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The brain can be decomposed into large-scale functional networks, but the
specific spatial topographies of these networks and the names used to
describe them vary across studies. Such discordance has hampered inter-
pretation and convergence of research findings across the field. We have
developed the Network Correspondence Toolbox (NCT) to permit researchers
to examine and report spatial correspondence between their novel neuroi-
maging results and multiple widely used functional brain atlases. We provide
several exemplar demonstrations to illustrate how researchers can use the
NCT to report their own findings. The NCT provides a convenient means for
computing Dice coefficients with spin test permutations to determine the
magnitude and statistical significance of correspondence among user-defined
maps and existing atlas labels. The adoption of the NCT will make it easier for
network neuroscience researchers to report their findings in a standardized
manner, thus aiding reproducibility and facilitating comparisons between
studies to produce interdisciplinary insights.

Standardized scientific nomenclature can facilitate the effective com-
munication of concepts related to complex biological systems. Neu-
roscience has a long history of classifying distinct anatomical regions
of the brain across multiple spatial scales, from the cortical lobes,
discrete gyri and sulci of the cerebral cortex and subcortical nuclei, to
Brodmann’s cytoarchitectonic areas1. Attempts have also been made
to categorizewell-definedneural circuits and systemsbasedonvarious
anatomical and functional criteria, such as the cortico-spinal tract,
cortico-striato-thalamic circuits, and the dorsal and ventral visual
processing streams2. Such attempts at standardization facilitate com-
munication about brain organization between researchers and assist in
educating students.

Modern neuroimaging methods, particularly those relying on
magnetic resonance imaging, have revolutionized our capacity to non-
invasively map different aspects of brain structure and function in
living humans. A key development has been the ability to map func-
tional brain networks, or groups of brain areas that exhibit functional
synchrony. As a result of the growing popularity of this approach,
manyfindings fromneuroimaging studies are described in termsof the
brain networks, rather than the brain areas, where they are localized.
However, this is often done in an ad hoc way due to the lack of stan-
dardization in the naming of these networks. This inconsistency in
scientific reporting complicates comparisons of findings across stu-
dies and limits the integration of novel discoveries3.
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The emergenceof functional brain network atlases,which arenow
routinely used in cognitive and network neuroscience4, should, in
principle, contribute to standardization in the naming of functional
networks. These atlases typically assign parcellated cortical and/or
subcortical regions to one of a set of large-scale brain networks with
varying topographies, ranging from largely contiguous unimodal ter-
ritories (e.g., visual network in occipital cortex) to associative systems
that span multiple spatially segregated and distributed regions across
the brain (e.g., default network encompassing frontal, temporal and
parietal regions). The atlases also vary in how they name large-scale
brain networks and in termsof thenumber of brain networks, aswell as
their approach to defining the networks, characterizing their spatial
topography, and deciding how they should be labeled (e.g., based on
their anatomical location or purported cognitive correlates)5. These
differences between atlases lead to further variability and uncertainty
in scientific reporting.

Recognizing these challenges, the Organization for Human Brain
Mapping (OHBM)established aBest Practices committee on large-scale
brain network nomenclature, following the success of earlier similar
consensus-building initiatives aiming to enhance standardization by
providing reporting guidelines for the field6,7. This committee, formed
in 2020, is known as the Workgroup for HArmonized Taxonomy of
NETworks (WHATNET). Initial attempts by the workgroup to con-
ceptually identify convergence across large-scale functional brain
networks led to discussion and enumeration of themultiple challenges
inherent to this enterprise8. The workgroup surveyed hundreds of
scientists and solicited putative network names based upon render-
ings of various network spatial topographies. Results from the survey,
described in detail in the initial report from WHATNET8 and publicly
available (https://osf.io/3fzta/), indicated that networks based in non-
distributed unimodal brain regions (somatomotor and visual systems)
could be readily and reliably identified. The somatomotor network
showed 97% agreement amongst raters, while the visual network
showed 92% agreement amongst raters. Only one spatially distributed
network, the default network, demonstrated consensus agreement in
name and topography, with 93% agreement amongst raters. Other
networks, such as those sometimes referred to as salience or fronto-
parietal, showed less consistency. These findings indicate that con-
sensus agreement in nomenclature is limited to the extreme poles of
the canonical cortical hierarchy9, anchored atone endby the visual and
somatomotor systems and on the other by the default network. In
between these systems is an expanse of cortex with observable net-
work structure, but with little agreement between researchers
regarding their spatial topography or nomenclature. Such variability
poses a major problem for any attempts to compare or integrate
findings across studies.

In response to theWHATNET survey findings, here we present the
Network Correspondence Toolbox (NCT). This toolbox provides
researchers with a practical solution for labeling novel observed fMRI
activation, functional connectivity patterns, or other thresholded
neuroimaging maps based on a quantitative evaluation against multi-
ple currently published atlases simultaneously. The NCT also allows
users to assess the spatial correspondence between networks in new
and existing atlases. We demonstrate the utility of the NCT in pro-
viding network labels to exemplar neuroimaging maps based on a
quantitative evaluation of spatial correspondence with multiple pub-
lished network atlases. Quantitative evidence of correspondence is
determined by the magnitude of the Dice coefficient, in addition to
spin test permutations for robust statistical assessment of significance.
We conclude with a recommendation that future network and cogni-
tive neuroscience reports include an evaluation of the correspondence
between their network labeling schemes and multiple published net-
work atlases produced by independent research laboratories, as
facilitated by the NCT. This approach transparently acknowledges and
quantitatively addresses the ambiguity inherent in assigning labels to

topographic brain maps and encourages greater alignment across
network neuroscience studies by objectively assessing the con-
vergence or divergence between new findings and published network
labels and schema. Importantly, the NCT is not prescriptive regarding
the largely intractable problem of inconsistent network nomenclature.
Rather, it is a tool to facilitate comparison and interpretation to be
drawn across atlases, ultimately resulting in greater standardization in
reporting of results.

