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ABSTRACT

Emotions modulate behavioral priorities based on exteroceptive and interoceptive inputs, and the related central and
peripheral changes may be experienced subjectively. Yet, it remains unresolved whether the perceptual and subjec-
tively felt components of the emotion processes rely on shared brain mechanisms. We applied functional magnetic
resonance imaging, a rich set of emotional movies, and high-dimensional, continuous ratings of perceived and felt
emotions in the movies to investigate their cerebral organization. Emotions evoked during natural movie scene per-
ception were represented in the brain across numerous spatial scales and patterns. Perceived and felt emotions
generalized both between individuals and between different stimuli depicting the same emotions. The neural affective
space demonstrated an anatomical gradient from emotion-general responses in polysensory areas and default mode
regions to more emotion-specific discrete processing in subcortical regions. Differences in brain activation during felt
and perceived emotions suggest that temporoparietal areas and precuneus have a key role in evaluating the affective
value of the sensory input, and subjective emotional state generation is associated with further and significantly stron-
ger recruitment of the temporoparietal junction, anterior prefrontal cortices, cerebellum, and thalamus. These data
reveal the similarities and differences of domain-general and emotion-specific affect networks in the brain during a
wide range of perceived and felt emotions.
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1. INTRODUCTION 2014; LeDoux, 2012; Scherer, 2009). Emotion circuits

Emotions promote survival by monitoring external and
internal challenges and coordinating automatic changes
in peripheral physiology, behavior, motivation, and con-
scious experiences (i.e., feelings) (Anderson & Adolphs,

span the whole brain, with the core regions residing in the
limbic and paralimbic structures (Kober et al., 2008).
Despite significant advances in mapping the neural basis
of emotions, two critical questions remain unanswered.
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First, how distinct emotional states—such as anger, fear,
or disgust—are coordinated in the brain, and second,
what is the relationship between the brain circuits that
extract and recognize emotional information from the
external input and those that subsequently generate the
phenomenological experience of emotions.

Emotions are organized categorically across multiple
levels ranging from brain activity (Kotz et al., 2013; Kragel &
LaBar, 2016; Peelen et al., 2010; Saariméaki et al., 2016,
2018), autonomic activation (Kragel & LaBar, 2013),
somatosensory and interoceptive experience (Nummenmaa
et al., 2014), and facial, bodily, or vocal behaviors (Calder
et al., 1996; Sauter et al., 2010; Witkower & Tracy, 2019) to
subjective feelings (Toivonen et al., 2012). Recent behav-
ioral studies suggest that the human affective states span
almost 30 distinct emotions (Cowen & Keltner, 2017). Yet,
most imaging studies have investigated either lower-order
emotional dimensions (valence and arousal) (Nummenmaa
et al., 2012) or the canonical six “basic” emotions (Kragel &
LaBar, 2015; Lettieri et al.,, 2019; Putkinen et al., 2021;
Saarimé&ki et al., 2016, 2022), only rarely extending the
emotion space beyond these categories (Du et al., 2023;
Horikawa et al., 2020; Koide-Majima et al., 2020; Lettieri
et al., 2024; Saariméaki et al., 2018).

Emotional processing begins with the encoding of the
survival impact of sensory information based on, for
example, the presence of predators or virus vectors, or
others’ emotional expressions and behavior (Adolphs,
2002; de Gelder & Vroomen, 2000; Witkower & Tracy,
2019) and contextual cues (Aviezer et al., 2008). These
cascading evaluative processes may trigger the central
and peripheral emotional responses and subsequently
also the subjective experience or feeling of emotion (see,
e.g., Anderson & Adolphs, 2014; Barrett et al., 2007;
Scherer, 2009). Emotional perception and feelings are
associated with activation in overlapping brain regions
(Oosterwijk et al., 2017; Volynets et al., 2020; Wicker et al.,
2003). However, an event may trigger emotional states
that are either congruent (e.g., seeing a smiling baby
makes you happy) or incongruent (e.g., seeing a smiling
villain makes you scared) with the event. Similarly, in anx-
iety disorders, emotional perception might be intact while
the resulting feeling is disproportionally biased toward
anxious or fearful feelings (Craske & Stein, 2016). Thus, to
map the neural basis of emotional perception and feel-
ings, we need to establish accurate stimulus models dis-
tinguishing these two aspects independently. Yet, human
neuroimaging studies rarely differentiate perceptual ver-
sus experiential emotion processes (Adolphs, 2017).

Movies provide a powerful way to portray a wide range
of human emotions. The characters may be involved in
nuanced and powerful emotional states (such as Rick
Blaine on the airstrip at the end of Casablanca or Rose

DeWitt Bukater onboard the sinking passenger liner in
Titanic), and such scenes also elicit strong and consistent
emotions in the viewers (Adolphs et al., 2016; Gross &
Levenson, 1995; Saariméki, 2021; Westermann et al.,
1996). Thus, carefully curated cinematic stimuli allow
mapping the high-dimensional representation of both per-
ceived and experienced emotions in the viewer’s brain.

In this study, we modeled the high-dimensional orga-
nization of perceived and felt emotions in the human
brain and tested how these models generalize across
stimuli and participants. We showed our participants
2 hours of emotional movies while measuring their brain
activity with functional magnetic resonance imaging. We
selected a wide range of emotion categories to cover a
high-dimensional affective space (Fig. 1A) and 2 hours of
emotional movie scenes from an existing emotion-
elicitation database (Fig. 1B; Schaefer et al., 2010). We
fitted emotion feature models derived from the dynamic
emotion ratings to the fMRI data and adopted a cross-
validation scheme to evaluate the generalizability of the
emotion models across participants and movie stimuli
(Fig. 1C, D). This allowed us to directly compare the neu-
ral basis of perceived and felt emotions using the same
stimuli. The results show that movies elicited consistent
neural responses to a wide range of perceived and felt
emotions that generalize across stimuli and participants.
The cerebral topographies of perceived and felt emotions
were partly separate, and neural emotion clusters only
partially correspond to behavioral emotion clusters.

