001     1041226
005     20251129202116.0
024 7 _ |a 10.48550/ARXIV.2403.00601
|2 doi
024 7 _ |a 10.34734/FZJ-2025-02173
|2 datacite_doi
037 _ _ |a FZJ-2025-02173
100 1 _ |a Pazhedath, Akshay Menon
|0 P:(DE-Juel1)190433
|b 0
245 _ _ |a Large spin shuttling oscillations enabling high-fidelity single qubit gates
260 _ _ |c 2024
|b arXiv
336 7 _ |a Preprint
|b preprint
|m preprint
|0 PUB:(DE-HGF)25
|s 1764419279_31683
|2 PUB:(DE-HGF)
336 7 _ |a WORKING_PAPER
|2 ORCID
336 7 _ |a Electronic Article
|0 28
|2 EndNote
336 7 _ |a preprint
|2 DRIVER
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a Output Types/Working Paper
|2 DataCite
520 _ _ |a Semiconductor quantum dots have shown impressive breakthroughs in the last years, with single and two qubit gate fidelities matching other leading platforms and scalability still remaining a relative strength. However, due to qubit wiring considerations, mobile electron architectures have been proposed to facilitate upward scaling. In this work, we examine and demonstrate the possibility of significantly outperforming static EDSR-type single-qubit pulsing by taking advantage of the larger spatial mobility to achieve larger Rabi frequencies and reduce the effect of charge noise. Our theoretical results indicate that fidelities are ultimately bottlenecked by spin-valley physics, which can be suppressed through the use of quantum optimal control, and we demonstrate that, across different potential regimes and competing physical models, shuttling based single-qubit gates retain significant advantage over existing alternatives.
536 _ _ |a 5221 - Advanced Solid-State Qubits and Qubit Systems (POF4-522)
|0 G:(DE-HGF)POF4-5221
|c POF4-522
|f POF IV
|x 0
536 _ _ |a EXC 2004:  Matter and Light for Quantum Computing (ML4Q) (390534769)
|0 G:(BMBF)390534769
|c 390534769
|x 1
588 _ _ |a Dataset connected to DataCite
650 _ 7 |a Quantum Physics (quant-ph)
|2 Other
650 _ 7 |a Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
|2 Other
650 _ 7 |a FOS: Physical sciences
|2 Other
700 1 _ |a David, Alessandro
|0 P:(DE-Juel1)185965
|b 1
700 1 _ |a Oberländer, Max
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Müller, Matthias M.
|b 3
700 1 _ |a Calarco, Tommaso
|0 P:(DE-Juel1)176280
|b 4
700 1 _ |a Bluhm, Hendrik
|0 P:(DE-Juel1)172019
|b 5
700 1 _ |a Motzoi, Felix
|0 P:(DE-Juel1)179158
|b 6
773 _ _ |a 10.48550/ARXIV.2403.00601
856 4 _ |u https://arxiv.org/abs/2403.00601
856 4 _ |u https://juser.fz-juelich.de/record/1041226/files/2403.00601v1_preprint-Large%20spin%20shuttling%20oscillations%20enabling%20high-fidelity%20single%20qubit%20gates.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041226
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)190433
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)185965
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)176280
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)172019
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)179158
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-522
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Quantum Computing
|9 G:(DE-HGF)POF4-5221
|x 0
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-8-20190808
|k PGI-8
|l Quantum Control
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-11-20170113
|k PGI-11
|l JARA Institut Quanteninformation
|x 1
980 _ _ |a preprint
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-8-20190808
980 _ _ |a I:(DE-Juel1)PGI-11-20170113
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21