001041226 001__ 1041226
001041226 005__ 20251129202116.0
001041226 0247_ $$2doi$$a10.48550/ARXIV.2403.00601
001041226 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02173
001041226 037__ $$aFZJ-2025-02173
001041226 1001_ $$0P:(DE-Juel1)190433$$aPazhedath, Akshay Menon$$b0
001041226 245__ $$aLarge spin shuttling oscillations enabling high-fidelity single qubit gates
001041226 260__ $$barXiv$$c2024
001041226 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1764419279_31683
001041226 3367_ $$2ORCID$$aWORKING_PAPER
001041226 3367_ $$028$$2EndNote$$aElectronic Article
001041226 3367_ $$2DRIVER$$apreprint
001041226 3367_ $$2BibTeX$$aARTICLE
001041226 3367_ $$2DataCite$$aOutput Types/Working Paper
001041226 520__ $$aSemiconductor quantum dots have shown impressive breakthroughs in the last years, with single and two qubit gate fidelities matching other leading platforms and scalability still remaining a relative strength. However, due to qubit wiring considerations, mobile electron architectures have been proposed to facilitate upward scaling. In this work, we examine and demonstrate the possibility of significantly outperforming static EDSR-type single-qubit pulsing by taking advantage of the larger spatial mobility to achieve larger Rabi frequencies and reduce the effect of charge noise. Our theoretical results indicate that fidelities are ultimately bottlenecked by spin-valley physics, which can be suppressed through the use of quantum optimal control, and we demonstrate that, across different potential regimes and competing physical models, shuttling based single-qubit gates retain significant advantage over existing alternatives.
001041226 536__ $$0G:(DE-HGF)POF4-5221$$a5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)$$cPOF4-522$$fPOF IV$$x0
001041226 536__ $$0G:(BMBF)390534769$$aEXC 2004: Matter and Light for Quantum Computing (ML4Q) (390534769)$$c390534769$$x1
001041226 588__ $$aDataset connected to DataCite
001041226 650_7 $$2Other$$aQuantum Physics (quant-ph)
001041226 650_7 $$2Other$$aMesoscale and Nanoscale Physics (cond-mat.mes-hall)
001041226 650_7 $$2Other$$aFOS: Physical sciences
001041226 7001_ $$0P:(DE-Juel1)185965$$aDavid, Alessandro$$b1
001041226 7001_ $$0P:(DE-HGF)0$$aOberländer, Max$$b2
001041226 7001_ $$aMüller, Matthias M.$$b3
001041226 7001_ $$0P:(DE-Juel1)176280$$aCalarco, Tommaso$$b4
001041226 7001_ $$0P:(DE-Juel1)172019$$aBluhm, Hendrik$$b5
001041226 7001_ $$0P:(DE-Juel1)179158$$aMotzoi, Felix$$b6
001041226 773__ $$a10.48550/ARXIV.2403.00601
001041226 8564_ $$uhttps://arxiv.org/abs/2403.00601
001041226 8564_ $$uhttps://juser.fz-juelich.de/record/1041226/files/2403.00601v1_preprint-Large%20spin%20shuttling%20oscillations%20enabling%20high-fidelity%20single%20qubit%20gates.pdf$$yOpenAccess
001041226 909CO $$ooai:juser.fz-juelich.de:1041226$$popenaire$$popen_access$$pVDB$$pdriver$$pdnbdelivery
001041226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190433$$aForschungszentrum Jülich$$b0$$kFZJ
001041226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185965$$aForschungszentrum Jülich$$b1$$kFZJ
001041226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176280$$aForschungszentrum Jülich$$b4$$kFZJ
001041226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172019$$aForschungszentrum Jülich$$b5$$kFZJ
001041226 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179158$$aForschungszentrum Jülich$$b6$$kFZJ
001041226 9131_ $$0G:(DE-HGF)POF4-522$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5221$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Computing$$x0
001041226 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041226 920__ $$lyes
001041226 9201_ $$0I:(DE-Juel1)PGI-8-20190808$$kPGI-8$$lQuantum Control$$x0
001041226 9201_ $$0I:(DE-Juel1)PGI-11-20170113$$kPGI-11$$lJARA Institut Quanteninformation$$x1
001041226 980__ $$apreprint
001041226 980__ $$aVDB
001041226 980__ $$aUNRESTRICTED
001041226 980__ $$aI:(DE-Juel1)PGI-8-20190808
001041226 980__ $$aI:(DE-Juel1)PGI-11-20170113
001041226 9801_ $$aFullTexts