2. MATERIALS AND METHODS

2.1. Generating the high-dimensional emotional
space with movies

We initially selected a wide range of emotion categories to
cover a high-dimensional affective space (Fig. 1A). First,
we compiled an original list of 128 emotion categories
based on previous studies (Adolphs, 2002; Cowen &
Keltner, 2017; Saarim&ki et al., 2018; Skerry & Saxe,
2015). Next, we translated the emotion categories into
Finnish using a glossary of Finnish emotion words (Tuovila,
2005). We then conducted a pilot study where 25 female
volunteers rated the similarity between emotion catego-
ries. The ratings were collected using a modified online
Q-sort where participants organized the categories into
piles based on their felt similarities (https://version.aalto.fi
/gitlab/eglerean/sensations; Nummenmaa et al., 2018).
Based on the average similarities, we selected a final list
of 63 emotion categories that covered the whole emotion
space (Supplementary Table S2; Supplementary Fig. S1).

Next, we selected a set of movie stimuli from an exist-
ing database of emotional Hollywood movies (Fig. 1B;
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Methodological pipeline. (A) Candidate emotions were selected based on previous studies. (B) A total of 39

out of 70 movie clips with total duration of >2 hours were selected from (Schaefer et al., 2010) to elicit a wide range

of emotions. (C) Dynamic ratings for perceived and felt emotion features were collected during movie viewing. (D) The
reliability of the ratings of the emotion features was evaluated and only the 46 most reliable features were included in the
stimulus models. (E) The emotion models were fit to the blood oxygenation level dependent (BOLD) functional data using

a cross-validation scheme.

Schaefer et al.,, 2010). First, we excluded black-and-
white movies to minimize low-level visual differences
between scenes. Second, we excluded multiple clips
with the same identifiable characters from a single movie.
Third, to ensure that the scenes elicit the desired emo-
tions, we collected pilot emotional intensity ratings from
13 Finnish-speaking female volunteers. These raters
evaluated the experience of 63 emotion categories (scale:
0 = not at all, 4 = extremely much) while viewing the
scenes in 3-10-second segments (for more details, see
Supplementary Note 1). This selection procedure led to a
final set of 39 scenes (length 0:16-6:57; total duration
114 minutes; see scene list in Supplementary Table S3).
For the fMRI study, we divided the movie scenes into five
runs of similar emotional content as defined by the pilot
ratings (8 scenes in runs 1-4 and 7 scenes in run 5; for a
list of movies in each run and their mean emotion ratings,
see Supplementary Tables S4 and S5).

2.2. Generating emotion models from ratings
of perceived and felt emotions

We collected dynamic ratings of perceived and felt emo-
tions during movie viewing using an online rating tool
from another independent sample of 16 Finnish-speaking
female volunteers (Fig. 1C). The final selection of 39
movie scenes were shown and ratings were collected

similarly as in the pilot study. The participants could
replay each clip as many times as they wanted. We col-
lected ratings of perceived and felt emotions from the
same participants on separate runs and counterbalanced
the order of ratings (i.e., perceived or felt first). When rat-
ing the perceived emotions, participants were instructed
to rate the intensity of the emotions displayed and expe-
rienced by the characters. When rating the experienced
emotions, participants were instructed to rate the inten-
sity of the emotions they experienced while viewing the
clip. We created the dynamic emotion models for each
movie scene by linear interpolation to the end-points of
the short clips. All ratings were set to zero at the begin-
ning of each scene. Due to the low and variable sampling
rate and slow changes of the interpolated ratings, we
approximated the hemodynamic response function (HRF)
as a single gamma function, excluding the undershoot
typically included in the canonical double gamma HRFs.

Next, we performed a reliability analysis to ensure that
only reliably evoked emotions would be included in the
stimulus models (Fig. 1D). We used a combined reliability
measure considering the number of raters that reported
perceiving / feeling each emotion, the number of time
points when the emotion was detected, and the average
intersubject correlation of the emotion ratings. We first
calculated the percentage of raters that gave non-zero
ratings for each emotion for at least one time point for
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each run. Second, we calculated the number of time
points that received non-zero ratings from at least one
rater. Third, we calculated the rating-wise mean intersub-
ject correlation between all pairs of raters. Finally, we cal-
culated the geometric mean of these three measures to
derive a joint reliability value for each emotion. To include
emotions that were consistently rated for at least one
task, we calculated the mean reliability across runs for
each task separately and used the higher of these values
for each emotion to select the emotions to be included in
the subsequent analyses. We evaluated the chance level
of reliability as the combined reliability for permuted data.
Each permutation consisted of shuffling the values
between emotions independently for the three aforemen-
tioned measures and recalculating the reliability. The 95th
percentile of this distribution across iterations, emotions,
and tasks was used as a statistical threshold for defining
the reliable emotions used in the data analysis.

2.3. fMRI participants and experimental design

Fifty right-handed Finnish-speaking healthy female vol-
unteers (mean age 24.9 + 4.4, range 20-38 years) with
normal or corrected to normal vision participated in the
study. No participants had current psychiatric conditions
or medication affecting the central nervous system. All
participants gave written informed consent according to
the Declaration of Helsinki and were compensated for
their time and travel expenses. Aalto University’s ethics
committee approved the study protocol.

Functional magnetic resonance imaging (fMRI) was
performed on two separate days. In the first fMRI ses-
sion, we obtained structural images and two functional
runs of movie scenes. In the second session, we obtained
three functional runs of movie scenes.

Participants watched the movie scenes without a spe-
cific task and were instructed only to watch them as they
would, for example, watch movies on YouTube. Each of
the five runs consisted of 7-8 movie scenes and lasted
for approximately 23 minutes (range 22-24 minutes). The
order of movie scenes within a run was fixed for all par-
ticipants, and the order of runs was counterbalanced
across participants. A run started with a fixation cross
presented for 9.6 seconds (i.e., 4 TRs), followed by the
first scene. The movies were played one after another
without gaps. After the last movie of a run, a fixation
cross was presented for 9.6 seconds.

Sound was delivered through Sensimetrics S14 insert
earphones (Sensimetrics Corporation, Malden, Massa-
chusetts, USA). Each participant’s sound level was
adjusted individually to be loud enough over the scanner
noise. Visual stimuli were back-projected on a semi-
transparent screen using a Panasonic PT-DZ110XEJ data

projector (Panasonic, Osaka, Japan) and via a mirror to
the participant. Stimulus presentation was controlled with
Presentation software (Neurobehavioral Systems Inc.,
Albany, CA, USA). An fMRI-compatible face camera (MCR
Systems Ltd, Leicester, UK) was used to ensure that par-
ticipants had their eyes open during the whole scan.

