001041116 001__ 1041116
001041116 005__ 20250506081448.0
001041116 0247_ $$2doi$$a10.5194/soil-11-267-2025
001041116 0247_ $$2WOS$$aWOS:001455580100001
001041116 037__ $$aFZJ-2025-02150
001041116 082__ $$a550
001041116 1001_ $$0P:(DE-Juel1)168553$$aKaufmann, Manuela$$b0
001041116 245__ $$aAssessing soil fertilization effects using time-lapseelectromagnetic induction
001041116 260__ $$aGöttingen$$bCopernicus Publ.$$c2025
001041116 3367_ $$2DRIVER$$aarticle
001041116 3367_ $$2DataCite$$aOutput Types/Journal article
001041116 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1743759305_29853
001041116 3367_ $$2BibTeX$$aARTICLE
001041116 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041116 3367_ $$00$$2EndNote$$aJournal Article
001041116 520__ $$aAdding mineral fertilizers and nutrients is a common practice in conventional farming and is fun-damental to maintain optimal yield and crop quality; nitrogen is the most applied fertilizer and is often used excessively, leading to adverse environmental impacts. To assist farmers in optimal fertilization and crop man-agement, non-invasive geophysical methods can provide knowledge about the spatial and temporal distribution of nutrients in the soil. In recent years, electromagnetic induction (EMI) has been widely used for field charac-terization, to delineate soil units and management zones, or to estimate soil properties and states. Additionally, ground-penetrating radar (GPR) and electrical resistivity tomography (ERT) have been used in local studies to measure changes in soil properties. Unfortunately, the measured geophysical signals are confounded by horizon- tal and vertical changes in soil conditions and parameters, and the individual contributions of these conditions and parameters are not easy to disentangle. Within fields, and also between fields, fertilization management might vary in space and time, and, therefore, the differences in pore fluid conductivity caused directly by fertilization or indirectly by different crop performance make the interpretation of large-scale geophysical surveys over field borders complicated. To study the direct effect of mineral fertilization on the soil electrical conductivity, a field experiment was performed on 21 bare-soil plots with seven different fertilization treatments. As fertilizers, calcium ammonium nitrate (CAN) and potassium chloride (KCl) were chosen and applied in three dosages. Soil water content, soil temperature, and bulk electrical conductivity were recorded continuously over 450 d. Additionally, 20 EMI, 7 GPR, and 9 ERT surveys were performed, and on days of ERT measurements, soil samples for nitrate and reference soil electrical conductivity measurements were taken. The results showed that (1) the commonly used CAN application dosage did not impact the geophysical signals significantly. (2) EMI and ERT were able to trace back the temporal changes in nitrate concentrations in the soil profile over more than 1 year. (3) Both techniques were not able to trace the nitrate concentrations in the very shallow soil layer of 0–10 cm, irrespective of the low impact of fertilization on the geophysical signal. (4) The results indicated that past fertilization practices cannot be neglected in EMI studies, especially if surveys are performed over large areas with different fertilization practices or on crops grown with different fertilizer demands or uptake
001041116 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001041116 536__ $$0G:(BMBF)031B0026C$$aBonaRes (Modul A): Nachhaltiges Unterbodenmanagement - Soil³, Teilprojekt 3 (031B0026C)$$c031B0026C$$x1
001041116 588__ $$aDataset connected to DataCite
001041116 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b1$$eCorresponding author
001041116 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b2
001041116 7001_ $$0P:(DE-Juel1)129493$$aLangen, Anke$$b3
001041116 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b4
001041116 7001_ $$0P:(DE-Juel1)129553$$aWeihermüller, Lutz$$b5
001041116 770__ $$aAgrogeophysics: illuminating soil's hidden dimensions
001041116 773__ $$0PERI:(DE-600)2834892-8$$a10.5194/soil-11-267-2025$$gVol. 11, no. 1, p. 267 - 285$$n1$$p267–285$$tSoil$$v11$$x2199-3971$$y2025
001041116 8564_ $$uhttps://juser.fz-juelich.de/record/1041116/files/Invoice_Helmholtz-PUC-2025-46.pdf
001041116 8564_ $$uhttps://juser.fz-juelich.de/record/1041116/files/soil-11-267-2025.pdf$$yRestricted
001041116 8767_ $$8Helmholtz-PUC-2025-46$$92025-04-03$$a1200213523$$d2025-04-30$$eAPC$$jZahlung erfolgt
001041116 909CO $$ooai:juser.fz-juelich.de:1041116$$popenCost$$pOpenAPC$$pVDB
001041116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b1$$kFZJ
001041116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b2$$kFZJ
001041116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129493$$aForschungszentrum Jülich$$b3$$kFZJ
001041116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b4$$kFZJ
001041116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129553$$aForschungszentrum Jülich$$b5$$kFZJ
001041116 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001041116 9141_ $$y2025
001041116 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2025-01-02
001041116 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-12-20T08:54:27Z
001041116 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-12-20T08:54:27Z
001041116 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Open peer review$$d2022-12-20T08:54:27Z
001041116 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2022-12-20T08:54:27Z
001041116 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2025-01-02
001041116 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2025-01-02
001041116 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2025-01-02
001041116 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2025-01-02
001041116 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2025-01-02
001041116 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2025-01-02
001041116 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2025-01-02
001041116 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001041116 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001041116 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001041116 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001041116 920__ $$lyes
001041116 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001041116 980__ $$ajournal
001041116 980__ $$aVDB
001041116 980__ $$aI:(DE-Juel1)IBG-3-20101118
001041116 980__ $$aUNRESTRICTED
001041116 980__ $$aAPC