We begin by illustrating the network correspondence problem by
computing network overlap across sixteen widely used functional
brain atlases. Next, as another quantitative example, we demonstrate
the correspondence between two widely-used atlases that delineate
the cortex into 17 discrete networks: Yeo2011-17 and Gordon2017-17.
These examples serve to illustrate the network nomenclature problem
and to motivate NCT usage. Then, we provide step-by-step guidelines
for NCT usage. Finally, we report several examples of how the NCT can
be used by treating publicly available Human Connectome Project
(HCP) task fMRI results and UK Biobank independent component
analysis (ICA) maps as “novel” findings for demonstration purposes.
These specificmapswere chosen to illustrate how theNCTperforms in
cases where the input data correspond with existing networks to a
strong degree, as well as in more challenging scenarios where corre-
spondence is lower.

Results
Network correspondence toolbox
Anatomical localization of patterns of brain activity is tedious10, but
many digital and paper atlases are available to facilitate the process11.
Localization to large-scale functional brain networks is a more recent
development, with standardized tools in demand (see12 for a recent
introduction of probabilistic network localization). The NCT flexibly
permits the assessment of spatial correspondence between several
target reference atlases and novel brain maps including, but not lim-
ited to, functional connectivity and task activation results, as well as
other maps in standard space13. Note that some of the included atlases
included in the NCT containmultiple versions: Yeo2011, Schaefer2018,
Kong2021, Power2011, Shen2013, Gordon2017, Cole-Anticevic2019,
ICA-UK Biobank, ICA-HCP, ICA-BrainMap, and Shirer201214–25

(Fig. 1 and Supplementary Table 1). Themost recent release of the NCT
(v0.3.1) includes 23brain atlases. A full list of currently available atlases
in the NCT can be found in https://pypi.org/project/cbig_network_
correspondence.

Network correspondence: understanding the problem across
multiple atlases
We considered 16 widely used functional brain atlases including the
Yeo2011, Schaefer2018, Kong2021, Power2011, Shen2013, Gor-
don2017, Cole-Anticevic2019, ICA-UK Biobank, ICA-HCP, ICA-Brain-
Map, and Shirer201214–25 (Fig. 1 and Supplementary Table 1). To
compute the network overlap across atlases, we treated each atlas as
the reference atlas and projected other atlases into that reference
atlas. Between each referencenetwork andeachnetwork fromall other
atlases, we computed the Dice coefficient. This allowed us to compare
the voxel-wise agreement between the reference network and all other
networks,where0 is no correspondence and 1 is total correspondence.
Assuming there are K networks in the reference atlas and M networks
in another atlas, we generated a KxM network overlap matrix, where
the k-th row and m-th column represents the Dice overlap coefficient
between network k of the reference atlas and network m from the
other atlas. A high Dice coefficient indicates high spatial overlap
between the two networks from different atlases.

Dice coefficients between all 16 atlases were computed and
examined. The non-symmetrical matrix shows relative differences due
to atlases referencing in the upper and lower triangles (Fig. 2). Each
matrix sub-block reveals patterns of correspondence (with total
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correspondence within-atlas on the diagonal). Non-square sub-blocks
of the matrix are due to differences in the number of networks iden-
tified between atlases, which ranged from 7 (Yeo2011) to 25
(Smith2013; Miller2016). Distributed spatial topographies of func-
tional networks across atlases show some reliable correspondence,
based on the observable sub-block diagonal structure.

Among the 16 atlases included, differences in numbers of net-
works included some cases of non-independent solutions that were
derived from the same dataset or from the same laboratory. For this
reason, the present investigation cannot determine the optimal solu-
tion for the number of large-scale networks in the human brain, as
assessed using fMRI. Based on theDice overlap, hierarchical structures
of the network similarity matrix were examined using a nested sto-
chastic blockmodel26, with 15 clusters applied (the average number of
networks across atlases). It is important to note that this clustering is
not meant to generate consensus networks across atlases. Rather, the
clustering algorithm permits an examination of the spatial corre-
spondence across atlases, indexed by atlas source, and specific net-
work names. The network probability maps of each cluster are
displayed in Fig. 3.

We visually inspected each cluster and associated network names
for parcellations that providednetwork labels. The spatial extent of the
network probability maps and their corresponding labels (ignoring
subnetwork designations) were similar across atlases for many clus-
ters. All clusters were bilateral. Cluster 5, comprisingmedial prefrontal
and medial parietal cortex, inferior parietal lobule, lateral temporal
and medial temporal lobe, inferior frontal gyrus, and superior middle
frontal gyrus, was nearly uniform in being labeled the “default net-
work” across atlases. However, some functional ensembles were
diversely named, and distinct inconsistencies were noted.

The distributed network of Cluster 12, including lateral prefrontal
cortex, anterior inferior parietal lobule, posterior inferior temporal
gyrus, and dorsal anterior cingulate cortex, also showed strong

correspondence across multiple atlases, but the atlases used diverse
labels, such as “frontoparietal”, “control”, and “central executive”. This
network is well known and identified for its role in the executive
control of information processing in the human brain27. The divergent
names largely point to the same cognitive construct even in the
absence of consistent and consensus nomenclature across atlases28.

Convergence was observed for perceptual and motor net-
works. Probability maps of Clusters 2 and 3 converged in the
occipital lobe, with consistent labels related to vision (“visual”).
Rostral to the occipital networks was Cluster 4, which extended
dorsally into superior parietal cortex and ventrally into inferior
temporal cortex This network was variously labeled “dorsal
attention”, “visual association”, and “visual”. Cluster 1 included
two regions rostral to those identified in Cluster 4, the superior
parietal lobule and middle temporal motion complex, as well as
the putative frontal eye fields and inferior precentral sulcus.
These distributed regions were predominantly labeled “dorsal
attention” in addition to “visuospatial” and “premotor”.

Motor and somatosensory cortex, anterior and posterior to the
central sulcus, include the precentral and postcentral gyri, and extend
medially into the juxtapositional lobule (supplementary motor area).
Cluster 10 included these areas with reliable labels of “somatomotor”
or “motor”. The dorsal and medial extent were specifically recapitu-
lated in Cluster 8, with labels of “somatomotor”, and specifically
“hand”, “foot”, and “dorsal somatomotor”. Cluster 11 included the
ventral extent of motor and somatosensory cortex, descending
through the middle insula, and terminating in the superior temporal
gyrus. This cluster was split in names between “somatomotor” and
“auditory” labels across different atlases.

