% IMPORTANT: The following is UTF-8 encoded.  This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.

@INPROCEEDINGS{Schutzeichel:1041227,
      author       = {Schutzeichel, Lars and Bauer, Jan and Bouss, Peter and
                      Musall, Simon and Dahmen, David and Helias, Moritz},
      title        = {{T}ransient {R}ecurrent {D}ynamics {S}hape
                      {R}epresentations in {M}ice},
      reportid     = {FZJ-2025-02174},
      year         = {2025},
      abstract     = {Different stimuli evoke transient neural responses, but how
                      is stimulus information represented and reshaped by local
                      recurrent circuits? We address this question using
                      Neuropixels recordings from awake mice and recurrent network
                      models, inferring stimulus classes (e.g., visual or tactile)
                      from activity. A two-replica mean-field theory reduces
                      complex network dynamics to three key quantities: the mean
                      population activity ($R$) and overlaps ($Q^{=}$,
                      $Q^{\neq}$), reflecting response variability within and
                      across stimulus classes. The theory predicts the time
                      evolution of $R$, $Q^{=}$, and $Q^{\neq}$. Validated in
                      experiments, it reveals how inhibitory balancing governs the
                      dynamics of $R$, while chaotic dynamics shape overlaps,
                      providing insights into the mechanisms underlying transient
                      stimulus separation. The analysis of mutual information of
                      an optimally trained population activity readout reveals
                      that sparse coding (small $R$) allows the optimal
                      information representation of multiple stimuli.},
      month         = {Mar},
      date          = {2025-03-17},
      organization  = {DPG spring meeting, Regensburg
                       (Germany), 17 Mar 2025 - 21 Mar 2025},
      subtyp        = {After Call},
      cin          = {IAS-6 / IBI-3},
      cid          = {I:(DE-Juel1)IAS-6-20130828 / I:(DE-Juel1)IBI-3-20200312},
      pnm          = {5231 - Neuroscientific Foundations (POF4-523) / 5232 -
                      Computational Principles (POF4-523) / GRK 2416 - GRK 2416:
                      MultiSenses-MultiScales: Neue Ansätze zur Aufklärung
                      neuronaler multisensorischer Integration (368482240) / DFG
                      project G:(GEPRIS)533396241 - Evolutionäre Optimierung
                      neuronaler Netzwerkdynamik auf eine empfängerspezifische
                      interareale Kommunikation (533396241)},
      pid          = {G:(DE-HGF)POF4-5231 / G:(DE-HGF)POF4-5232 /
                      G:(GEPRIS)368482240 / G:(GEPRIS)533396241},
      typ          = {PUB:(DE-HGF)6},
      url          = {https://juser.fz-juelich.de/record/1041227},
}