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Abstract

The mammalian brain is comprised of anatomically and functionally distinct regions. Substantial
work over the past century has pursued the generation of ever-more accurate maps of regional
boundaries, using either expert judgement or data-driven clustering of functional, connectional,
and/or architectonic properties. However, these approaches are often purely descriptive, have
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limited generalizability, and do not elucidate the underlying generative mechanisms that shape the
regional organization of the brain. Here, we develop a novel approach that leverages a simple,
hierarchical principle for generating a multiscale parcellation of any brain structure in any
mammalian species using only its geometry. We show that this approach yields regions at any
resolution scale that are more homogeneous than those defined in nearly all existing benchmark
brain parcellations in use today across hundreds of anatomical, functional, cellular, and molecular
brain properties measured in humans, macaques, marmosets, and mice. We additionally show how
our method can be generalized to previously unstudied mammalian species for which no
parcellations exist. Finally, we demonstrate how our approach captures the essence of a simple,
hierarchical reaction-diffusion mechanism, in which the geometry of a brain structure shapes the
spatial expression of putative patterning molecules linked to the formation of distinct regions
through development. Our findings point to a highly conserved and universal influence of
geometry on the regional organization of the mammalian brain.

Introduction

Over 100 years ago, Brodmann famously used variations in cytoarchitecture to subdivide (or
parcellate) the human cerebral cortex into 43 discrete regions', which he considered to be “specific
morphological organs” (p. 251), each representing an “exclusive individual function that is
different from those of other organs” (pp. 251-252). His proposal—that the brain is composed of
anatomically and functionally specialized subregions—has fundamentally influenced a century of
subsequent research?®?, such that the prevailing orthodoxy in contemporary neuroscience is that
coordinated behaviour arises from interactions between these discrete, specialized areas*>.

Despite the popularity of this paradigm, accurate and reliable delineation of regional boundaries
has been challenging. Different anatomists have proposed their own cytoarchitectonic
parcellations that differ both in the number of areas defined and the anatomical locations of their
boundaries®. This variability has led some to question the validity, reliability, and utility of discrete
cytoarchitectonic borders, particularly outside sharply delimited primary sensorimotor cortices’ .
More recent work has leveraged advances in non-invasive techniques, such as magnetic resonance
imaging (MRI), to statistically cluster brain locations according to similarities in microstructural,
anatomical, connectivity, and functional profiles!®!3. This work has culminated in a recent
flagship study by the Human Connectome Project (HCP)!# that synthesized multimodal measures
to define 180 discrete regions per cortical hemisphere>—a >4-fold increase in the number of
regions originally defined by Brodmann.

This body of research has been foundational to our understanding of regional specialization in the
brain, but it is limited in several key respects. First, all existing parcellations assume that discrete
regions are separated by sharp transitions in brain structure and/or function, but many anatomists’,
including Brodmann himself', have observed that many areas of the primate cortex show more
graded architectonic transitions (see also refs.!>~!7). Second, the regional borders defined according
to different properties (e.g., cytoarchitecture, myeloarchitecture, chemoarchitecture, brain
function) do not always coincide®!8, raising questions about which specific property should be
prioritized. Third, the functional boundaries of many putative regions defined at any given scale
can be malleable, shifting over time in accordance with changing cognitive demands'®~2!. Fourth,
most parcellations are defined at a single spatial resolution when, in fact, the brain shows a non-
trivial anatomical and functional organization that spans multiple resolution scales??~%*, including
those that are supra-regional (e.g., broad cortical “types” of laminar differentiation®>*° and
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83 distributed, large-scale networks’*3?) and infra-regional (e.g., columns and hypercolumns??).
84 Accordingly, multiple, spatially overlapping modes of structural and functional organization are
85 evident even within regions with well-defined borders, such as V134, or those with clear subnuclear
86 structure such as the thalamus®. Finally, nearly all existing approaches to brain parcellation are
87 purely descriptive, identifying boundaries between regions according to expert or statistical
88 clustering of patterns in data without any links to an underlying generative mechanism (for
89 exceptions, see refs*3%). Such approaches rely on complex data pipelines that are heavily
90 influenced by investigator choices!’, complicating attempts to inter-relate and replicate findings
91 across different contexts. Together, these considerations suggest that many traditional approaches
92 do not yield brain parcellations that generalize across different contexts, resolutions, individuals,
93 brain structures, and species.
94 Here, we address these limitations by developing a simple, hierarchical, and geometric approach
95 for regional parcellation that captures the essence of key physical constraints on physiological
96 processes that shape the regional organization of the brain. Rather than trying to cluster different
97 brain features into a statistically optimal solution, our approach only requires a model of the
98 geometry of a brain structure as input and can be used as a unified parcellation method for any
99 structure in any species and at any resolution scale. The method provides a direct mapping between
100 discrete and more graded accounts of brain architecture, whilst also offering an intrinsically
101 multiscale description of regional organization. We show that this simple method yields regions
102 with more homogeneous anatomical, functional, cellular, and molecular properties than nearly all
103 existing benchmark parcellations in use today. We then show how our approach aligns naturally
104 with a classical reaction-diffusion mechanism of patterning substances that play an important, and
105 perhaps minimally sufficient role, in shaping the initial blueprint of regional organization in the
106 brain.
107
108 A hierarchical, geometric approach for brain parcellation
109 Early regionalization of brain structures is shaped by morphogens, which are secreted from
110 specific patterning centers and diffuse through the developing cortical primordium along spatially
111 continuous gradients**!. For instance, in the midbrain and hindbrain, highly conserved gradients
112 of Hox genes are sufficient to sharply delineate distinct expression domains, called prosomeres,
113 that give rise to subdivisions of the diencephalon and secondary prosencephalon*?. In the cortex,
114 morphogens, such as fibroblast growth factor 8 (FGF8), Wnt, and Sonic Hedgehog (Shh), trigger
115 the subsequent expression of distinct transcription factors (e.g., Pax6, Emx2, CouptfI) that further
116 drive areal specification**°. The superposition of these expression gradients spatially organizes
117 neurogenic and other developmental dynamics, creating a rudimentary blueprint of areal identity
118 that is gradually refined by thalamic innervation and activity-dependent mechanisms*3-59-54,
119 The expression gradients formed by morphogens and other patterning factors predominantly align
120 with the rostrocaudal, dorsoventral, and mediolateral axes of the developing telencephalon%->1-33-
121 37, As such, they correspond to the cardinal axes of geometric variation in brain structure, which
122 are formally described by the low-order geometric eigenmodes of the cortex derived from a
123 mathematical decomposition of cortical geometry that is comparable to Fourier decomposition®->°
124 (see details below). The equivalence between the expression gradients and geometric eigenmodes
125 arises because the geometry of a medium shapes the spatial patterns that arise from the diffusion
126 and interactions of any molecules within it, as dictated by Turing’s classical reaction-diffusion
127 equations*!-%*. The low-order eigenmodes are the least physically stable in generic reaction-
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128 diffusion systems and are therefore the first patterns to be expressed®!. The preponderance of such
129 patterns in early expression gradients of the developing brain! thus arises from the physical
130 constraints that geometry imposes on molecular dynamics.