2.4. fMRI data acquisition and preprocessing

We collected MRI data with a 3T Siemens Magnetom
Skyra scanner at the Advanced Magnetic Imaging Cen-
tre, Aalto Neuroimaging, Aalto University. To improve the
binocular field of view, we used a 30-channel Siemens
receiving head coil modified from a standard 32-channel
coil by removing the two coil elements surrounding the
eyes. We collected whole-brain functional scans using a
whole-brain T2*-weighted EPI sequence with the follow-
ing parameters: 44 axial slices, interleaved order (odd
slices first), TR = 2.4 seconds, TE = 24 ms, flip angle = 70°,
voxel size = 3.0 x 3.0 x 3.0 mm?, matrix size = 64 x 64
corresponding to FOV 192 x 192 mm?, and PAT2 parallel
imaging. To avoid the signal from fat tissue, we used a
custom-modified bipolar water excitation radio frequency
pulse. Finally, we collected high-resolution anatomical
images with isotropic 1 x 1 x 1 mm? voxel size usinga T1-
weighted MP-RAGE sequence.

For each blood oxygenation level dependent (BOLD)
fMRI run, we performed the preprocessing with fMRIprep
version 1.1.8 (Esteban et al., 2019; RRID:SCR_016216).
First, we used fMRIprep to prepare a reference volume
and its skull-stripped version. Next, we co-registered the
BOLD reference to the T1w reference image using bbreg-
ister (FreeSurfer), which implements boundary-based
registration (Greve & Fischl, 2009). Co-registration was
configured with nine degrees of freedom to account for
distortions remaining in the BOLD reference. Head-motion
parameters for the BOLD reference (transformation matri-
ces and six rotation and translation parameters) were esti-
mated before spatiotemporal filtering using mcflirt (FSL
5.0.9; Jenkinson et al., 2002). BOLD runs were slice-time
corrected using 3dT7shift from AFNI (Cox & Hyde, 1997;
RRID:SCR_005927). The resulting slice-timing corrected
BOLD time series were resampled onto their original,
native space by applying a single, composite transform to
correct head-motion and susceptibility distortions. Next,
we applied spatial smoothing with an isotropic, Gaussian
kernel of 6 mm FWHM (full-width half-maximum). The
resulting “non-aggressively” denoised runs were pro-
duced, and the noise regressors were used for nuisance
regression during analysis. The BOLD time series were
resampled to MNI152NLin2009cAsym standard space,
generating a preprocessed BOLD run in the correspond-
ing space.
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After preprocessing, we extracted the voxel-wise BOLD
time series within the group brain mask, and converted
them to percent signal change for each participant. Next,
we calculated the mean region of interest (ROI) time series
in regions defined with Brainnetome (Fan et al., 2016) and
cerebellar connectivity (Diedrichsen et al., 2009, 2011)
atlases covering the cerebral cortex, subcortical regions,
and the cerebellum. We included 273 regions in the analy-
ses after omitting one cerebellar ROI falling outside the
group brain mask. Signals extracted from deep white mat-
ter and cerebrospinal fluid and the six motion time series
and their second-order effects and linear trends were
regressed from the ROI level data. To match the frequency
content of the slowly evolving emotion time series (emotion
event lengths ranged from 20 to 100 seconds), we filtered
the data of periods between 200 (twice the length of the
longest event) and 20 seconds (i.e., .005 to .05 Hz). We
employed a finite impulse response filter designed with the
Parks-McLellan algorithm with a ripple of <1 dB in the
passband and 40 dB in the stopband. Transition bands
extended from ~-24 dB at 0 Hz in the lower stopband and
up to 0.0613 Hz in the upper stopband.

2.5. Fitting the emotion models

The code used for the analyses is provided in the Supple-
mentary Materials.

We tested the fit emotion models on brain activity as
well as fit of brain activity on emotion models in a similar
fitting and cross-validation scheme. We estimated the
beta weights of the emotion (or brain) models with least-
squares fitting after removing the mean of the signals and
models (Fig. 1E). For between-runs generalization, we fit-
ted the model to the mean standardized activity of all par-
ticipants in the training runs (three runs). We then tested
the model fit on the individual activity time series of the
participants in the test runs (the remaining two runs). For
emotion model prediction, the cross-validation was simi-
lar, except that we used the mean brain activity over par-
ticipants of the ROls to predict the emotion ratings. The
process was repeated for all permutations of training and
test runs (10 combinations in total). We then contrasted
the fits of the full models of felt and perceived emotions
across participants with paired t-tests. Significance of the
test statistics was evaluated with a permutation test where
the order of the model fits of felt and perceived emotion
models were randomized for every participant and the
paired t-test was repeated 1000 times. The 95th percentile
of maximum statistics of iterations was used as the thresh-
old for statistical significance to control the family-wise
error rate (FWER). Next, for within-run generalization, we
used 10-fold cross-validation across participants. Here,
we fitted the model to the mean activity of 45 participants,

and the fit of the predicted activity was tested on the indi-
vidual activity of the left-out participants. This process
was repeated for each of the ten cross-validation folds
and ten combinations of runs. We also tested competing
regression models, such as support vector regression with
linear and radial basis function kernels, with and without
automatic kernel scaling and with and without ridge pen-
alty for model dimensionality. The results in the test runs
were very similar with all models, although training accura-
cies varied between models. On average, the simple linear
regression performed as well or sometimes better than the
competing models. Therefore, we focus only on the linear
regression results in the rest of the manuscript.

