001041122 001__ 1041122
001041122 005__ 20250804115210.0
001041122 0247_ $$2doi$$a10.1021/acs.chemmater.5c00224
001041122 0247_ $$2ISSN$$a0897-4756
001041122 0247_ $$2ISSN$$a1520-5002
001041122 0247_ $$2WOS$$aWOS:001453766500001
001041122 037__ $$aFZJ-2025-02156
001041122 082__ $$a540
001041122 1001_ $$00000-0002-7946-964X$$aHolmes, Sarah E.$$b0
001041122 245__ $$aLiI-Modified Glass-Ceramic Lithium Thioborate: From Fundamentals to Applications in Solid-State Batteries
001041122 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2025
001041122 3367_ $$2DRIVER$$aarticle
001041122 3367_ $$2DataCite$$aOutput Types/Journal article
001041122 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1753690973_20753
001041122 3367_ $$2BibTeX$$aARTICLE
001041122 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041122 3367_ $$00$$2EndNote$$aJournal Article
001041122 500__ $$aSupported by funding from the Bundesministerium für Bildung und Forschung (BMBF) for under the FESTBATT cluster of competence (project 03XP0430F) 
001041122 520__ $$aSolid-state batteries are an emerging battery technology rivaling lithium-ion batteries, but before commercialization can occur, new classes of solid-state electrolytes (SSEs) must be investigated to better understand the fundamental properties of these materials and to extend the capabilities of fast charging and cycle life. In this work, we investigate glass-ceramic lithium thioborate (LBS) SSEs with the stoichiometry of $Li_{10}B_{10}S_{20}$ and utilize a rapid synthesis that enables lithium iodide (LiI) modification in $Li_{10}B_{10}S_{20}$. We study the structures of four materials with varying amounts of LiI using X-ray diffraction, pair distribution function, and solid-state NMR and find that LiI breaks down the $B_{10}S_{20}$ supertetrahedra that make up the unit cell of $Li_{10}B_{10}S_{20}$. More LiI increases ionic conductivity by increasing the unit cell volume and the fraction of the glassy phase in the electrolyte. LiI-modified $Li_{10}B_{10}S_{20}$ as an anode-facing SSE enables all-solid-state batteries to cycle well with theoretical capacities up 6.37 $mAh$ $cm^{-2}$ at 0.1C, validating the relevance of LBS SSEs as separators for solid-state batteries.
001041122 536__ $$0G:(DE-HGF)POF4-1221$$a1221 - Fundamentals and Materials (POF4-122)$$cPOF4-122$$fPOF IV$$x0
001041122 588__ $$aDataset connected to DataCite
001041122 7001_ $$0P:(DE-HGF)0$$aKondek, Jędrzej$$b1
001041122 7001_ $$0P:(DE-HGF)0$$aZhang, Pu$$b2
001041122 7001_ $$0P:(DE-HGF)0$$aFaka, Vasiliki$$b3
001041122 7001_ $$00000-0002-8408-7232$$aNewnham, Jon A.$$b4
001041122 7001_ $$00009-0005-3180-3994$$aGronych, Lara M.$$b5
001041122 7001_ $$00000-0001-7114-8051$$aHansen, Michael Ryan$$b6
001041122 7001_ $$0P:(DE-Juel1)184735$$aZeier, Wolfgang$$b7
001041122 7001_ $$0P:(DE-HGF)0$$aCui, Yi$$b8$$eCorresponding author
001041122 773__ $$0PERI:(DE-600)1500399-1$$a10.1021/acs.chemmater.5c00224$$gp. acs.chemmater.5c00224$$n7$$p2642–2649$$tChemistry of materials$$v37$$x0897-4756$$y2025
001041122 8564_ $$yRestricted
001041122 8564_ $$uhttps://juser.fz-juelich.de/record/1041122/files/holmes-et-al-2025-lii-modified-glass-ceramic-lithium-thioborate-from-fundamentals-to-applications-in-solid-state.pdf$$yRestricted
001041122 909CO $$ooai:juser.fz-juelich.de:1041122$$pVDB
001041122 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184735$$aForschungszentrum Jülich$$b7$$kFZJ
001041122 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1221$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
001041122 9141_ $$y2025
001041122 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2024-12-16$$wger
001041122 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM MATER : 2022$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-16
001041122 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bCHEM MATER : 2022$$d2024-12-16
001041122 920__ $$lyes
001041122 9201_ $$0I:(DE-Juel1)IMD-4-20141217$$kIMD-4$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
001041122 980__ $$ajournal
001041122 980__ $$aVDB
001041122 980__ $$aI:(DE-Juel1)IMD-4-20141217
001041122 980__ $$aUNRESTRICTED