131 We leverage this constraining effect of geometry to devise a simple algorithm for regional
132 parcellation. The algorithm captures the essential features of a hypothesized set of reaction-
133 diffusion processes that shape the regional organization of the brain, without having to specify the
134 full set of biophysical details of the molecular interactions involved. We begin by describing the
135 application of our algorithm to the left hemisphere of the human neocortex, the surface geometry
136 of which is approximated by a triangular mesh (with 32,492 vertices) derived from a population-
137 average template extracted from T1-weighted (T1w) MRI (Fig. 1A, top left). First, we calculate
138 the surface’s geometric eigenmodes by solving the Helmholtz equation,

139 Y = =Ny, (D
140 where 4 is the Laplace-Beltrami operator (LBO), which accounts for the spatial relationships
141 between vertices on the surface mesh (see ‘Derivation of geometric eigenmodes’ in Methods), and
142 Y = {Yq1,9¥,, ...} is the family of geometric eigenmodes with corresponding eigenvalues, 4 =
143 {41,145, ... }. The eigenvalues are ordered sequentially and correspond to the effective spatial
144 wavelength of each eigenmode, with A; = 0 being the smallest eigenvalue and 1, the
145 corresponding eigenmode with the longest spatial wavelength (i.e., a spatially uniform or constant
146 eigenmode).

147 The nodal lines of the eigenmodes (i.e., points with zero magnitude) partition the cortex into
148 positive and negative domains of approximately equal sizes. We use the first non-constant
149 eigenmode 1, with eigenvalue A, to partition the cortex into two subregions along the major
150 rostrocaudal axis (Fig. 1A, top middle and right), as an initial approximation of regional boundaries
151 at the coarsest resolution scale. This eigenmode defines the dominant axis of shape variation and
152 it is the least physically stable, meaning that it will be the first spatial pattern expressed in a
153 reaction-diffusion process®!. This physical property aligns with experimental evidence that most
154 patterning molecules identified to date are expressed along rostrocaudal gradients’!.

155 After the initial partition of the cortex along the nodal line of ¥, (Fig. 1A, top), we repeat the
156 process successively on each new subregion over multiple iterations to generate a parcellation of
157 any arbitrary scale (Fig. 1A, bottom). This hierarchical bipartition naturally yields parcellations
158 with 2V parcels, where N is the number of iterations (Fig. 1B). To derive a parcellation comprising
159 any arbitrary number of regions (from 1 to 2V), we rely on a heuristic that uses the eigenvalues of
160 the resulting sub-regional eigenmodes to prioritize sub-divisions with the smallest eigenvalues (see
161 Supplementary Figs 1A—B and ‘Hierarchical partitioning’ in Methods). This iterative procedure,
162 based on recursive bipartition, mimics the developmental processes that shape numerous
163 hierarchically organized, multiscale biological systems, such as limbs and digits, bronchial trees,
164 vascular networks, and segmented body plans, in which tissue elements emerge through the
165 successive branching or division of previous ones®?¢2-%6, Such a process has also been implicated
166 in brain development and evolution; for instance, the neural tube divides into the spinal cord and
167 cerebral vesicles (hindbrain, midbrain, and forebrain), the vesicles into neuromeres, and the
168 neuromeres into smaller sub-fields across several resolution scales®”-%%, Critically, tissue geometry
169 constrains the precise way in which these bipartitions occur®.

