001     1041106
005     20250624202311.0
024 7 _ |a 10.48550/ARXIV.2502.16661
|2 doi
037 _ _ |a FZJ-2025-02147
100 1 _ |a Ridgard, G.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Voltage Noise Thermometry in Integrated Circuits at Millikelvin Temperatures
260 _ _ |c 2025
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1750744672_16532
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a This paper demonstrates the use of voltage noise thermometry, with a cross-correlation technique, as a dissipation-free method of thermometry inside a CMOS integrated circuit (IC). We show that this technique exhibits broad agreement with the refrigerator temperature range from 300 mK to 8 K. Furthermore, it shows substantial agreement with both an independent in-IC thermometry technique and a simple thermal model as a function of power dissipation inside the IC. As the device under test (DUT) is a resistor, it is feasible to extend this technique by placing many resistors in an IC to monitor the local temperatures, without increasing IC design complexity. This could lead to better understanding of the thermal profile of ICs at cryogenic temperatures. This has its greatest potential application in quantum computing, where the temperature at the cold classical-quantum boundary must be carefully controlled to maintain qubit performance.
536 _ _ |a 5223 - Quantum-Computer Control Systems and Cryoelectronics (POF4-522)
|0 G:(DE-HGF)POF4-5223
|c POF4-522
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Applied Physics (physics.app-ph)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a Thompson, M.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schreckenberg, Lea
|0 P:(DE-Juel1)180854
|b 2
700 1 _ |a Deshpande, Nihal
|0 P:(DE-Juel1)196866
|b 3
700 1 _ |a Cabrera-Galicia, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bourgeois, O.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Doebele, V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Prance, J.
|0 P:(DE-HGF)0
|b 7
773 _ _ |a 10.48550/ARXIV.2502.16661
909 C O |o oai:juser.fz-juelich.de:1041106
|p VDB
910 1 _ |a Lancaster University Physics Department
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Quantum Motion Technologies
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a Lancaster University Physics Department
|0 I:(DE-HGF)0
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)180854
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)196866
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Institut NEEL, Univ. Grenoble Alpes
|0 I:(DE-HGF)0
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Institut NEEL, Univ. Grenoble Alpes
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Lancaster University Physics Department
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5223
|x 0
914 1 _ |y 2025
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Integrated Computing Architectures
|x 0
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21