Finally, convergence of the “ventral attention”, “salience”, and
“cingulo-opercular” networks was apparent in Cluster 9, with regions
including anterior insula, middle and dorsal anterior cingulate cor-
tex, and lateral parietal cortex. For example, the salience/ventral

Fig. 1 | Example atlases included in the Network Correspondence
Toolbox (NCT). The NCT is a toolbox that facilitates exploration of network cor-
respondences across multiple functional network atlases as well as quantitative
comparison of novel neuroimaging results with multiple atlases. Ten atlases are
shown here for illustration purposes. In this example, the Yeo 17-network atlas in

fsaverage6 space (center) serves as the reference atlas. All other surrounding
atlases in different spaces are projected to the fsaverage6 space to compute Dice
overlap coefficients with the reference networks. A full list of currently available
atlases in the NCT can be found in https://pypi.org/project/cbig_network_
correspondence.
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attention network-A from the Yeo2011-17 atlas largely overlapped
with the cingulo-opercular network from the Gordon2017
atlas. However, the salience network label has also been applied to
anatomically different regions as well, with poor convergence
between some atlases. The salience network as labeled in the Gor-
don2017 17-network, Yeo2011 7-network, Shirer2012 14-network, and
Shen2013 8-network show distinct distributed spatial topo-
graphies (Fig. 4).

Five network probability maps were more ambiguous in their
topography and naming. Clusters 13–15, and 6 included two to three
discrete regions in each hemisphere. These regions may be part of
larger named systems but can present as unique ensembles, depend-
ing on the atlas used. Cluster 13, including orbitofrontal and anterior
temporal regions, was labeled “limbic” and “anterior medial temporal”
(note these regions are often left unlabeled in some atlases due to
heavy overlap with susceptibility artifact in fMRI). Cluster 14 included

ventral retrosplenial cortex, inferior temporal and lateral occipital
regions and was diversely labeled “context”, “parietal-occipital”, and
“default”. Cluster 15 included dorsal retrosplenial cortex and dorsal
posterior precuneus, andwas labeled “control”, “salience”, and “medial
parietal memory”. Cluster 6 included the inferior frontal gyrus and
superior lateral temporal regions, and was labeled “TempPar”, “lan-
guage”, and “ventral attention”. The topographyofCluster 6 resembles
task-driven language function24,29,30. Problematically, the cognitive
network terms associated with Clusters 14, 15, and 6 are incongruent.

Cluster 7 was unique in that it only included networks identified
fromatlases derived using ICA. These networksweregiven a numerical
ID rather than labels derived fromanatomical or cognitive features and
originated from HCP and UKBiobank. Brain regions included dor-
somedial prefrontal cortex, anterior insula, inferior parietal lobule,
lateral temporal cortex, dorsal anterior precuneus, and posterior
superior frontal gyrus.”

Fig. 2 | Hierarchical structures of the network similarity matrix (Dice overlap).
The nested stochastic block model with 15 clusters was applied onto the network
similarity matrix where Dice coefficients were calculated between each pair of
networks fromdifferent atlases. The network similaritymatrix is a 230 × 230matrix
since there are 16 atlases with 230 networks. Each block corresponds to a network
cluster.Representative networknameswithineachcluster are highlightedhere. See
Supplementary Fig. 1 for clustering results with atlas associations. We emphasize

that the hierarchical clustering is not meant to generate a new consensus atlas;
rather it is a way for us to examine convergence and divergence across atlases. Prim
primary, med medial, lat lateral, vis visual, assoc association, par parietal, occ
occipital, ant anterior, MTL medial temporal lobe, front frontal, ven ventral, attn
attention, tem temporal, SM somatomotor, post posterior, SAL salience, subcor
subcortical, cing cingulo, operc opercular.
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Network correspondence: understanding the problem between
two specific atlases
As another quantitative demonstration of the network correspon-
dence problem that motivated the development of the NCT, we
evaluated network-to-network spatial correspondence between two
widely used atlases. For this illustration, all 136 network pairs from
the Yeo2011-17 and Gordon2017-17 atlases were examined (Fig. 5; See
Supplementary Table 2 for Dice coefficients and corresponding p-
values). Overall, we observed good correspondence between several
of the networks across these two atlases. For example, Gordon2017-
17 Lateral Visual and Medial Visual networks significantly corre-
sponded to the Yeo2011-17 Visual A and B networks, respectively.
Specific Hand, Face, and Foot Somatomotor networks in the
Gordon2017-17 showed significant correspondence with Somato-
motor networks A and B in Yeo2011-17. However, notable dis-
crepancies also emerged, particularly with regard to network name
and purported function. For example, the Gordon2017-17 Auditory
network also spatially corresponded to the Yeo2011-17 Somatomotor
network B. While the Gordon2017-17 Dorsal Attention network
showed significant correspondence with the Yeo2011-17 Dorsal
Attention networks A and B, the Gordon2017-17 Premotor network
also significantly corresponded with the Yeo2011-17 Dorsal Attention

network B. The Gordon2017-17 Cingulo-opercular network sig-
nificantly corresponded with the Yeo2011-17 Salience / Ventral
Attention networks A and B. Yet a distinct Gordon2017-17 Salience
network also corresponded with Yeo2011-17 Salience / Ventral
Attention network B. The Gordon2017-17 Anterior Medial Temporal
Lobe network significantly corresponded to Yeo2011-17 Limbic A
network (which comprises the anterior temporal lobes). In robust
agreement, the Gordon2017-17 Frontoparietal network significantly
corresponded to the Yeo2011-17 Frontoparietal Control networks A
and B. However, the Gordon2017-17 Parietal Memory network sig-
nificantly corresponded to the Yeo2011-17 Frontoparietal Control
network C. In another example of seemingly good spatial alignment,
the Gordon2017-17 Default network significantly corresponded to
the Yeo2011-17 Default networks A and B. However, the Gordon2017-
17 Default network also showed significant correspondence with
Yeo2011-17 Frontoparietal Control network B, highlighting the
importance of considering the relative magnitude of the Dice coef-
ficient. The Gordon2017-17 Language network significantly corre-
sponded with the Yeo2011-17 Temporal Parietal network, as well as
Default network B. The Gordon2017-17 Context network and Pos-
terior Medial Temporal Lobe network both significantly corre-
sponded to the Yeo2011-17 Default network C. Notably, the Yeo2011-

Fig. 3 | Spatial topography of the 15 network clusters. See Supplementary Fig. 1
for atlas contributions and hierarchical relations. Warmer colors indicate greater
concordance across atlases. We emphasize that these maps are not meant to be

consensus networks, i.e., we are not proposing a new atlas. Instead, these maps
are meant to illustrate the convergences and divergences between existing
atlases.
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17 Limbic B network (which comprises orbitofrontal cortex) showed
no correspondence with any Gordon2017-17 networks.