170 Our simple algorithm rests on the assumption that geometric constraints and recursive bipartition
171 capture the essential features of the complex cascade of developmental processes that shape the
172 regional organization of the brain. In the following sections, we show how our simplification of
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173 this process allows us to easily generalize our approach to any brain structure, resolution scale,
174 and species, given a model of brain geometry either derived from MRI or alternative methods (e.g.,
175 microscopy). We then show more directly how our algorithm captures the core elements of a
176 hierarchical reaction-diffusion process.
177
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179 Fig. 1. Hierarchical geometric parcellation of the human neocortex. (A) Schematic diagram of our iterative,
180 hierarchical approach. In the first iteration, we divide the cortex into two subregions according to the nodal line
181 of the first non-constant geometric eigenmode (white area, middle panel). In the second iteration, we repeat the
182 process, this time by taking the first non-constant eigenmode estimated separately for the two subregions defined
183 in the first iteration. This process is iterated several times to achieve a desired parcellation resolution, separately
184 for the left and right hemispheres. (B) Example multiscale geometric parcellations with 8, 16, 32, and 64 parcels
185 (from top to bottom). (C) 17 existing benchmark parcellations and corresponding geometric parcellations with
186 matched number of parcels. The number beside the parcellation’s name denotes the total number of parcels
187 across both hemispheres (e.g., Brodmann78 has 78 parcels in total across the left and right hemispheres). (D)
188 Regional homogeneity based on FC (Hgc) from the HCP, GSP, and Monash datasets. The numbers represent the
189 percentage difference between the geometric and existing parcellations, where positive/red indicates superior
190 performance for geometric parcellations. (E) Empirical and null Hgc of the counterpart geometric parcellations
191 in Fig. 1C based on 1000 randomized FCs. The blue diamonds correspond to the empirical Hgc and the black
192 dots correspond to the null data. Note that the scale of the x-axes is discontinuous (marked by the diagonal lines)
193 because of the difference in magnitude of the empirical and null data. Each geometric parcellation showed
194 significantly higher empirical Hg than the null data (two-sided p-value <0.001).
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195 Geometric parcellations yield functionally, cellularly, and molecularly homogeneous regions
196 We now investigate the degree to which our geometric parcellations accurately capture the
197 organizational properties of the human neocortex. This accuracy is most commonly determined by
198 the degree to which each region defines a homogeneous set of point-wise (i.e., vertex or voxel)
199 measures'>’"73 with homogeneity commonly defined in relation to inter-vertex functional
200 coupling (FC) (i.e., average within-region FC; see ‘Calculation of regional homogeneity’ in
201 Methods). We follow this approach and quantify parcel-level FC homogeneity, Hgc, as measured
202 with resting-state functional magnetic resonance imaging (fMRI), in three independent datasets
203 comprising a total of 2259 individuals [i.e., the Human Connectome Project (HCP)!; the
204 Genomics Superstructure Project (GSP)™; and a dataset acquired in-house at Monash University
205 (Monash)’*]. We benchmark Hp¢ with respect to 17 existing cortical parcellations that are widely
206 used in the field and that have been constructed in diverse ways, including through the use of
207 histological criteria (Histological), anatomical landmarks (Anatomical), multimodal imaging
208 (Multimodal), or data-driven clustering of resting-state FC (Functional); see Fig. 1C,
209 Supplementary Table 1, and ‘Benchmark brain parcellations’ in Methods. For each existing
210 parcellation, we generate a corresponding geometric parcellation with the same number of parcels
211 specific to the left and right hemispheres to ensure fair comparison.

212 Figure 1D shows that our method yields parcels with higher homogeneity than 15 of the 17
213 benchmark parcellations based on FC data from the HCP dataset and 16 of the 17 in the GSP and
214 Monash datasets (Fig. 1D). The Cammoun219 atlas shows higher Hp, than the geometric
215 parcellation only in the HCP dataset, but the difference is minimal (1.0%). The only benchmark
216 parcellation with consistently and notably higher Hg. is the Schaefer300 atlas, which relies on
217 extensive fMRI training data and a sophisticated clustering approach’® that is much more complex
218 than our method.

219 Figure 1C indicates that, at any given scale, the geometric parcellations resemble an approximately
220 uniform grid (Supplementary Figs 1B) with highly uniform parcels (Supplementary Figs 1C-D)
221 that are unlike the less regular regional borders seen in other parcellations. This grid-like structure
222 partly arises from the hierarchical partitioning of our procedure. It mirrors similar organizational
223 motifs observed in inter-regional axonal projections’’ and may be considered analogous to a
224 rectilinear map of areal organization that results from a superposition of continuous expression
225 gradients of key patterning molecules®!-33.

