001     1041223
005     20250912110157.0
024 7 _ |2 doi
|a 10.1039/D5CP00646E
024 7 _ |2 ISSN
|a 1463-9076
024 7 _ |2 ISSN
|a 1463-9084
024 7 _ |2 datacite_doi
|a 10.34734/FZJ-2025-02171
024 7 _ |a 40151984
|2 pmid
024 7 _ |a WOS:001454550800001
|2 WOS
037 _ _ |a FZJ-2025-02171
041 _ _ |a English
082 _ _ |a 540
100 1 _ |0 P:(DE-Juel1)191435
|a Janotta, Benjamin
|b 0
245 _ _ |a Fitting ambiguities mask deficiencies of the Debye–Hückel theory: revealing inconsistencies of the Poisson–Boltzmann framework and permittivity
260 _ _ |a Cambridge
|b RSC Publ.
|c 2025
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1755084600_13688
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a The more than 100-year-old Debye–Hückel theory displays the most widely used approach for modeling ionic activities in electrolytes. The Debye–Hückel theory finds widespread application, such as in equations of state and Onsager's theory for conductivities. Here, a theoretical inconsistency of the Debye–Hückel theory is discussed, which originates from the employed Poisson–Boltzmann framework that violates the statistical independence of states presumed for the Boltzmann statistics. Furthermore, the static permittivity of electrolytic solutions is discussed as not directly measurable, while common methods for its extraction from experimental data are assessed as erroneous. A sensitivity analysis of modeled activity coefficients with respect to the permittivity and ionic radii as input parameters is conducted, showing that their influences overshadow physicochemical differences of common variations of Debye–Hückel models. Eventually, this study points out that the justification of the traditional and still often used Debye–Hückel models by experimental validation is affected by fitting ambiguities that eventually impede its predictive capabilities.
536 _ _ |0 G:(DE-HGF)POF4-1231
|a 1231 - Electrochemistry for Hydrogen (POF4-123)
|c POF4-123
|f POF IV
|x 0
536 _ _ |0 G:(DE-Juel1)BMBF-03SF0650A
|a PRELUDE - Verbundvorhaben PRELUDE: Prozess- und Meerwasser-Elektrolyse für eine umweltverträgliche Grüne Wasserstoffwirtschaft in Deutschland (BMBF-03SF0650A)
|c BMBF-03SF0650A
|x 1
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
|c HITEC-20170406
|x 2
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |0 P:(DE-Juel1)179453
|a Schalenbach, Maximilian
|b 1
700 1 _ |0 P:(DE-Juel1)161208
|a Tempel, Hermann
|b 2
700 1 _ |0 P:(DE-Juel1)156123
|a Eichel, Rüdiger-A.
|b 3
773 _ _ |0 PERI:(DE-600)1476244-4
|a 10.1039/D5CP00646E
|n 15
|p 7703 - 7715
|t Physical chemistry, chemical physics
|v 27
|x 1463-9076
|y 2025
856 4 _ |u https://juser.fz-juelich.de/record/1041223/files/d5cp00646e.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041223
|p openaire
|p open_access
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)191435
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)179453
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161208
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)156123
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF4-123
|1 G:(DE-HGF)POF4-120
|2 G:(DE-HGF)POF4-100
|3 G:(DE-HGF)POF4
|4 G:(DE-HGF)POF
|9 G:(DE-HGF)POF4-1231
|a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|v Chemische Energieträger
|x 0
914 1 _ |y 2025
915 p c |0 PC:(DE-HGF)0000
|2 APC
|a APC keys set
915 p c |0 PC:(DE-HGF)0110
|2 APC
|a TIB: Royal Society of Chemistry 2021
915 _ _ |0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
|a Creative Commons Attribution CC BY 3.0
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
|d 2024-12-09
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
|d 2024-12-09
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-09
915 _ _ |0 StatID:(DE-HGF)0113
|2 StatID
|a WoS
|b Science Citation Index Expanded
|d 2024-12-09
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
|d 2024-12-09
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
|d 2024-12-09
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b PHYS CHEM CHEM PHYS : 2022
|d 2024-12-09
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
|d 2024-12-09
|w ger
915 _ _ |0 StatID:(DE-HGF)0160
|2 StatID
|a DBCoverage
|b Essential Science Indicators
|d 2024-12-09
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Clarivate Analytics Master Journal List
|d 2024-12-09
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IET-1-20110218
|k IET-1
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IET-1-20110218
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21