To test whether low-level and semantic stimulus fea-
tures could predict the fit, we repeated the same fitting
process for the emotion models extended with two low-
level visual features (amplitude of high spatial frequencies
and differential energy between subsequent frames), 11
semantic visual features, and one auditory feature (root-
mean-squared power) from the movies. The semantic fea-
tures were based on the panoptic segmentation of video
frames at 1-second intervals. The video frames were seg-
mented using a pre-trained panoptic feature pyramid net-
work (Kirillov et al., 2019) from the Deceptron2 python
library (https://github.com/facebookresearch/detectron2
/tree/main). The default 0.5 was used as the detection
threshold. The initial 136 segmented categories were com-
bined into 9 broader categories (Human, Vehicle/Street,
Animal, Object, Food/Utensil, Furniture/Appliance, Floor/
Ground, Buildings, Background/Vegetation) to simplify the
semantic model and to ensure sufficient occurrence rate in
the stimuli. Finally, the total percentage of image area of
each semantic category was used as the value of that fea-
ture in the analyses. A pre-trained RetinaFace-10GF deep
face detection model from InsightFace python library
(https://github.com/deepinsight/insightface/tree/master)
was used to detect facial keypoints (Deng et al., 2020; Guo
et al.,, 2021). The default 0.5 was used as the detection
threshold. The face segment was then identified as a rect-
angle that encloses all the facial keypoints (Keles et al.,
2022). The size and number of faces detected in the video
frames by the face-detection algorithm were included as
additional features in the semantic model. Example code
for the image segmentation is available in an online repos-
itory (https://github.com/santavis/social-vision-in-cinema
/tree/main/python_scripts). The resulting stimulus feature
model time series were added to a combined emotion and
stimulus features model.

2.6. Brain responses to individual emotions

To evaluate the brain activity elicited by individual emo-
tions rather than the entire combined models for felt and
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perceived emotions, we calculated the correlations
between the individual emotions and ROI activity time
series for each run and participant separately. We then
tested the model fits for each run as well as the average
across runs with one sample t-tests. To evaluate the sig-
nificance using time series with a similar autocorrelation
structure, we calculated null correlations with the same
procedure after first randomly circularly shifting the model
time series by at least 20 samples forward or backward
100 times, saving the correlation values for each itera-
tion. For the final statistics, we then randomly permuted
the emotion labels and the circularly shifted models, cal-
culated the t-statistics across subjects, and repeated this
process 1000 times. To control the FWER, we saved the
maximum value observed over ROIs and runs and used
the 97.5™" percentile of the observed values as the two-
tailed FWER corrected threshold at p < .05.

2.7. Reliability of the neural responses
to emotion categories

To evaluate the reliability of emotion responses, we calcu-
lated a spatial correlation matrix for the whole-brain acti-
vation pattern elicited by each emotion between all
combinations training and test sets used in the between-
runs cross-validation. That is, we calculated the spatial
correlation of emotion responses across ROIs comparing
the responses in the training set to those in the non-
overlapping test set. This was critical to avoid circularity,
as correlating the spatial activation pattern of two emo-
tions within the same run is driven directly by the correla-
tion between the two ratings. By contrast, calculating the
correlations between runs only evaluates the shared brain
responses elicited by the same emotion categories across
different stimulus contexts. A mean correlation matrix was
then produced by averaging the correlation matrices over
the 10 run combinations. The mean cross-validated spa-
tial correlation matrix was used for evaluating the reliabil-
ity of brain-wide responses to emotions and performing
the subsequent brain-based clustering. The reliability of
the brain activity patterns is represented by the diagonal
elements of this matrix (spatial correlation of the activity
pattern elicited by the same emotion across runs), while
the off-diagonal elements were used to evaluate the sim-
ilarity between emotions across different stimuli. Other-
wise, the emotion clustering employed a normal
hierarchical clustering procedure described below. Addi-
tionally, to reduce the effects of non-significant activa-
tions on the brain-wide reliability measure, we repeated a
similar analysis using generalized (two-sided) Dice indi-
ces of the thresholded activity maps. This procedure pro-
vided highly similar results as the correlation matrices and
is, therefore, omitted in the subsequent sections.

2.8. Cluster analysis

To investigate the similarity structure of the dynamic emo-
tion ratings and emotion-related brain activity, we per-
formed an average linkage hierarchical clustering for both
data separately. The leaf order was optimized by maxi-
mizing the sum of the similarities of adjacent emotions
(optimalleaforder-function, https://www.mathworks.com
/help/stats/optimalleaforder.html), and default threshold-
ing was used (70% of maximum linkage) as the clustering
cutoff for the visualization.

3. RESULTS

3.1. Reliability of ratings of perceived
and felt emotions

Subjective ratings confirmed that the participants per-
ceived and felt a wide array of different emotions while
viewing the movies (Fig. 2A-C). However, there was sig-
nificant variation in both occurrence, intensity, and inter-
subject consistency of the perceived and felt emotions.
We found a clear continuum from commonly and consis-
tently reported emotions (fear, anxiety, despair, devas-
tated, sadness) to infrequently and inconsistently reported
emotions (jealousy, craving, hurt, satisfaction). The mean
intersubject correlation of the ratings and the number of
participants giving above-zero ratings for each emotion
were positively correlated. To avoid spurious effects, we
show the clustering analysis (Fig. 3) and all further analy-
ses only for the 46 emotions, which showed reliable, non-
zero rating profiles across the five runs (Fig. 2). Clustering
analysis for all emotions further confirmed that unreliable
emotions are separated from reliable ones (Supplemen-
tary Fig. S2). Clustering for this reliable set of emotions
revealed a broad valence-related structure. The nine
clusters were formed around the following emotion cate-
gories: 1) sadness, anger, and fear, 2) disgust, 3) displea-
sure, 4) embarrassment, 5) love, 6) surprise, 7) gratitude
and joy, 8) amusement, and 9) calmness.

3.2. Temporal similarity between perceived
and felt emotions

Next, we addressed the temporal similarities of perceived
and felt emotions by calculating the similarity between the
time series for the perceived and felt emotion from the
same category (Fig. 2D). Overall, the temporal similarity
structures for the perceived and felt emotions were consis-
tent. Out of the 63 emotions, the mean correlation between
perceived and felt emotions was above .60 (corresponding
to 36% shared variance) for 32 emotions categories. The
emotions with the highest similarity included romance,
impression, sexual desire, pride, fear-related emotions
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Fig. 2. Reliability of emotion ratings. (A) Percentage of raters for each emotion and each task (perceived and felt
combined) with above-zero ratings for at least one time point. (B) Percentage of time points for each emotion where at
least one rater gave a non-zero rating. (C) Mean intersubject correlation of emotion ratings across pairs of raters.