226 To ensure that the strong performance of our geometric approach is not merely driven by the
227 uniformity of its parcels, we conduct two analyses. First, we show that differences in Hg between
228 the geometric and existing parcellations are not associated with differences in the variance of
229 parcel sizes (Supplementary Fig. 2). Second, we generate an ensemble of null FC matrices via the
230 eigenstrapping method that randomizes fMRI data while preserving the spatial and temporal
231 autocorrelation inherent in the data’ (Supplementary Figs 3A-B; see ‘Null FC matrices’ in
232 Methods). We find that the empirical Hgc of the geometric parcellations (Fig. 1E), and their
233 performance relative to the existing benchmark parcellations (Supplementary Fig. 3C), are
234 significantly higher than corresponding values observed in the null Hgc ensembles (see
235 Supplementary Fig. 4 for replication with an alternative null model” described in Supplementary
236 Information S2.2). These results indicate that it is the specific orientation and placement of the
237 parcels of the geometric atlases, and not just low-level features such as the distribution of parcel
238 sizes or the grid-like boundaries, that confers high functional homogeneity.
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239 The grid-like structure of the geometric parcellations also arises in part from the use of a
240 population-averaged cortical surface template, which smooths fine-scale anatomical variations and
241 retains only coarse geometric features of the cortex. Applying our approach to individual cortical
242 geometries yields regional borders that are more clearly aligned with the sulcal and gyral anatomy
243 of individuals (Supplementary Fig. SA; Supplementary Information S3) and yields regions with
244 higher average Hgc than the template-based approach (Supplementary Fig. 5B) especially at coarse
245 resolutions. Moreover, we find that the high homogeneity of individual parcellations is specific to
246 an individual’s FC data (Supplementary Fig. 5C), further supporting the specificity of the
247 geometric effects captured by our approach. We nonetheless focus on template-based geometric
248 parcellations in subsequent analyses because most of the brain phenotypes that we investigate to
249 further validate our approach are not individual-specific (see also Supplementary Information S3).
250 Having established the high FC-based functional homogeneity of the geometric parcellations with
251 respect to three independent datasets, we next evaluate parcel-level homogeneity across 242
252 diverse non-FC cortical phenotypes or maps drawn from open-source repositories'+8%3! (Fig. 2A;
253 see ‘Brain phenotypes’ in Methods for details). These maps include 1 morphometry map (cortical
254 thickness); 3 microstructure maps (T1w:T2w ratio — an MRI metric that indirectly probes
255 intracortical myeloarchitecture®?, NDI — neurite density index, and ODI — orientation dispersion
256 index); 50 cytoarchitecture maps (layer-specific cell density); 5 metabolism maps derived from
257 positron emission tomography (PET) (CMRGIu — cerebral metabolic rate of glucose, CBV —
258 cerebral blood volume, CBF — cerebral blood flow, CMRO: — cerebral metabolic rate of oxygen,
259 and synaptic density); 1 gene expression map (first principal component of gene profiles); 19
260 chemoarchitecture maps (i.e., neurotransmitter receptor density maps derived from PET); 47 HCP
261 task-activation maps; and 116 meta-analytic task-activation maps from Neurosynth®!. For each
262 map, we estimate map-specific homogeneity, denoted Hp,,p, as the inverse of the variance of map
263 values across the vertices within a region (see ‘Calculation of regional homogeneity’ in Methods).
264 Comparing Hp,,, for different parcellations across such a diverse set of brain maps ensures that
265 our findings cannot be attributed to the idiosyncrasies of any specific imaging modality (e.g.,
266 fMRI) or brain property (e.g., FC).
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268 Fig. 2. Homogeneity of the geometric parcellations across diverse maps of the human neocortex. (A)
269 Examples from 242 non-FC brain maps derived from various modalities capturing distinct phenotypes, including
270 those related to morphometry, microstructure, cytoarchitecture, metabolism, gene expression,
271 chemoarchitecture, HCP task activation, and Neurosynth task activations. The number beside the phenotype’s
272 group name denotes the total number of available maps. For phenotypes with more than three maps, only three
273 representative maps are visually shown for brevity. (B) Percentage difference in the homogeneity of geometric
274 parcellations relative to existing parcellations. Each row shows the result for one parcellation and each column
275 shows the result for one brain map (including the three FC-based results in Fig. 1D), where red indicates superior
276 performance for geometric parcellations. (C) Binarized version of panel B, where gray indicates superior or
277 equivalent performance for geometric parcellations, with equivalence quantified as a difference threshold of
278 +1%. (D) Percentage of maps where the geometric parcellations have superior or equivalent performance relative
279 to the existing parcellations.
280
281 Figures 2B—C show that the geometric parcellations consistently demonstrate superior
282 performance, outperforming some existing parcellations in certain maps by more than 100%. More
283 specifically, we find that the geometric parcellations have higher or equivalent homogeneity for
284 >78% of the brain maps relative to 16 out of 17 benchmark parcellations (Fig. 2D; see
285 Supplementary Fig. 6A for other equivalence thresholds). The exception is again the Schaefer300
286 atlas, which shows higher homogeneity than its geometric counterpart across 79.2% of the maps,
287 highlighting the excellent generalizability of this FC-derived parcellation. However, the average
288 performance difference between Schaefer300 and the corresponding geometric parcellation is
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289 4.5% (min=1.0%, max=14.4%), which is small compared to, for example, the difference between
290 geometric and histological parcellations, where the former show an average homogeneity
291 advantage of 23.3% (min=1.0%, max=127%). These findings suggest that atlases derived from
292 gold-standard cytoarchitecture and other histological techniques define parcels that lack
293 generalizable homogeneity across multiple brain phenotypes.