This Yeo2011-17 and Gordon2017-17 example further illustrates the
problems of (1) incongruence in network nomenclature, and (2) varying
levels of network correspondence across atlases. A pair-wise spatial
correspondence analysis of all networks included within all sixteen
atlases is outside the scope of the present report. However, the NCT
retains this functionality for interested readers. In-depth pairwise
assessment between brain network atlases, in addition to benchmarking
of novel neuroimaging results against networks defined across multiple
atlases, is a core function of the NCT. Due to spatial and nomenclature
variability across atlases, the OHBM Best Practices committee now
recommends that users use multiple atlases originating from different
research laboratories for reporting correspondence between novel
results and existing network labels. The recommendation to report
results in reference to multiple atlases comes from the observation that
even networks with similar nomenclature across atlases (e.g., “salience”)
may not share the same spatial topography (Fig. 4).

How to use the NCT
For each network of a reference atlas, the magnitude of spatial cor-
respondence with an empirical brain map, and the statistical sig-
nificance of this correspondence, can bedeterminedusing theNCT. All
atlases and fMRI results are projected from a standard space into
fsaverage6 space. Correspondence is assessed as the Dice coefficient,
where 0 is no spatial correspondence and 1 is total spatial corre-
spondence. In order to assess statistical significance, a spin test20,31,32

implemented in Python33 is performed with 1000 permutations for
each reference atlas network.

The NCT can be installed using the command pip install
cbig_network_correspondence. Figure 6 illustrates the usage of the NCT
to explore network correspondence between user-defined input data
and a set of atlases. Specifically, users specify the pathway to the input
data and provide a configuration file containing input data details such
as the data name, data space, and data type. Additionally, users

provide a list of atlases included in the NCT, available at https://github.
com/rubykong/cbig_network_correspondence#atlases-we-included.

The NCT proceeds by first reading the input data, projecting the
atlases specified in the list to the input data space, computing the
spatial similarity between the data and atlases, and conducting statis-
tical analyses. The network correspondence results are then visually
presented.

The inputdata canbe either uni-dimensional ormultidimensional.
Examples of unidimensional data include a spatial map of a single ICA
component, a task contrast map, or a single network from a hard
parcellation. The network correspondence results of unidimensional
data are illustrated as a “Network Clock” plot, a “Network Radar” plot,
and a summary table (Fig. 6D). The “Network Clock” provides a visual
comparison of the Dice overlap between the input data and networks
from different atlases. Different colors represent different atlases. The
lollipop bars represent the Dice overlap coefficients. Networks sig-
nificantly overlapping with the input data (p < 0.05) are indicated by
the network names. In this plot, networks that have larger Dice coef-
ficients are shown by larger font sizes. The “Network Radar” shows the
Dice overlap across networks within each atlas. Networks significantly
overlappingwith the input data (p <0.05) are indicatedby “*”. TheNCT
provides a “Summary Table” showing the exactDice coefficients and p-
values for different atlases.

In the caseofmultidimensionality, examples could include a set of
ICA spatial maps, multiple task contrast maps, or any atlas included in
the NCT. The NCT reports the network correspondence results of
multidimensional data as “Overlap Heatmap” plots, where the rows
correspond to the input data, and columns correspond to the net-
works of a comparison atlas. The k-th row andm-th column represents
the Dice overlap coefficient between the k-th dimension of the input
data and the network m from the atlas. In this plot, a brighter color
indicates higher overlap, while a darker color indicates lower overlap.
Networks significantly overlapping with the input data (p <0.05) are
indicated by “*”. The NCT also provides a summary table showing the
exact Dice coefficients and p-values.

Fig. 4 | Networkswith similar names can showdifferent spatial topographies. “Salience” networks from four different atlases. These networks are labeled using similar
nomenclature across multiple atlases, though they span different, largely non-overlapping anatomical locations.
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The NCT was built in Python and is available at the GitHub repo-
sitory: https://github.com/rubykong/cbig_network_correspondence.
The toolbox has been released to the Python Package Index (PyPI):
https://pypi.org/project/cbig-network-correspondence. Detailed doc-
umentation and a tutorial are available at: https://rubykong.github.io/
cbig_network_correspondence.

Illustrating the utility of the NCT with several examples
To demonstrate various applications of the NCT in both straight-
forward and challenging cases, we next show multiple network
correspondence results. For the following examples, the image from

an analysis (e.g., task activation map) was loaded, the space of the
image set to a specific standard space (e.g., MNI152), and a threshold
set for significant voxels. Dice coefficients were then determined for
all reference atlases, and output as a Dice coefficient array. For each
network within each atlas, we determined the Dice coefficient of
network overlap and used spin tests to quantify levels of
significance.

