaguchi
formula®®® based on the energy difference between an
open-shell singlet and open-shell triplet (broken-symmetry)
determinant.®®

The conductance of the junctions was evaluated assuming
coherent tunneling as the dominant transport mechanism (Lan-
dauer regime). The transmissions are modeled via a Green’s
function approach combined with DFT calculations for zero-
bias electronic structures, employing the wide-band limit for
the self-energies of the electrodes, as described, e.g., in Caroli
et al.,%” Herrmann et al.>®®%° A local density of states (LDOS)
of 0.036 eV~ " was used. Transmission functions were evaluated
with ArTaios,”® using the Fock and overlap matrices from the KS-
DFT electronic structure calculations on the molecular junctions.
The value of the Fermi energy is not straightforward to predict in
first-principle calculations on molecular junctions, as it will be
affected by factors such as the irregular atomistic shapes of
the electrodes and the adsorption of non-bridging molecules
on the electrodes. We therefore evaluate zero-bias conductance
for a range of reasonable Fermi energies (—5, —4.5, and —4 eV)
and check whether our conclusions are robust with respect to
this choice. For further information please refer to the supple-
mental information.
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