294 Despite these comparisons, we emphasize that our goal here is not to identify a single ‘optimum’
295 parcellation for all applications, since the utility of an atlas will depend on the question under
296 investigation (e.g., see ref.®® for a systematic comparison of atlases). Instead, the strong
297 performance of our simple approach, which requires only a model of the geometry of the cortex
298 from a T1w anatomical scan, implies that it approximates the key features of a generative process
299 that shapes a rough blueprint of cortical regional organization. The final boundaries of cortical
300 areas may then be refined by experience-dependent and other processes, which may be somewhat
301 better captured by the sophisticated FC-based clustering algorithm used to define the Schaefer300
302 atlas. Our results nonetheless demonstrate how a simple process, influenced only by geometry, is
303 sufficient to delineate cortical regions with high functional, cellular, and molecular homogeneity.
304

305 Geometric constraints on cortical regionalization generalize to other mammals

306 We propose that the hierarchical geometric processes implicit in our parcellation method capture
307 the essence of a highly conserved mechanism for defining the multiscale regional organization of
308 the brain. We now test this conservation by investigating the generalizability of our approach to
309 the neocortices of other non-human species; specifically, the macaque, marmoset, and mouse. For
310 the macaque and marmoset, we apply the same algorithm used in Fig. 1A to a triangular mesh
311 representation of their population-averaged cortical surfaces (10,242 vertices for each hemisphere
312 of the macaque; 37,974 and 38,094 for the left and right hemispheres of the marmoset,
313 respectively). For the mouse, we apply the algorithm to its neocortex in three-dimensional (3D)
314 volumetric space (200 um isotropic voxel resolution; see ‘Derivation of geometric eigenmodes’ in
315 Methods) because existing atlases of the mouse brain are only available in volumetric space.

316 We benchmark the performance of our geometric approach against 15 existing parcellations
317 derived from histological and multimodal data (Fig. 3A; Supplementary Table 1) and 114 different
318 cortical phenotypes available across the three species (10, 4, and 1 parcellations and 20, 5, and 89
319 phenotypes for the macaque, marmoset, and mouse, respectively). The phenotypes are related to
320 resting-state FC (measured using fMRI and calcium imaging), morphometry, microstructure,
321 chemoarchitecture, cytoarchitecture, and gene expression (see ‘Benchmark brain parcellations’
322 and ‘Brain phenotypes’ in Methods for details). Once again, our use of both in vivo and ex vivo
323 data spanning functional, cellular, and molecular properties across all the three species ensures
324 that our findings cannot be attributed to the specific details of any specific measurement modality
325 or brain property.
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327 Fig. 3. Geometric parcellations of the macaque, marmoset, and mouse neocortex. (A) Existing benchmark
328 parcellations and corresponding geometric parcellations with matched number of parcels. The number beside
329 the parcellation’s name denotes the total number of parcels across both hemispheres. (B) Percentage difference
330 in the homogeneity of geometric parcellations relative to existing parcellations. Each row shows the result for
331 one parcellation and each column shows the result for one brain map, where red indicates superior performance
332 for geometric parcellations. (C) Binarized version of panel B, where gray indicates superior or equivalent
333 performance for geometric parcellations, with equivalence quantified as a difference threshold of +1%. For
334 panels B and C, the number beside the phenotype’s group name denotes the total number of available maps. (D)
335 Percentage of maps where the geometric parcellations have superior or equivalent performance relative to the
336 existing parcellations.
337
338 Figures 3B—C show that our geometric parcellations again consistently demonstrate superior
339 performance relative to existing parcellations. Specifically, we find that the geometric
340 parcellations have higher or equivalent homogeneity for >65%, 100%, and 94.4% of the brain
341 phenotypes in the macaque, marmoset, and mouse, respectively (Fig. 3D; see Supplementary Figs
342 6B-D for other equivalence thresholds). In the macaque, the only instances in which our geometric
343 parcellation show lower homogeneity are relative to BoninBailey52, Brodmann58, and
344 Brodmann82 parcellations in 2, 7, and 4 out of 20 maps, respectively. Notably, these parcellations
345 only outperform the geometric parcellations by an average of 3.5% (min=1.2%, max=7.4%). This
346 value is small compared to the 12.6%, 14.3%, and 18.0% higher FC homogeneity of the geometric
347 parcellations relative to the BoninBailey52, Brodmann58, and Brodmann82 atlases, respectively.
348 In the mouse, the ABASO atlas only outperforms the geometric parcellations in 5 out of 89 maps
349 (all related to gene expression) by an average of 5.4% (min=1.8%, max=12.8%).
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350 The strong performance of the geometric approach is notable given that many of the non-human
351 primate and mouse parcellations have been defined through careful cytoarchitectonic analysis,
352 which is often considered the gold standard in the field. As suggested by the analysis of the human
353 data, our results in these animals indicate that such parcellations may only characterize one specific
354 aspect of organization at a particular spatial scale that may not generalize to other properties of
355 cortical organization. Conversely, the consistently strong performance of the geometric
356 parcellations further supports the universality of our approach in defining homogeneous parcels at
357 any arbitrary resolution for any species.

358 A key advantage of our approach is that it is simple, fast, and flexible, requiring only a geometric
359 model of a given brain structure, which can easily be obtained from T1w MRI. This simplicity
360 contrasts with classical approaches that require expensive and time-consuming manual
361 investigation of regional cytoarchitecture or the application of sophisticated cluster analyses to
362 high-dimensional physiological data. The simplicity and generality of our algorithm means that it
363 can easily be applied to generate a reasonable first approximation of the regional organization of
364 species that have not been extensively studied and for which no parcellations exist.