For the first example, weused theHCPworkingmemory task fMRI
contrast (2BK-0BK) which includes data from 997 HCP S1200
subjects34. As illustrated in the “Network Clock” depicted in Fig. 7, this
task fMRI contrast (top left) shows significant spatial overlap with

Fig. 5 | Illustration of NCT usage to explore network correspondence between
two atlases. In this example, we explore overlap between the Yeo2011 17-network
atlas (reference atlas) and the Gordon2017 17-network atlas. A The user specifies
the name of the reference atlas (here, Yeo2011-17) and the name of comparison
atlas (here, Gordon2017-17). The Yeo 17-network atlas is in fsaverage6 space, while
the Gordon2017 17-network atlas is in fs_LR_32k. In this case, the reference atlas
space is fsaverage6. Therefore, the NCT projects the Gordon2017 17-network to
fsaverage6 space. B The NCT computes the Dice overlap between networks from
Yeo 17-network atlas and Gordon2017 17-network atlas. The NCT also performs a
spin test to test whether networks significantly overlap. C The NCT reports the
network correspondencebetween these two atlases using anoverlapheatmapplot,

where the k-th row and m-th column represents the Dice overlap coefficient
between network k of the Yeo 17-network atlas and networkm from the Gor-
don2017 17-network atlas. A high Dice coefficient indicates high overlap between
the two networks. Brighter colors indicate higher overlap, darker colors indicate
lower overlap. The “*” indicates two networks significantly overlap (p <0.05). Most
Yeo2011 networks overlap with at least one network in the Gordon2017 atlas. The
NCT also provides a summary table showing the exact Dice coefficients and p-
values (see SupplementaryTable 2). TheNCTuses networknames from the original
paper for each atlas. Dors dorsal, attn attention, sal salience, ven ventral, temp
temporal, par parietal, lat lateral, vis visual, med medial, SM somatomotor, cing
cingulo, operc opercular, ant anterior, MTL medial temporal lobe.

Article https://doi.org/10.1038/s41467-025-58176-9

Nature Communications |         (2025) 16:2930 7

https://github.com/rubykong/cbig_network_correspondence
https://pypi.org/project/cbig-network-correspondence
https://rubykong.github.io/cbig_network_correspondence
https://rubykong.github.io/cbig_network_correspondence
www.nature.com/naturecommunications


several networks acrossmultiple atlases (e.g., “FrontPar” network from
theGlasser andGordon atlases, “DorsAttn” network from the Laumann
atlas). As shown in the “NetworkRadar”plot (top right), theNCTcanbe
further used to quantify the overlap between user-defined maps and
specific networks within an atlas. In the example highlighted in this
figure, the input contrast shows significant overlap with the network

labels “FrontPar” and “DorsAttn” in the Gordon atlas. This example
illustrates a case where the task activation map corresponds well with
networks specified in multiple atlases.

For the second example, we used the HCP social task fMRI con-
trast (TOM-random) which includes data from 997 subjects. As illu-
strated in the “Network Clock” depicted in Fig. 8, this task fMRI

Fig. 6 | Illustration of NCT usage to explore network correspondence between
user-defined input data and a set of atlases. In this example, we explore the
overlap between a single-dimension input dataset and 4 atlases: the Yeo2011 17-
network atlas (“Yeo2011-17”, the Gordon2017 17-network atlas (“Gordon2011-17”),
the Glasser2016 360-ROI atlas with Ji2019 12 Cole-Anticevic networks (“Glas-
ser2016-360 + Ji2019-12”), and the Shen2013 268-ROI atlas with 8 networks
(“Shen2013-268-8”). A The user provides the input data together with a config file
specifying the name, data space (e.g., fs_LR_32k, fsaverage6, FSLMNI2mm), and
data type (“Metric” if the input data containsfloating values; “Hard” if the input data
contains binary values). In this example, the input data is in fs_LR_32k space and
contains binary values. The data type is “Hard”. The user also provides an atlas list
indicatingwhich atlases to include.BTheNCT reads the input data andprojects the
atlases in the atlas list to the input data space. C The NCT computes the Dice
overlap between the input data and networks from the atlases in the list. The NCT
also performs spin tests to test whether the input data and networks significantly

overlap. D The NCT reports the network correspondence summary using a “Net-
work Clock” plot, a “Network Radar” plot, and a summary table for single-
dimensional data. The “Network Clock” provides a visual comparison of the Dice
overlap across networks from different atlases. Different colors represent different
atlases. The lollipop bars represent the Dice overlap coefficients. Networks sig-
nificantly overlapping with the input data (p <0.05) are indicated by the network
names. A larger font size represents a larger Dice coefficient. The “Network Radar”
shows the Dice overlap across networks within each atlas. Networks significantly
overlapping with the input data (p <0.05) are indicated by “*”. The NCT also pro-
vides a summary table showing the exact Dice coefficients and p-values across
different atlases (see Supplementary Table 3). The NCT uses network names from
the original paper for each atlas. Dors dorsal, attn attention, par parietal, ven
ventral, sal salience, subcor subcortical, cing cingulo, operc opercular, vent ventral,
multi multimodal, orbit orbital, front frontal.
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contrast (top left) shows significant spatial overlap with several net-
works across multiple atlases (e.g., “VentAttn” network from the Lau-
mann atlas, “Language” network from the Gordon atlas). As shown in
the “Network Radar” plot (top right), the NCT further can be used to
quantify the overlap between user-definedmaps and specific networks
within an atlas. In the example highlighted in this figure, the input
contrast shows significant overlap with the network labels “Language”
and “Context” in the Gordon atlas. This example illustrates a case
where the task activationmap does not correspondwell with networks

specified in multiple atlases. It thus signals that any network labels
should be applied to this map with great caution.

For the next example, we used the UK Biobank ICA component 5
to illustrate how the NCT can facilitate reporting of results from this
typeof analysis. As illustrated in the “NetworkClock”depicted in Fig. 9,
this ICA map (top left) shows significant spatial overlap with networks
labeled “Visual” acrossmultiple atlases. Thefinal example (Fig. 10) uses
UKBiobank ICA component 3 as the inputmap. Evenwith this complex
input spanning multiple brain areas, the NCT can be used to quantify

