% IMPORTANT: The following is UTF-8 encoded. This means that in the presence
% of non-ASCII characters, it will not work with BibTeX 0.99 or older.
% Instead, you should use an up-to-date BibTeX implementation like “bibtex8” or
% “biber”.
@INPROCEEDINGS{Schutzeichel:1041227,
author = {Schutzeichel, Lars and Bauer, Jan and Bouss, Peter and
Musall, Simon and Dahmen, David and Helias, Moritz},
title = {{T}ransient {R}ecurrent {D}ynamics {S}hape
{R}epresentations in {M}ice},
reportid = {FZJ-2025-02174},
year = {2025},
abstract = {Different stimuli evoke transient neural responses, but how
is stimulus information represented and reshaped by local
recurrent circuits? We address this question using
Neuropixels recordings from awake mice and recurrent network
models, inferring stimulus classes (e.g., visual or tactile)
from activity. A two-replica mean-field theory reduces
complex network dynamics to three key quantities: the mean
population activity ($R$) and overlaps ($Q^{=}$,
$Q^{\neq}$), reflecting response variability within and
across stimulus classes. The theory predicts the time
evolution of $R$, $Q^{=}$, and $Q^{\neq}$. Validated in
experiments, it reveals how inhibitory balancing governs the
dynamics of $R$, while chaotic dynamics shape overlaps,
providing insights into the mechanisms underlying transient
stimulus separation. The analysis of mutual information of
an optimally trained population activity readout reveals
that sparse coding (small $R$) allows the optimal
information representation of multiple stimuli.},
month = {Mar},
date = {2025-03-17},
organization = {DPG spring meeting, Regensburg
(Germany), 17 Mar 2025 - 21 Mar 2025},
subtyp = {After Call},
cin = {IAS-6 / IBI-3},
cid = {I:(DE-Juel1)IAS-6-20130828 / I:(DE-Juel1)IBI-3-20200312},
pnm = {5231 - Neuroscientific Foundations (POF4-523) / 5232 -
Computational Principles (POF4-523) / GRK 2416 - GRK 2416:
MultiSenses-MultiScales: Neue Ansätze zur Aufklärung
neuronaler multisensorischer Integration (368482240) / DFG
project G:(GEPRIS)533396241 - Evolutionäre Optimierung
neuronaler Netzwerkdynamik auf eine empfängerspezifische
interareale Kommunikation (533396241)},
pid = {G:(DE-HGF)POF4-5231 / G:(DE-HGF)POF4-5232 /
G:(GEPRIS)368482240 / G:(GEPRIS)533396241},
typ = {PUB:(DE-HGF)6},
url = {https://juser.fz-juelich.de/record/1041227},
}