(D) Similarity of mean ratings for perceived and felt emotions across raters across all runs. In each panel, bars indicate

the mean values across runs, dots show the values for individual runs, and vertical lines indicate the min-max range. The
emotions are ordered based on the combined reliability of panels A-C calculated as the geometric mean of the percentage
of non-zero raters, non-zeros timepoints, and intersubject correlation or ratings (shown in the gray plot at the top).
Emotions not deemed reliable based on permutation statistics are shown with transparent colors.

(including fear, anxiety, horror, and thrill), and sadness-
related categories (including sadness and glumness). While
the perception of emotion led to a consistent feeling of the
same emotion for most emotion categories, there were
also some emotions with discordant perception and feel-
ing (e.g., guilt, physical pain, confusion, anger, hatred,
interest, excitement, and nostalgia). The correspondence
of the cluster structures between perceived and felt emo-
tions further highlights this decoupling (alluvial diagram in
Fig. 3): Emotions clustering around love, pride, sadness,
and impression had similar perception and feeling struc-
tures, whereas social emotions clustering around humilia-
tion, loneliness, and insecurity were less consistently
perceived and felt. While some emotions were perceived
more often than felt (e.g., physical and emotional pain, fury,
zeal, and guilt), others such as pity and nostalgia were
mostly felt and rarely perceived in the movies (Fig. 2A).

3.3. Predicting emotion rating with whole brain
activity patterns

To test if brain activity would be able to predict emotion
ratings of left out movies, we fitted the mean brain activity

over subjects of the regions of interest across the brain
on each individual emotion and tested the model fit on
left out runs (Fig. 4). Overall, we saw that emotions that
were rated reliably were also better predicted by the
whole brain activity patterns. The majority of reliably rated
felt (54.4%) and perceived (69.6%) emotions were pre-
dicted significantly better than chance across runs, com-
pared to maximum correlation to null models with shuffled
emotion labels. This confirmed that there are repeatable
patterns associated with emotions across movies. By
contrast, only approximately a quarter of the less reliable
emotions (felt 23.5%, perceived 29.4%), were success-
fully predicted by brain activity in the left-out runs.

3.4. Brain basis of perceived and felt emotions

To evaluate the specific patterns of brain activity associ-
ated with emotions, we first evaluated where in the brain
different perceived and felt emotions are represented
consistently across stimuli and participants (Fig. 5). First,
each of the five runs in our experiment contained differ-
ent movies depicting the same set of emotions, allowing
us to test the generalizability of emotion-related brain
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Fig. 5. Consistency of emotion models. (A) Generalizability of emotion responses for different stimuli for felt (left) and
perceived (right) emotions. (B) Consistency of the cross-validated models across participants for felt (left) and perceived
(right) emotions. Regional data are thresholded at FWER p < .05 of the mean fit of all run combinations (3 training runs,
2 test runs, 10 combinations). Statistics are based on the 95th percentile of maximum statistics in surrogate data

(max. over ROIs and 95th percentile over null iterations with circularly shifted training data).
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responses across stimuli. Figure 5A shows the generaliz-
ability (i.e., correlations) of the cross-validated emotion
models where three runs were used for training and two
runs for testing (for region-wise generalizability, see Sup-
plementary Table S1). For both perception and feeling,
the responses were most consistent in the right temporal
cortex, bilateral temporoparietal junction (TPJ), dorsal/
medial prefrontal cortex (PFC), and precuneus (Pcun).
For emotional perception, the responses were also con-
sistent bilaterally in the temporal cortices. For feelings,
the model was also consistent in the anterior, medial,
and dorsolateral PFC, thalamus, and cerebellum. Sec-
ond, we evaluated the consistency of emotion-related brain
responses across participants. Figure 5B shows that we
found largely overlapping, widespread effects for both per-
ception and feeling in regions covering occipital, temporal,
and parietal lobes, posterior midline, and cerebellum. The
only notable difference was the more consistent prefrontal
activity for feelings, which was absent for perception.

To test whether low-level and semantic stimulus fea-
tures could explain the emotion-related brain activity, we
ran the same analysis with a model that included the
emotion features and three low-level visual and auditory
features and 11 semantic features (Supplementary
Fig. S4). As expected, stimulus feature models explained
sensory activity in primary and secondary visual areas
(V1/V2), motion-sensitive visual areas (V5/MT), and pri-
mary and extended auditory areas (A1/STG), as well as
frontoparietal regions. However, activity in regions,
including TPJ, superior temporal sulcus (STS), and medial
prefrontal cortex (MPFC), was unaffected, suggesting
that stimulus-related activity in these regions reflects
emotional rather than purely sensory processing.

Directly comparing the variance explained by felt ver-
sus perceived emotion models (Fig. 6) reveals that felt
emotions better explained activity in the TPJ, Pcun, thal-
amus, medial and lateral PFC, and inferior premotor
regions. By contrast, perceived emotions better explained
activity only in anterior and medial superior temporal
regions.

3.5. Regional responses to specific perceived
and felt emotions

Next, we analyzed ROI-level data to address the repre-
sentation of perceived and felt emotions in different
brain regions by quantifying the region-wise consistency
of the responses evoked by each perceived and felt
emotion (Fig. 7). We first identified the emotion catego-
ries associated with the most widespread activity
changes across the brain (Fig. 7, bar plot). We found a
clear gradient in the brevity of the distribution of emotion-
evoked activity in the brain across emotions. Perceived
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Felt>Perceived E-::-j Perceived>Felt

-14.6 p<.05Bonf. 14.6

Fig. 6. Comparison of models of felt and perceived
emotions. Results are masked with the areas showing
significant effects for either felt or perceived emotions in
Figure 4A. Differences are thresholded at FWER controlled
p < .05 in a permutation test (max. over ROIs and 95th
percentile over null iterations where each individual’s felt
and perceived statistics were randomly permuted).

and felt amusement, thrill, and horror led to the most
widespread brain activation across the temporo-
occipital, parietal, and midline regions. In contrast, more
neutrally-valenced emotions, such as calmness, neutral,
and nostalgia, yielded focal deactivation in parietal mid-
line and lateral regions. Anger- and disgust-related emo-
tions were also accompanied by deactivation in regions,
including superior temporal gyrus (STG) and posterior
STS (pSTS). Overall, sadness- and happiness-related,
calm emotions yielded weaker responses in fewer areas.
Feelings led to more widespread activation than percep-
tion for some emotions, such as surprise, fear, and sex-
ual desire, while the opposite was true for other emotions,
such as agitation, zeal, annoyance, hatred, guilt, anger,
and excitement.