365 To further demonstrate the flexibility of our approach, we use an open-source repository of cortical
366 surfaces of 24 various species from the Euarchontoglires superorder of mammals (also known as
367 Supraprimates), which includes the groups of Primata, Scandentia, Dermoptera, Rodentia, and
368 Lagomorpha®. Figure 4 shows that we can successfully produce geometric parcellations for any
369 species at any arbitrary resolution within the spatial limits of MRI (the example panels show 8§, 16,
370 and 32 parcels). These new parcellations open new opportunities to study the regional properties
371 of the brains of these mammalian species that would not otherwise be possible. We provide this
372 library of parcellations as an open resource to facilitate future comparative research and validation
373 (see ‘Data availability’ section).
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375 Fig. 4. Geometric parcellations of 24 diverse mammalian species. The center graph shows the phylogenetic
376 relationships between the species from 5 groups of the Euarchontoglires mammalian superorder®; i.e., Primata,
377 Scandentia, Dermoptera, Rodentia, and Lagomorpha. For each species, the insets show their example geometric
378 parcellations with 8, 16, and 32 parcels (from inner to outer ring).
379
380 Geometric constraints on regionalization generalize to non-neocortical structures
381 Having demonstrated the generality of our approach for characterizing the regionalization of the
382 cortex of diverse species, we next consider how geometry shapes the multiscale regionalization of
383 non-neocortical (i.e., subcortical and allocortical) structures of the human brain, focusing on the
384 following 7 structures: hippocampus (HIP); amygdala (AMY); thalamus (THA); nucleus
385 accumbens (NAc); globus pallidus (GP); putamen (PUT); and caudate (CAU). We generate
386 geometric parcellations specific to each of these 7 structures using 3D volumetric (voxel-based)
387 models of their geometry derived from T1w MRI (at 2 mm isotropic voxel resolution)>®. We then
388 evaluate the performance of the geometric parcellations against 20 existing benchmark
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389 parcellations across the 7 structures (Fig. SA; Supplementary Table 2; specifically 4, 2, 6, 2, 2, 2,
390 and 2 parcellations for HIP, AMY, THA, NAc, GP, PUT, and CAU, respectively) in the three
391 independent resting-state fMRI FC datasets analyzed in Fig. 1 (i.e., HCP, GSP, and Monash).
392 These benchmark parcellations were derived using a variety of approaches based on
393 cytoarchitecture, myeloarchitecture, resting-state fMRI, and diffusion MRI (Supplementary Table
394 2).
395
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397 Fig. 5. Geometric parcellations of 7 human non-neocortical structures. (A) Existing benchmark parcellations
398 and corresponding geometric parcellations with matched number of parcels across the 7 structures (HIP:
399 hippocampus; AMY: amygdala; THA: thalamus; NAc: nucleus accumbens; GP: globus pallidus; PUT: putamen;
400 CAU: caudate). The number beside the parcellation’s name denotes the total number of parcels across both
401 hemispheres. (B) Percentage difference in the homogeneity of geometric parcellations relative to existing
402 parcellations. Each row shows the result for one parcellation and each column shows the result for one FC
403 dataset, where red indicates superior performance for geometric parcellations. (C) Binarized version of panel B,
404 where gray indicates superior or equivalent performance for geometric parcellations, with equivalence quantified
405 as a difference threshold of £1%. (D) Percentage of maps where the geometric parcellations have superior or
406 equivalent performance relative to the existing parcellations.
407
408 Figures 5B—D show that the geometric parcellations of the 7 human non-neocortical structures
409 consistently show higher or equivalent Hg relative to existing parcellations. The only exception
410 is the comparison with the Melbournel6 THA parcellation on the HCP dataset and the PD4 GP
411 parcellation on the GSP dataset, where the homogeneity difference is 1.1% and 2.1%, respectively
412 (slightly above our homogeneity equivalence threshold of 1%; see Supplementary Fig. 6E for other
413 thresholds). Moreover, the geometric parcellations across different scales strongly correspond to
414 the boundaries defined by many of the existing parcellations, particularly those of the Melbourne4
415 parcellations for HIP, AMY, NAc, GP, PUT, and CAU (average Dice coefficients of 0.93, 0.94,
416 0.95,0.97,0.93, and 0.94, respectively). This is because the Melbourne parcellations draw regional
417 boundaries based on sharp transitions in spatially varying FC gradients, which correspond almost
418 precisely with the geometric eigenmodes of these non-neocortical structures®®. Our geometric
419 approach thus achieves a similar result without the need for data-intensive analyses of fMRI data.
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420 Together, these findings further underscore the universality of geometric constraints on the
421 regional organization of different brain structures.

422

423 Hierarchical geometric parcellation mimics a sequential reaction-diffusion process

424 Our geometric algorithm rests on an implicit generative model of the brain’s regional organization
425 that emphasizes two principal mechanisms: (1) the fundamental physical constraints imposed by
426 geometry on the diffusion of early patterning molecules; and (2) recursive bipartition to generate
427 a hierarchical, multiscale architecture. Here, we demonstrate how these two mechanisms capture
428 the essence of a generic reaction-diffusion process hypothesized to play a role in establishing a
429 multiscale map of regional organization in the developing brain.

