001041223 001__ 1041223
001041223 005__ 20250912110157.0
001041223 0247_ $$2doi$$a10.1039/D5CP00646E
001041223 0247_ $$2ISSN$$a1463-9076
001041223 0247_ $$2ISSN$$a1463-9084
001041223 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02171
001041223 0247_ $$2pmid$$a40151984
001041223 0247_ $$2WOS$$aWOS:001454550800001
001041223 037__ $$aFZJ-2025-02171
001041223 041__ $$aEnglish
001041223 082__ $$a540
001041223 1001_ $$0P:(DE-Juel1)191435$$aJanotta, Benjamin$$b0
001041223 245__ $$aFitting ambiguities mask deficiencies of the Debye–Hückel theory: revealing inconsistencies of the Poisson–Boltzmann framework and permittivity
001041223 260__ $$aCambridge$$bRSC Publ.$$c2025
001041223 3367_ $$2DRIVER$$aarticle
001041223 3367_ $$2DataCite$$aOutput Types/Journal article
001041223 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1755084600_13688
001041223 3367_ $$2BibTeX$$aARTICLE
001041223 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041223 3367_ $$00$$2EndNote$$aJournal Article
001041223 520__ $$aThe more than 100-year-old Debye–Hückel theory displays the most widely used approach for modeling ionic activities in electrolytes. The Debye–Hückel theory finds widespread application, such as in equations of state and Onsager's theory for conductivities. Here, a theoretical inconsistency of the Debye–Hückel theory is discussed, which originates from the employed Poisson–Boltzmann framework that violates the statistical independence of states presumed for the Boltzmann statistics. Furthermore, the static permittivity of electrolytic solutions is discussed as not directly measurable, while common methods for its extraction from experimental data are assessed as erroneous. A sensitivity analysis of modeled activity coefficients with respect to the permittivity and ionic radii as input parameters is conducted, showing that their influences overshadow physicochemical differences of common variations of Debye–Hückel models. Eventually, this study points out that the justification of the traditional and still often used Debye–Hückel models by experimental validation is affected by fitting ambiguities that eventually impede its predictive capabilities.
001041223 536__ $$0G:(DE-HGF)POF4-1231$$a1231 - Electrochemistry for Hydrogen (POF4-123)$$cPOF4-123$$fPOF IV$$x0
001041223 536__ $$0G:(DE-Juel1)BMBF-03SF0650A$$aPRELUDE - Verbundvorhaben PRELUDE: Prozess- und Meerwasser-Elektrolyse für eine umweltverträgliche Grüne Wasserstoffwirtschaft in Deutschland (BMBF-03SF0650A)$$cBMBF-03SF0650A$$x1
001041223 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
001041223 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001041223 7001_ $$0P:(DE-Juel1)179453$$aSchalenbach, Maximilian$$b1
001041223 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b2
001041223 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b3
001041223 773__ $$0PERI:(DE-600)1476244-4$$a10.1039/D5CP00646E$$n15$$p7703 - 7715$$tPhysical chemistry, chemical physics$$v27$$x1463-9076$$y2025
001041223 8564_ $$uhttps://juser.fz-juelich.de/record/1041223/files/d5cp00646e.pdf$$yOpenAccess
001041223 8767_ $$d2025-04-30$$eHybrid-OA$$jPublish and Read
001041223 909CO $$ooai:juser.fz-juelich.de:1041223$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
001041223 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001041223 915pc $$0PC:(DE-HGF)0110$$2APC$$aTIB: Royal Society of Chemistry 2021
001041223 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
001041223 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-09
001041223 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-09
001041223 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-09
001041223 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-09
001041223 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-09
001041223 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2024-12-09
001041223 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041223 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS CHEM CHEM PHYS : 2022$$d2024-12-09
001041223 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2024-12-09$$wger
001041223 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-09
001041223 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-09
001041223 9141_ $$y2025
001041223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)191435$$aForschungszentrum Jülich$$b0$$kFZJ
001041223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179453$$aForschungszentrum Jülich$$b1$$kFZJ
001041223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b2$$kFZJ
001041223 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b3$$kFZJ
001041223 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1231$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
001041223 920__ $$lno
001041223 9201_ $$0I:(DE-Juel1)IET-1-20110218$$kIET-1$$lGrundlagen der Elektrochemie$$x0
001041223 980__ $$ajournal
001041223 980__ $$aVDB
001041223 980__ $$aUNRESTRICTED
001041223 980__ $$aI:(DE-Juel1)IET-1-20110218
001041223 980__ $$aAPC
001041223 9801_ $$aAPC
001041223 9801_ $$aFullTexts