There were also apparent regional differences in the
breadth of tuning for different emotions as demonstrated
by the spatial gradient ranging from regions activated
during most emotions to those activated during few spe-
cific emotions (Fig. 7). Superior temporal and posterior
midline regions (including Pcun and superior occipital
gyrus) generally responded to most emotions for both
perception and feeling. More selective activity to clusters
of emotions was seen in regions such as the cerebellum
whose activity was associated with fear- and surprise-
related emotions and in superior parietal regions which
yielded consistent responses to fear-related emotions.



H. Saarimaki, L. Nummenmaa, S. Volynets et al.

Imaging Neuroscience, Volume 3, 2025

S N B
S

Number of significant ROIs

SRS SIS

I Felt
[ Perceived

oy 2 & P LIS @@
S @ 2. L
SN é’é”é? K CNFONE

S &2 & & S ) ST P S & PR A SRR
SRS S CFP VP I S O 0" T 008 T R E RO 500 9 € O P B (e < i
S 2 R NCC A S S S ST TONEE & o FES &£ U
© ° 6&‘°\A‘* Vo ¥ (é\\ﬁ’” © v e S § &
Felt, cumulative emotions v v
; 100

[ ]
o
.

=

%&Tﬁ‘m

@

aace

o

é
:
%
@)

>

Q.
% e
S

% significant ROls

L o
=)
S

& Q;\\?‘} L
T LNV

% significant ROls

Lo
=}
S

Fig. 7. Regional responses to specific experienced and perceived emotions. Total brain area activated by individual
emotions (top) and the regional consistency of emotion-wise responses for felt (middle) and perceived (bottom) emotions.
Emotions are ordered based on the spatial extent of significant activations averaged over both tasks, and brain regions

are ordered by the number of emotions that are significantly correlated with the regional activity. The bar plots show the
average number of ROIs that were activated over all runs, and the dots show individual-run results. Vertical lines connect the
minimum and maximum values over runs. The brain plots show the number of emotions whose responses were statistically
significant in at least one run; the matrix plot shows the corresponding data at the level of single emotions at the scale of
macroanatomical regions, each comprising multiple ROls across both hemispheres. The dots indicate the percentage of
ROlIs within the macroanatomical regions that were significantly activated (hot colors) or deactivated (cold colors) by the
emotions over all the runs and over participants. The data are thresholded at two-tailed p < .05 (FWER corrected). For brain
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Finally, regions such as the amygdala showed emotion-
specific responses: in the amygdala, activity was consis-
tent especially foramusement, joy, and perceived surprise.

3.6. Spatial clustering of the neural responses
to felt and perceived emotions

We next analyzed the similarity of the response profiles
by clustering the brain activity patterns based on their
between-run similarity and compared it with the similar-
ity of ratings (depicted in Fig. 3). The clusters identified
from the neural data differed from those in the self-
report data (Fig. 8, see Supplementary Fig. S3 for a
side-by-side comparison of the similarity structures).
The large valence-based (pleasure/displeasure) cluster
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structure in self-report data was absent in the neural
data. At the neural level (Fig. 9), the most prominent
clusters (>85% of emotion-pairs with significant across-
runs similarity) contained amusement- and confusion-
related states (cluster 4) and fear-related states (cluster
3). Felt joy drove a small cluster (cluster 6). Neutral and
calm romantic emotions also formed another small
cluster (cluster 7). Less reliable clusters, with >10%
pairs of emotions showing significant across-run simi-
larity, were also found for disgust (cluster 2) and felt
calm, positive emotions (cluster 8). A large set of emo-
tions also stayed relatively independent of the larger
clusters, forming two unreliable clusters (<5% signifi-
cantly similar emotion pairs), driven by perceived happi-
ness and emotions with a clear bodily component, such
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as physical pain and sexual desire (clusters 5 and 1).
Fear-related perceived and felt emotions consistently
clustered together. Similar grouping was also apparent
for positive and neutral emotions such as amusement
and confusion.

4. DISCUSSION

Our main finding was that the emotions evoked during
free viewing of movies are represented in the brain across
numerous spatial scales and patterns. While the self-
report data revealed that 46 emotions were consistently
used to describe the affective content of the movies,
dimension reduction techniques revealed that these
could be reduced to eight main emotion dimensions
based on brain activity. Neural activity related to both
perceived and felt emotions was consistent across indi-
viduals and generalized across different stimuli. There
was also a region-specific gradient ranging from tempo-
roparietal regions to default mode and subcortical regions
for the breadth of emotional tuning. Some brain regions,
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such as the posterior temporal cortex and cortical mid-
line, were non-selectively activated during most emo-
tions, while the emotion-specific tuning was sharper
outside these regions. Even more selective responses to
specific emotions were found mainly in subcortical
regions. Similarly, there were large differences in the
regional specificity of the emotion-evoked activations.
While some emotions (such as fear, anxiety, and amuse-
ment) consistently engaged large-scale brain networks
across temporal, parietal, and midline regions, others,
such as anger and disgust, showed more regionally
selective patterns. Finally, although perceived and felt
emotions were often in alignment, the similarity in emo-
tional perception and feeling and the resultant brain acti-
vation varied across emotions. These results constitute
one of the most comprehensive investigations of the neu-
ral basis of emotional perception and experience. They
highlight spatial gradients in the emotion-specificity in
the human brain, and outline similarities and differences
in the neural basis of perceiving and feeling different
emotional states.
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4.1. Generalizability and consistency of emotion
responses in the brain

The generalizability of emotion models across different
samples of the same emotion was highest in temporopa-
rietal, temporal, and dorsal medial prefrontal cortices and
the precuneus. These regions are also activated during
the processing of social information (Lahnakoski et al.,
2012). This generalization confirms that the emotion-
dependent responses were not driven purely by visual,
auditory, or semantic features of the videos, as these
were completely different across the movies. Accord-
ingly, adding low-level stimulus features to the emotion
model improved across-stimulus consistency in sensory
areas, while the consistency in the regions responding to
emotions—temporoparietal, temporal, and midline
regions—was unaffected.