Fig. 7 | Illustration of usage of the NCT to explore network correspondence
between user-defined input data and multiple atlases: HCP Example 1. In this
example, we explore overlap between the HCPworkingmemory task contrast (2BK
vs. 0BK) and networks from 8 atlases. The user provides the input data together
with a config file specifying the name, data space, data type, and the threshold
which is used to threshold the input data. The user also provides an atlas list
indicating which atlases to include. The NCT thresholds the data based on the
config file and projects the atlases in the atlas list to the input data space. The NCT
computes the Dice overlap between the thresholded data and all networks from
atlases in the list. The NCT also performs spin tests to test whether the thresholded
input data and networks significantly overlap. The NCT reports the network cor-
respondence summary using a “Network Clock” plot (middle), a “Network Radar”
plot (top right), and a summary table showing the exact Dice coefficients and

p-values for all atlases (see SupplementaryTable3). The “NetworkClock”provides a
visual comparison of Dice overlap across networks from different atlases. Different
colors represent different atlases. The lollipop bars represent the Dice overlap
coefficients. Networks significantly overlapping with the thresholded input data
(p <0.05) are indicated by the network names. Larger font sizes represent larger
Dice coefficients. The “Network Radar” shows the Dice overlap across networks
within each atlas. Networks significantly overlapping with the thresholded input
data (p <0.05) are indicated by “*” in the “Network Radar”. WM working memory,
BKback, dors dorsal, attn attention, par parietal, ant anterior, sal salience, LECN left
executive control network, RECN right executive control network, DMN default
mode network, ven ventral, subcor subcortical, mot motor, vis visual, cog cogni-
tion, occ occipital, front frontal, cing cingulo, operc opercular, med medial, lat
lateral, ant anterior, MTL medial temporal lobe, SM somatomotor, post posterior.
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overlap with existing network labels to facilitate communication and
comparison. Again, these two examples illustrate cases in which the
input maps correspond well (Fig. 9) and do not correspond well
(Fig. 10) with networks specified in multiple atlases.

Taken together, theseexamples illustrate how researchers can use
the NCT to quantitatively and accurately present novel cognitive and
network neuroscience results in reference to widely used atlases to

enhance interpretability and comparison with existing findings in the
literature.

Discussion
Despite decades of functional neuroimaging research resulting in
repeated and robust observation of multiple large-scale functional
brain networks, the nomenclature describing these networks in

Fig. 8 | Illustration of NCT usage to explore network correspondence between
user-defined input data and multiple atlases: HCP Example 2. In this example,
we explore the overlap between the HCP social task contrast (theory of mind vs.
random) and 8 atlases. The user provides the input data together with a config file
specifying the name, data space, data type, and the threshold which is used to
threshold the input data. Theuser alsoprovides anatlas list indicatingwhich atlases
to include. The NCT thresholds the data based on the config file and projects the
atlases in the atlas list to the input data space. The NCT computes the Dice overlap
between the thresholdeddata and all networks fromatlases in the list. TheNCTalso
performs spin tests to test whether the thresholded input data and networks sig-
nificantly overlap. The NCT reports the network correspondence summary using a
“Network Clock” plot (middle), a “Network Radar” plot (top right), and a summary

table showing the exact Dice coefficients and p-values for all atlases (see Supple-
mentary Table 4). The “Network Clock” provides a visual comparison of Dice
overlap across networks from different atlases. Different colors represent different
atlases. The lollipop bars represent the Dice overlap coefficients. Networks sig-
nificantly overlapping with the thresholded input data (p <0.05) are indicated by
the network names. Larger font sizes represent larger Dice coefficients. The “Net-
work Radar” shows the Dice overlap across networks within each atlas. Networks
significantlyoverlappingwith the thresholded input data (p <0.05) are indicatedby
“*” in the “Network Radar”. Dors dorsal, attn attention, post posterior, multi mul-
timodal, temp temporal, par parietal, med medial, front frontal, ven ventral occ
occipital, lat lateral, vis visual, cing cingulo, operc opercular, ant anterior, MTL
medial temporal lobe, SM somatomotor.
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humans is not standardized5. Instead, there has been a proliferation of
different population-average network atlases that rely on distinct
nomenclatures derived by independent research groups using dis-
parate approaches8. Indeed, we have seen that even networks with
similar nomenclature (e.g., “salience”) across atlasesmay not share the
same spatial topography.

Although atlases vary both in their number of networks and the
methods used to identify networks, they all seek to categorize net-
work affiliations for the cortical mantle and subcortex. The goal of
each OHBM Best Practices committee is to formalize and endorse
best practices across domains of human neuroimaging research to
promote science literacy, transparency, and reproducibility. Building
on the consensus conclusions from the OHBM Best Practices com-
mittee on network nomenclature (WHATNET), here we introduce
the NCT.

In building the NCT we first investigated the spatial correspon-
dence of discrete large-scale functional brain networks defined in
sixteen widely used atlases from a variety of standardized stereotaxic
spaces (volume images and surface maps), network definition meth-
ods, and datasets. Overall, a high degree of spatial correspondence
across atlases was observed for many functional networks. However,
areas of notable divergence were also observed, especially for net-
works spanning association cortices. We further quantitatively inter-
rogated convergence directly across twowidely used atlases (Yeo2011-
17 and Gordon2017-17). These analyses revealed that a network pre-
senting as unitary in one atlaswas in some cases broken down into two
networks in the other atlas. Network nomenclature across the two
atlases was also inconsistent in many cases. Such discrepancies sup-
port the published 2023 recommendations ofWHATNET advising that
network-based interpretations of novel activation or functional

Fig. 9 | Illustration of NCT usage to explore network correspondence between
user-defined input data and multiple atlases: UKB Example 1. In this example,
we explore overlap between UKB ICA component 5 and 8 representative atlases.
The UKB ICA z-stat maps with 21 good components (https://www.fmrib.ox.ac.uk/
ukbiobank/group_means/rfMRI_GoodComponents_d25_v1.txt) were thresholded
by FSLmelodicmixture-modeling threshold0.6. The component 16 corresponds to
the cerebellum and was further excluded, resulting in 20 thresholded UKB ICA

maps. The 20 thresholdedUKB ICAmaps can be found in Supplementary Fig. 1. The
NCT also provides a summary table showing the exact Dice coefficients and p-
values for all atlases (Supplementary Table 5). Med medial, vis visual, lat lateral,
prim,primary, cing cingulo, operc opercular, SM somatomotor, dors dorsal, attn
attention, par parietal, front,frontal, post posterior, ant anterior, MTL medial
temporal lobe.
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connectivity findings use multiple reference atlases produced by
independent research laboratories to corroborate network
localization8. TheNCT is designed to further promote and facilitate the
adoption of this recommendation by providing researchers with a
user-friendly tool to readily conduct and report on network corre-
spondences, asdemonstratedwithmultiple examples.We suggest that
future studies referencemultiple independent atlases to quantitatively
evaluate network localization of activity or functional connectivity,
using the NCT13,35. This would support cross-study comparisons for
replicability, aid in the interpretation of novel findings, and encourage
greater dialogue across research groups and the field of network
neuroscience more broadly.

