001041106 001__ 1041106
001041106 005__ 20250624202311.0
001041106 0247_ $$2doi$$a10.48550/ARXIV.2502.16661
001041106 037__ $$aFZJ-2025-02147
001041106 1001_ $$0P:(DE-HGF)0$$aRidgard, G.$$b0
001041106 245__ $$aVoltage Noise Thermometry in Integrated Circuits at Millikelvin Temperatures
001041106 260__ $$barXiv$$c2025
001041106 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1750744672_16532
001041106 3367_ $$2ORCID$$aWORKING_PAPER
001041106 3367_ $$028$$2EndNote$$aElectronic Article
001041106 3367_ $$2DRIVER$$apreprint
001041106 3367_ $$2BibTeX$$aARTICLE
001041106 3367_ $$2DataCite$$aOutput Types/Working Paper
001041106 520__ $$aThis paper demonstrates the use of voltage noise thermometry, with a cross-correlation technique, as a dissipation-free method of thermometry inside a CMOS integrated circuit (IC). We show that this technique exhibits broad agreement with the refrigerator temperature range from 300 mK to 8 K. Furthermore, it shows substantial agreement with both an independent in-IC thermometry technique and a simple thermal model as a function of power dissipation inside the IC. As the device under test (DUT) is a resistor, it is feasible to extend this technique by placing many resistors in an IC to monitor the local temperatures, without increasing IC design complexity. This could lead to better understanding of the thermal profile of ICs at cryogenic temperatures. This has its greatest potential application in quantum computing, where the temperature at the cold classical-quantum boundary must be carefully controlled to maintain qubit performance.
001041106 536__ $$0G:(DE-HGF)POF4-5223$$a5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001041106 588__ $$aDataset connected to DataCite
001041106 650_7 $$2Other$$aApplied Physics (physics.app-ph)
001041106 650_7 $$2Other$$aFOS: Physical sciences
001041106 7001_ $$0P:(DE-HGF)0$$aThompson, M.$$b1
001041106 7001_ $$0P:(DE-Juel1)180854$$aSchreckenberg, Lea$$b2
001041106 7001_ $$0P:(DE-Juel1)196866$$aDeshpande, Nihal$$b3
001041106 7001_ $$0P:(DE-HGF)0$$aCabrera-Galicia, A.$$b4
001041106 7001_ $$0P:(DE-HGF)0$$aBourgeois, O.$$b5
001041106 7001_ $$0P:(DE-HGF)0$$aDoebele, V.$$b6
001041106 7001_ $$0P:(DE-HGF)0$$aPrance, J.$$b7
001041106 773__ $$a10.48550/ARXIV.2502.16661
001041106 909CO $$ooai:juser.fz-juelich.de:1041106$$pVDB
001041106 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Lancaster University Physics Department$$b0
001041106 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Quantum Motion Technologies$$b0
001041106 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Lancaster University Physics Department$$b1
001041106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180854$$aForschungszentrum Jülich$$b2$$kFZJ
001041106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)196866$$aForschungszentrum Jülich$$b3$$kFZJ
001041106 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b4$$kFZJ
001041106 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut NEEL, Univ. Grenoble Alpes$$b5
001041106 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Institut NEEL, Univ. Grenoble Alpes$$b6
001041106 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Lancaster University Physics Department$$b7
001041106 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5223$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001041106 9141_ $$y2025
001041106 920__ $$lyes
001041106 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lIntegrated Computing Architectures$$x0
001041106 980__ $$apreprint
001041106 980__ $$aVDB
001041106 980__ $$aI:(DE-Juel1)PGI-4-20110106
001041106 980__ $$aUNRESTRICTED