430 For brevity, we focus on the human neocortex and simulate a linearized reaction-diffusion (RD)
431 model of an activator-inhibitor type®® (see ‘Reaction-diffusion model” in Methods). We emphasize
432 that our model is not intended to precisely capture the actions of any specific molecule or
433 interactions between a set of molecules, as their biophysical details are often unknown (for
434 exceptions, see refs®>86). The model instead identifies a minimally sufficient set of physiological
435 mechanisms that can yield the regional patterning implied by our geometric parcellation algorithm.
436 We first focus on molecules seeded at maximally distant points near the rostral and caudal poles
437 of the left hemisphere (Fig. 6A), following evidence that several morphogens and transcription
438 factors (e.g., Emx2 and Pax6) show opposing concentration gradients along the rostrocaudal (RC)
439 axis®>*>¢, Depending on model parameter combinations, Turing has shown that our type of model
440 can lead to the spontaneous emergence of spatially non-constant solutions, via what is termed a
441 spatial Turing instability*! (see ‘Reaction-diffusion model’ in Methods for the instability
442 conditions). Figure 6B (top row) shows the equilibrium RD solution for (u — v) using the seeds
443 in Fig. 6A and parameters that induce a Turing instability (see ‘Reaction-diffusion model’ in
444 Methods for the specific parameters). The model RD solution gives rise to an increase of u and v
445 in separate halves of the cortex (u > v in one half towards the rostral pole and v > u in the other
446 half towards the caudal pole), partitioning the cortex into two subregions separated by a nodal line
447 that bears a striking qualitative resemblance to the RC eigenmode (Fig. 6B bottom row)—the
448 starting point of our parcellation algorithm (Fig. 1A). The high similarity of the model RD solution
449 and RC eigenmode and their corresponding parcellations are quantitatively evidenced by a high
450 spatial correlation (0.85) and ahigh Dice coefficient (0.82). Note that the spatial pattern of the
451 model RD solution in Fig. 6B is robust and can be reproduced when the linear activator-inhibitor
452 interactions in the model are changed to nonlinear functions (Supplementary Fig. 7).

453
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455 Fig. 6. Model-based parcellation via a reaction-diffusion process. (A) We use a reaction-diffusion model that
456 assumes two molecules, u and v, are seeded from distinct locations and diffuse in space and time with diffusion
457 constants D,, and D, respectively. The schematic shows example seed locations of the molecules at maximally
458 distant points near the rostral and caudal poles of the left hemisphere, specifically at regions 10pp (orbital
459 prefrontal cortex) and V3B for u and v, respectively, based on the Glasser360 parcellation’. The constants a, b,
460 ¢, and d are assumed to be positive, such that the interaction assigns molecule u to be the activator and molecule
461 v to be the inhibitor. (B) The top row shows an example model reaction-diffusion (RD) solution (u — v) and
462 parcellation using parameter combinations that induce a Turing spatial instability. The instability conditions are:
463 D, < D,;a<d;ad < bc;and d/D,, < a/D,,. The molecules are seeded at the locations described in panel A.
464 The bottom row shows the rostrocaudal (RC) geometric eigenmode and parcellation. Correspondences between
465 the model RD solution and RC eigenmode and their respective parcellations are quantitatively shown in terms
466 of spatial correlation and Dice coefficient, respectively. (C) The two matrices show the spatial correlation of the
467 model RD solutions and the RC geometric eigenmode (top matrix) and the Dice coefficients of their resulting
468 parcellations (bottom matrix) when molecules u and v are seeded in various locations. Each location is assigned
469 to one of five anatomical cortices: Occipital (Occ); Temporal (Temp); Parietal (Par); Insular (Ins); and Frontal
470 (Fr). Correlations remain high as long as the activator u is seeded anywhere in the front of the brain and the
471 inhibitor v is seeded anywhere in the back of the brain. (D) RD-RC spatial correlation and Dice coefficient when
472 the inhibitor v is seeded at V1 and the activator u is seeded anywhere. Each point represents a different seed
473 location for u. Three pairs of the molecules’ seed locations are highlighted that either provide high spatial
474 correlation, high Dice coefficient, or both. (E) Seed locations of the molecules, resulting model RD solution,
475 and resulting RD parcellation (from left to right) of the three pairs highlighted in panel D.
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476 Figure 6C shows the effect of seeding molecules u and v at different locations using the parameter
477 combinations that produce the RD solution in Fig. 6B. The correspondence between the model RD
478 solution and RC geometric eigenmode, and their resulting parcellations, is extremely robust, with
479 high spatial correlations (mean=0.75, median=0.79, min=—0.07, max=0.99) and high Dice
480 coefficients (mean=0.84, median=0.85, min=0.48, max=0.98) obtained as long as the activator
481 molecule u is seeded anywhere in the frontal cortex and the inhibitor molecule v is seeded
482 anywhere in the occipital or temporal cortices.

483 Some of the most robust correspondences between the model RD solution and RC geometric and
484 their respective parcellations are obtained when the inhibitor molecule v is seeded at region V1
485 (primary visual cortex) regardless of the seed location of the activator molecule u, with mean
486 spatial correlation of 0.80 (min=0.62, max=0.87) and mean Dice coefficient of 0.86 (min=0.73,
487 max=0.92) as shown in Fig. 6D. This result is notable given that V1 is the most
488 cytoarchitectonically and transcriptomically distinct region of the primate neocortex*>#7-8 and is
489 the last such region to complete neurogenesis®®. Figure 6E shows specific optimal solutions with
490 either high spatial correlation, high Dice coefficient, or both when the activator molecule u is
491 seeded at regions OFC (orbitofrontal cortex), 6a (premotor cortex), and 9m (anterior part of the
492 dorsomedial prefrontal cortex), respectively. This robustness supports a consistent geometrically
493 constrained blueprint for regional patterning in the face of biological noise®.