Many novel discoveries in cognitive and network neuroscience
are contextualized within the bounds of previously identified network
topographies. Methods for assessing network overlap with novel

functional connectivity or fMRI task activation maps vary from visual
inspection, Euclidean distance between network regions’ center of
mass and activation peaks, to direct quantification between an atlas
and neuroimage. Variability in image formats between atlases and
result images can be a significant obstacle to assessing correspon-
dence directly and/or empirically. Many fMRI task studies are con-
ducted in volume space, yet some atlases are only shared by the
creators in surface space24,36, arguing that volume rendering is less
precise37. In order to surmount this problem, all atlases included in the
NCT were transformed from their original standard space to be
interoperable and compatible with all other standard spaces, in the
volume or surface. This approach was integral to assessing the corre-
spondence between all atlases. Further, this approach now allows for a
direct and empirical examination of novel neuroscience findings
against multiple existing widely used atlases simultaneously.

Fig. 10 | Illustrationof NCT usage to explore network correspondence between
user-defined input data and multiple atlases: UKB Example 2. In this example,
we explore overlap between UKB ICA component 3 and 8 representative atlases.
The UKB ICA z-stat maps with 21 good components (https://www.fmrib.ox.ac.uk/
ukbiobank/group_means/rfMRI_GoodComponents_d25_v1.txt) were thresholded
by FSLmelodicmixture-modeling threshold0.6. The component 16 corresponds to
the cerebellum and was further excluded, resulting in 20 thresholded UKB ICA

maps. The 20 thresholdedUKB ICAmaps can be found in Supplementary Fig. 1. The
NCT also provides a summary table showing the exact Dice coefficients and p-
values for all atlases (Supplementary Table 6). Cing cingulo, operc opercular, dors
dorsal, attn attention, mot motor, vis visual, assoc association, sal salience, ven
ventral, post posterior, front frontal, par parietal; SM somatomotor, ant anterior,
MTL medial temporal lobe, lat lateral, med medial.
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Previous work has attempted to quantify spatial variability among
major large-scale brain networks as defined in widely used functional
atlases, also noting only modest similarity between atlases. Some have
created atlas-based labeling tools38, but none have provided a means
for comparing novel results with multiple atlases simultaneously. One
project created a Consensual Atlas of REsting-state Network based on
Yeo, Gordon, andDoucet atlases39. Initial efforts to standardize human
brain parcellations have resulted in tools such as Neuroparc, which
provides a means for comparison among widely used atlases40. Others
have compared anatomical, functional connectivity, and random par-
cellations and concluded that there is no optimal approach for choice
of parcellation technique41. Recent parcellation evaluation studies
have suggested that multi-modal parcellations combining functional
and anatomical metrics may perform worse than those based only on
functional data because functionally homogeneous brain regions can
span major anatomical landmarks42. Critically, these studies have
either simply evaluated the correspondence between different atlases
or attempted to derive a single ‘consensus’ atlas. The NCT obviates the
need to rely on any single atlas. Instead, it transparently addresses the
inherent ambiguity in assigning network labels to empirical brainmaps
by objectively quantifying the spatial correspondence between a given
empirical map and multiple existing, widely used atlas nomenclatures
simultaneously.

It should be noted that all neuroimaging-derived spatial maps
are sensitive to thresholding choices. The issue of appropriate
thresholding of fMRI results is outside the scope of the current work,
but several previous discussions of this topic are available, and
guidelines regarding thresholding are put forth in early OHBM Best
Practices reports6. We recommend unthresholded image deposition
in an open access repository (e.g., Neurovault https://neurovault.
org/) so that researchers can come to their own conclusions
regarding overlap between novel results and existing parcellation
schemes.

It is important to acknowledge that the NCT does not determine
for the user what level of correspondence should be considered suf-
ficient to warrant a particular network label for a given result. The goal
of providing the NCT to the community is to assist in mapping novel
results to network nomenclatures adopted by multiple widely-used
atlases. We do not wish to be prescriptive regarding how many mat-
ches a user should pick for any given set of results, as that depends
entirely on the research question under investigation. However, as the
Dice coefficient is a measure of effect size, which is reported at the
same time as the p-value, both are integral for interpretation.We agree
that p-values alone are never sufficient to determine the interpretation
of findings. For this reason, exemplar reporting standards in the
revised submission provide measures of both effect size and
significance.

The WHATNET now recommends that new scientific reports on
patterns of task activation or functional connectivity, if purported to
engage a specific large-scale functional brain network, be indexed to
multiple independent atlases for verification. The NCT provides an
accessible, easy-to-use tool to follow this recommendation in full.
Critically, we see the NCT as an evolving resource, wherein the data-
bases of atlases will be open to the research community. This will
enable the NCT, as a tool to quantify network correspondences, to
expand as novel parcellation schemes and atlases are introduced.
Tools like the NCT will be especially critical for integrating findings
across psychiatry and neurology, where the lack of guidance regarding
atlas correspondence and network nomenclature can be an impedi-
ment to clinical progress43.

Methods
Functional brain atlases
We investigated cortical network correspondences between user-
defined input data and a set of functional network atlases. While

there are 23 atlases available in the most recent release of the
NCT (v 0.3.1), we considered 16 widely used functional network
atlases that are publicly available in fsaverage6 surface space,
fs_LR_32k surface space, and MNI space including the Laird2011,
Yeo2011, Shirer2012, Smith2013, Shen2013, Laumann2015,
Miller2016, Gordon2016, Gordon2017, Schaefer2018, and Ji201914–25

for the analyses depicted in Figs. 2 and 3. The majority of these
atlases are derived from resting state fMRI data, though a few are
based on task fMRI. Some of these atlases have multiple resolutions,
resulting in 16 different atlases (Supplementary Table 1). We
focused on cortical networks in this study; the non-cortical regions
were masked for all atlases. Networks only corresponding to sub-
cortical regions and the cerebellum were also excluded from all
parcellations examined. A full list of currently available atlases in the
NCT can be found in https://pypi.org/project/cbig_network_
correspondence.