The emotion models generalized well across partici-
pants, confirming the consistent and shared nature of the
emotional responses across individuals also on the neu-
ral level. Across-participant generalization of affective
responses has been more difficult to achieve than across-
stimulus generalization within individuals (Saarimaki
et al., 2016, 2018). However, our results revealed across-
participant consistency in widespread brain networks
covering the sensory areas (occipital and temporal lobes),
posterior midline regions, and parietal regions often
associated with attention, consistent with previous stud-
ies showing high intersubject synchronization in these
regions during emotional moments of movies (Hudson
et al., 2020; lidaka 2017; Nummenmaa et al., 2012;
Santavirta et al., 2023; Tu et al., 2019). This likely stems
from the high degree of consistency in the time-variant
emotional response elicited by the movies, in compari-
son with static and noisy “snapshot” emotions evoked
by, for example, pictures or sound bursts. In movies,
emotions occur in natural contexts, which might lead to
shared rather than individualistic experiences.

Out of our original 63 emotion categories, 46 (73%)
had sufficient occurrence rates and high intersubject reli-
abilities relative to the complexity of the rating task. The
similarity of neural responses revealed that these emo-
tions could be divided into eight clusters. Outside these,
we found considerable variability in the reliability and
intensity of the emotions evoked by the movies. Emo-
tions such as embarrassment, pride, humiliation, loneli-
ness, shame, gratitude, hurt, and jealousy were difficult
to elicit. The common nominator for these emotions is
that they often occur in personal social settings and are
not typically experienced in third-person settings, such
as while viewing a movie.

It is important to note that we only included female
participants in the current study, which limits the general-
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izability in the population. We chose to focus on females
to reduce the intersubject variability in emotional
responses and emotion regulation that would be expected
in a mixed sample.

4.2. Emotional gradients in the brain

Our results also yielded maps of the affective space in
both phenomenological and neural domains. The neural
affective space demonstrated a gradient-like organiza-
tion ranging from generic processing in temporoparietal
and default mode regions to more localized, discrete pro-
cessing in subcortical regions.

The largest and most generic hub of the neural affec-
tive space was the TPJ, which was activated during the
perception and experience of most emotions. TPJ is con-
sistently engaged during social perception (Lahnakoski
et al.,, 2012) and has been previously shown to contain
emotion-specific gradients also during perceived and
experienced emotions (Lettieri et al., 2019). Accordingly,
TPJ activation suggests that social information process-
ing is relevant to most emotions evoked by movies and
was better explained by felt than perceived emotions.
Taken further, social information processing might be an
integral part of human emotions in general, which war-
rants further investigation of the role of social information
in emotional processing.

Another central hub for emotion processing was the
precuneus, which responded to most perceived and felt
emotions. Temporal pole and parietal regions, including
superior and inferior parietal lobules (SPL and IPL,
respectively), also responded to numerous emotions.
These regions are part of the default mode network that
consistently shows differential activity patterns for differ-
ent emotions (Saariméki et al., 2016, 2018, 2022). The
default mode network has been especially associated
with sustained, slow changes in emotional states, poten-
tially reflecting the integration of emotion-related infor-
mation and the conscious experience of emotions
(Saarimaki et al., 2022; Sander et al., 2018).

Some regions showed moderately specific response
profiles. For instance, activity in the cerebellum was
associated with fear- and surprise-related emotions.
Superior parietal regions yielded consistent responses to
fear-related emotions. In turn, emotion-evoked activity in
subcortical regions was more narrowly tuned and was
observed only for some emotions. For example, the
amygdala responded primarily to felt and perceived pos-
itive emotions and perceived surprise, while the thalamus
responded selectively to perceived and felt fear. The
selective, local activity does not necessarily mean that
these regions would be responsible for a single emotion.
Instead, these regions are likely involved in the processing
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of information that is more pronounced for a subset of
emotions. For instance, the amygdala has been linked to
the processing of both valence and salience of a stimulus
(e.g., Kong & Zweifel, 2021), emphasizing its role in nov-
elty detection and stimulus evaluation rather than in the
processing of a single emotion. Furthermore, the middle
frontal gyrus—implicated in relation to attention
orienting—was active during fear-related emotions while
showing decreased activity primarily during calm emo-
tional states, potentially reflecting differences in atten-
tional demands between emotions (Corbetta et al., 2008).

Altogether these data show that the emotion circuits in
the brain operate in both domain-general and domain-
specific manner. The core, domain-general components
of the networks likely encode the detailed emotional con-
tent of the sensory input, which is then processed in a
more granular manner across various extended emotion
circuits whose engagement depends on the specific
emotional content.

4.3. Cerebral organization of the emotion space

The current study is the first large-scale investigation of
emotion clusters identified based on brain activity; the few
previous studies have used far smaller sets of emotions
(Du et al., 20283; Lettieri et al., 2024; Saarimaki et al., 2018).
The clustering of emotions based on self-reports revealed
a primary valence-driven space of emotional feelings, in
line with the vast previous literature (Fontaine et al., 2007).
Besides the positively and negatively valenced clusters,
we identified four smaller clusters around disgust, annoy-
ance, calmness, and confusion. For 91% of the emotion
categories, both perceived and felt emotions from the
same category clustered together, most likely reflecting
their highly overlapping temporal structure within the
movies. The temporal co-occurrence of perception and
feeling of the same emotion suggests shared underlying
cognitive processes in both. In the future, a more thorough
evaluation of the specific emotions and events in the stim-
uli that most clearly differentiate feeling and perception,
both subjectively and in the brain, could further elucidate
how these two sides are intertwined.

The two largest and most consistent neural clusters
consisted of amusement/confusion- and fear-related
emotions, respectively. The amusement/confusion cluster
included positive and neutral, mainly arousing emotions.
Perceived awkwardness, annoyance, and amusement
were clustered together with felt amusement and confus-
ion. The fear-related cluster included various negative emo-
tions, but the most robust activity was detected for fear.
Also, four other, smaller clusters (related to joy, romance/
neutral, disgust, and calm, positive emotions) showed
clear, consistent brain activity. The other clusters (driven
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mainly by happiness and emotions with a solid bodily com-
ponent, such as physical pain and sexual desire) showed
less consistent activity across stimuli.

