001     1041139
005     20250512115734.0
024 7 _ |a 10.1038/s41467-025-58176-9
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02165
|2 datacite_doi
024 7 _ |a 40133295
|2 pmid
024 7 _ |a WOS:001452497500033
|2 WOS
037 _ _ |a FZJ-2025-02165
082 _ _ |a 500
100 1 _ |a Kong, Ru
|0 P:(DE-HGF)0
|b 0
245 _ _ |a A network correspondence toolbox for quantitative evaluation of novel neuroimaging results
260 _ _ |a [London]
|c 2025
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744210636_31255
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The brain can be decomposed into large-scale functional networks, but the specific spatial topographies of these networks and the names used to describe them vary across studies. Such discordance has hampered interpretation and convergence of research findings across the field. We have developed the Network Correspondence Toolbox (NCT) to permit researchers to examine and report spatial correspondence between their novel neuroimaging results and multiple widely used functional brain atlases. We provide several exemplar demonstrations to illustrate how researchers can use the NCT to report their own findings. The NCT provides a convenient means for computing Dice coefficients with spin test permutations to determine the magnitude and statistical significance of correspondence among user-defined maps and existing atlas labels. The adoption of the NCT will make it easier for network neuroscience researchers to report their findings in a standardized manner, thus aiding reproducibility and facilitating comparisons between studies to produce interdisciplinary insights.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Spreng, R. Nathan
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Xue, Aihuiping
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Betzel, Richard F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Cohen, Jessica R.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Damoiseaux, Jessica S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a De Brigard, Felipe
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 7
700 1 _ |a Fornito, Alex
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gratton, Caterina
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Gordon, Evan M.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Holmes, Avram J.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Laird, Angela R.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Larson-Prior, Linda
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Nickerson, Lisa D.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Pinho, Ana Luísa
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Razi, Adeel
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Sadaghiani, Sepideh
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Shine, James M.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Yendiki, Anastasia
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Yeo, B. T. Thomas
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Uddin, Lucina Q.
|0 P:(DE-HGF)0
|b 21
773 _ _ |a 10.1038/s41467-025-58176-9
|g Vol. 16, no. 1, p. 2930
|0 PERI:(DE-600)2553671-0
|n 1
|p 2930
|t Nature Communications
|v 16
|y 2025
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/1041139/files/s41467-025-58176-9.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041139
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131678
910 1 _ |a HHU Düsseldorf
|0 I:(DE-HGF)0
|b 7
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2025-01-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2025-01-02
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2022
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-01-30T07:48:07Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2025-01-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2025-01-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2025-01-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2024-01-30T07:48:07Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2025-01-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2025-01-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21