Network similarity between atlases
To compute the network similarity between the input data and the
atlases included in NCT, we treat the input data space as the reference
data space and project the atlases to the reference atlas space (see
section Projection between atlases in different spaces for projection
details). In the case of input data being an atlas, the input data will be
referred to as the “reference atlas”. Figure 1 shows an example where
the Yeo 17-network atlas in fsaverage6 space (the center) served as the
reference atlas. All other surrounding atlases in different spaces were
projected to the fsaverage6 space. The network similarity is defined as
theDice coefficients between the input data anddifferent atlases in the
reference data space.

For each reference network, we computed the Dice coefficient
between this reference network and each network from all other
atlases in the reference atlas space. Assuming there are K networks in
the reference atlas and M networks in another atlas, we generated a
KxM network similarity matrix, where the k-th row and m-th column
represents the Dice overlap coefficient between network k of the
reference atlas and network m from the other atlas. A high Dice coef-
ficient indicates high spatial overlap between the two networks. The
network similarity matrix was ordered so that each reference network
was paired up with the network from the other atlas with the best
overlap (i.e., highest Dice coefficient) along the diagonal of thematrix.
Sixteen functional atlases included in this study yields 240 different
network similarity matrices.

Consistencies of network names across atlases
To explore the agreement and disagreement of network labels across
sixteen widely used atlases, we clustered the networks with high
spatial overlap together. A hierarchical clustering algorithm26 was
applied onto the network similarity matrix to group all networks into
15 clusters, the average number of networks across atlases. We
reordered the network similarity matrix based on the hierarchical
clustering results. The hierarchical clustering results were also
visualized as a chord map. We then manually examined network
nameswithin each cluster to identify network spatial topography and
their labels.

Spin tests
We use the spin test20,31,32 implemented in Python33 to assess if the
reference input data significantly overlaps with networks from differ-
ent atlases. Specifically, the reference input data is randomly rotated
1000 times. For each network, we compute the Dice coefficient
between the rotated input data and this network. For a network highly
overlapping with the input data, we expect the Dice coefficient
between this network and the rotated input data to be smaller than the
Dice coefficient between this network and the original input data. The
p-value is defined as the number of rotated input data whose Dice
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coefficients are larger than the original input data divided by the total
number of rotations. However, the spin test only works for data in
surface space. For volumetric data, we project the data to fsaverage6
using an advanced nonlinear mapping approach44 and perform the
spin test in fsaverage6 surface space.

Projection between atlases in different spaces
For atlases included inNCT,we treated each atlas as the reference atlas
and projected other atlases to the reference atlas space.
1. Volume to volume projection. If the reference atlas and the other

atlas were in different volumetric spaces, we used antsRegistra-
tion to register the other atlas template to the reference atlas
template.

2. Volume to surface projection. If the reference atlas was in
fsaverage6 surface space and the other atlas was in volumetric
space, we first projected the other atlas into MNI152 volumetric
space and then used an advanced nonlinear mapping
approach44 to project the other atlas from MNI152 to
fsaverage6 surface space. If the reference atlas was in fs_LR_32k
surface space45 and the other atlas was in volumetric space, we
first projected the other atlas into fsaverage6 surface space as
above and then projected it from fsaverage6 surface space to
fs_LR_32k surface space using the fsaverage-to-fs_LR registra-
tion provided by HCP (https://wiki.humanconnectome.org/
download/attachments/63078513/Resampling-FreeSurfer-HCP_
5_8.pdf).

3. Surface to volume projection. If the reference atlas was in volu-
metric space and the other atlas was in fsaverage6 surface space,
we first projected the other atlas to MNI152 space using an
advanced nonlinear mapping approach44 and then projected it
from MNI152 to the reference volumetric template using antsRe-
gistration. If the reference atlas was in volumetric space and the
other atlas was in fs_LR_32k surface space, we first projected the
other atlas to fsaverage6 surface space as above and then pro-
jected it from fsaverage6 to fs_LR_32k using the fsaverage-to-fs_LR
registration provided by HCP.

4. Surface to surface projection. If the reference atlas was in
fsaverage6 surface space and the other atlas was in fs_LR_32k
surface space, we projected the other atlas to fsaverage6 surface
space using the fs_LR-to-fsaverage registration provided by HCP.
If the reference atlas was in fs_LR_32k surface space and the other
atlaswas in fsaverage6 surface space, we projected the other atlas
to fs_LR_32k surface space using the fsaverage-to- fs_LR registra-
tion provided by HCP.

HCP and UKBiobank data examples
HCP and UKB group ICA spatial maps were thresholded by fitting a
spatial mixture model to the histogram of intensity values in each
independent component spatial map. Mixture modeling explicitly
models the null (background noise) and signal (“activated” or “deac-
tivated”) parts of the spatial map. A threshold value of 0.6 was set to
give slightly more importance to identifying signal over noise. In
practice, the resulting thresholded spatial maps are robust to small
deviations (e.g., threshold value = 0.5, which places equal importance
on labeling a voxel as signal vs noise, and higher result in spatial maps
that are very similar).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All neuroimaging data included in this study are available from the
Human Connectome: https://www.humanconnectome.org/study/hcp-

young-adult and the UK Biobank: https://www.ukbiobank.ac.uk/. Pro-
ject source data are provided in Supplementary Tables.

Code availability
The Network Correspondence Toolbox is a Python toolbox that is
available at the GitHub repository: https://github.com/rubykong/
cbig_network_correspondence. The toolbox has been released to
the Python Package Index (PyPI): https://pypi.org/project/
cbig-network-correspondence. Detailed documentation and a
tutorial are available at https://rubykong.github.io/cbig_network_
correspondence.
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