The cluster structure based on brain activation was not
identical to the structure emerging from the self-report
data. In the self-reports, we identified clear emotion clus-
ters (including disgust, fear, and sadness, displeasure,
embarrassment, love, joy, and calmness) that resembled
those found in previous studies (Cowen & Keltner, 2017).
Notably, self-reported perceived and felt emotions from
the same emotion category often clustered together,
while in the neural data, the perceived and felt emotions
from the same category often were split into different
clusters. As current emotion theories expect (Anderson &
Adolphs, 2014; Barrett et al., 2007; Scherer & Moors,
2019), subjective experience is only one part of the overall
emotional state and does not directly map to the underly-
ing neural state. Thus, emotion-related brain activity
reflects various automatic changes in several functional
components, including subjective experiences, physiol-
ogy, motor activation, motivation, and cognition. Our
results support the interpretation that neural similarities
between emotions result from changes in multiple func-
tional components (Nummenmaa & Saariméki, 2019).

4.4. Shared and distinct neural basis of perceived
and felt emotions

Besides the spatial gradient ranging from generic to spe-
cific emotion responses, we also found an anatomical
distinction between perceived and felt emotions. Both
perceived and felt emotions elicited overlapping brain
activity in the precuneus, TPJ, and auditory areas. While
emotion perception engaged brain regions overlapping
with those activated while feeling the same emotion,
compared to emotional perception, feelings were accom-
panied by significantly higher activity in the TPJ, medial
and lateral PFC, thalamus, and parts of the cerebellum.
These regions are consistently reported to activate during
emotional experiences elicited by different types of stim-
uli (Saarimaki, 2021; Saarimaki et al., 2016, 2018). Thus,
we conclude that the frontal regions, thalamus, and cere-
bellum process information during felt emotions but not
during emotion perception. In particular, we found direct
evidence for the involvement of the PFC in generating
subjective experiences of emotions, as also suggested in
previous studies (Saarimaki et al., 2016).

Perceived emotion was often accompanied by a con-
cordant feeling, but there were also some emotions for
which perception and feeling were decoupled. Alignment
between the perception of a character’s emotions and
observers’ feelings has been rarely studied. One previous
study has shown that characters’ portrayed basic emotions
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and empathic responses share only 11-35% of the vari-
ance in the feelings of the observers (Lettieri et al., 2019). In
our data, we found large variability in the shared variance
between felt and perceived emotion from the same catego-
ries (average 36%, ranging from almost 0% to close to
100%). Emotion categories related to love and sexual
desire, pride and impression, fear, and sadness were both
perceived and felt simultaneously. Thus, emotional conta-
gion for these emotions is high, suggesting that the per-
ceived emotion is directly mirrored in the observer. These
emotions are characterized by seeking affiliation with oth-
ers (Fischer & Manstead, 2008). On the other hand, the per-
ception of less socially driven emotions such as boredom,
interest, confusion, pity, and anger were seldom accompa-
nied by a simultaneous feeling of the same emotion.

4.5. Limitations

We carefully curated a set of 63 emotion categories for the
study but could only reliably elicit 46 of them. Especially
personal and social emotions, including jealousy, hurt,
shame, and gratitude, were difficult to elicit with movies,
possibly due to the interpersonal nature of these emo-
tions. Due to methodological constraints (collecting self-
reports took 20 hours per participant), we collected
self-reports and fMRI data from an independent set of
raters. Thus, it is possible that the emotions felt and per-
ceived by the fMRI participants differed from those of the
raters. However, the raters came from the same popula-
tion (young, healthy females) as the fMRI participants and
gave consistent ratings. Additionally, our emotion models
were built on self-reported changes in categorical emo-
tional content, which is optimal for investigating slower
changes in conscious perception and feeling but cannot
track some of the fast, momentary changes in stimulus
content that subcortical regions might be responsible for.
Finally, each run in the fMRI experiment consisted of clips
of varying emotional content. It is possible that the emo-
tions evoked by the previous clip affected emotional
responses at the beginning of the next clip. However, the
long stimulus duration (on average almost 3 minutes)
together with the relatively slow development of the emo-
tions over the duration of the movies as well as the slow
BOLD response alleviate the effects of previous emotions.

Here, we chose to focus on regions of interest rather
than voxel-level prediction, as our interest was on broader
patterns of brain activity elicited by slowly developing
emotions. In certain regions, such as ventral temporal
lobes, voxel-level prediction together with hyper-alignment
has been shown to improve prediction accuracy in func-
tional prediction and intersubject alignment (see, e.g.,
Haxby et al., 2020). However, our results suggest spatially
widely distributed and shared patterns of modulation of
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brain activity by multiple emotions, making voxel-level pre-
diction potentially impractically fine-grained. Moreover, the
highly variable context and stimulus features between
movies depicting similar emotions may complicate fine-
grained prediction, making the generalization in the cross-
validated analysis potentially more vulnerable to overfitting.
Thus, we believe that the current resolution of the relatively
small functionally defined regions distributed approxi-
mately uniformly across the brain is a reasonable compro-
mise between maximal local prediction accuracy and a
more global understanding of emotion perception and
feeling in the brain.

5. CONCLUSIONS

Our results reveal the neural basis of the core emotional
dimensions, and highlight spatial cerebral gradients in
representing different emotional states. Eight main dimen-
sions of emotions evoked during movie viewing are
encoded in the brain across numerous spatial scales and
patterns, and perceived and felt emotions generalize both
between individuals and between different stimuli. There
is a gradient from large-scale to regionally specific repre-
sentation of emotions ranging from higher-order tempo-
roparietal areas to default mode network, and finally to
more selective activity, especially in subcortical regions.
While perception and feeling of different emotions were
supported by numerous overlapping brain regions, the
activity was more focused in frontal, thalamic, and cere-
bellar activity during feelings. Although emotional percep-
tion and the resultant feelings often go hand in hand, our
data highlight that they are also often decoupled in both
conscious experience and brain activity.
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