494 In principle, the RD model can be iterated to generate recursive divisions within each partition to
495 obtain a parcellation at any given scale that will strongly resemble the results of our purely
496 geometric approach. The model thus implies that spatial variations in molecular concentrations
497 defined by the equilibrium solutions of the RD process represent thresholds for triggering the
498 diffusion of other molecules and more finely-tuned cellular and molecular processes within each
499 subdomain or partition. This process echoes the threshold-dependent molecular dynamics
500 proposed in Wolpert’s classical model of the French Flag problem, which aims to understand how
501 positional information is conferred upon developing cellular arrays®!-2. Our model implies that the
502 new molecule distributions further destabilize along the dominant geometric eigenmode of each
503 subregion to yield another division into two new subregions. In this way, the recursive bipartitions
504 of our geometric algorithm can be understood as a hierarchical sequence of Turing instabilities,
505 with each stage triggering the next set of reaction-diffusion processes that is very robust to the
506 specific parameterization and details of the model (see Supplementary Information S1 for details).
507 Indeed, our hierarchical geometric parcellation hypothesizes that once concentration levels
508 saturate following the first division, a second instability is triggered within each of the two
509 subregions that leads to further two-fold divisions of the subregions. Following this process, we
510 would only need log, N hierarchical levels to produce N regions, which is efficient and
511 biologically feasible (see Supplementary Information S1.4). A similar mechanism of threshold-
512 dependent cascading is thought to underlie the progressive segmentation of the Drosophila body
513 plan along the RC axis®**. This recursive process may thus capture a conserved aspect of regional
514 patterning that supports the progressive compartmentalization of different structures®>-6%%5, which
515 can be effectively approximated by the first non-constant geometric eigenmode (i.e., the RC
516 eigenmode at the first division). Accordingly, this eigenmode strongly aligns with a highly
517 conserved gradient of neurogenic timing and neuronal density in mammals®®®7.

518

519
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520 Conclusions

521 An accurate understanding of the regional organization of the mammalian brain is essential for
522 comprehending the functional specialization of distinct brain regions, and is fundamental for
523 models that characterize how these specialized functions are integrated to support coordinated
524 behavior*. Distinct regions of the brain have traditionally been defined using descriptive
525 approaches that are agnostic to how the regions arise in the first place. Here, we have developed a
526 generative approach to brain parcellation that relies on a simple, hierarchical, and geometrically
527 constrained process to derive a regional parcellation of the brain at any given resolution scale. We
528 have shown that this approach defines regions in both neocortical and non-neocortical structures
529 with greater functional, cellular, and molecular homogeneity than those in almost all existing,
530 popular benchmark parcellations in humans, macaques, marmosets, and mice brains. Critically,
531 we have demonstrated that the simplicity of our approach, which only requires a model of brain
532 geometry as input (e.g., from T1w MRI), allows it to be generalized to any brain structure in any
533 mammalian species to create a parcellation of any arbitrary resolution within seconds. We further
534 demonstrate that our approach mimics a sequential reaction-diffusion process that may represent
535 a conserved developmental mechanism for establishing a multiscale map of regional organization
536 in the mammalian brain.

537 We emphasize that while a reaction-diffusion mechanism has extensive biological
538 applicability®>#6%8  the mechanism itself and the hierarchical approach we propose are
539 approximations and exclude more complex molecular interactions. For instance, some aspects of
540 areal patterning do not need two interacting morphogens®®!% and patterning gradients that
541 predominantly run along the non-rostrocaudal axes of the brain (at the first division) have also
542 been identified®!. Future work could extend our approach to account for these higher-order
543 influences, in addition to the role of thalamocortical afferents, which are likely to perturb the initial
544 organization established by our recursive geometric procedure, interacting with postnatal brain
545 growth and activity-dependent processes to refine areal boundaries®!. Nonetheless, the striking
546 performance of our method demonstrates that a simple, neurodevelopmentally-inspired
547 hierarchical process anchored by the dominant geometric eigenmode is minimally sufficient to
548 create a robust and highly generalized blueprint of areal organization, offering a unified approach
549 to study the multiscale regional organization of any mammalian brain structure. Its flexibility for
550 use in species for which no parcellations exist offers immediate practical and neuroscientific
551 advantages for comparative research. The strong performance of our approach, observed across
552 diverse anatomical, cellular, molecular, and functional properties, points to a fundamental role of
553 geometry in shaping the regional organization of the mammalian brain.

554

555

556 Methods

557 Geometry of neocortical and non-neocortical structures

558 The only input to our geometric parcellation approach is a Tlw magnetic resonance imaging
559 (MRI)-derived representation of a brain structure’s geometry either at the vertex level (for
560 surfaces) or voxel level (for volumes). For the human neocortex, we used the fsaverage template
561 of its midthickness surface!?!, resampled in fsSLR 32k space with 32,492 vertices for each
562 hemisphere. For the macaque neocortex, we used the Yerkesl19 template of its midthickness
563 surface!®, resampled in fSLR 10k space with 10,242 vertices for each hemisphere. For the
564 marmoset neocortex, we used the Marmoset Brain Mapping v3 (MBMv3) template of its
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565 midthickness surface!®, resampled in fsaverage 38k space with 37,974 and 38,094 vertices for
566 the left and right hemispheres, respectively. For the mouse neocortex, we used the Allen Mouse
567 Brain Common Coordinate Framework v3 (CCFv3) template in three-dimensional (3D)
568 volumetric space at 200 pum isotropic voxel resolution.
569 For the 24 Euarchontoglires mammalian species, we used reconstructions of their cortical surfaces
570 in fsaverage6 space with 40,962 vertices for each hemisphere®*. Phylogenetically, the 24 species
571 belong to 5 groups; i.e., Primata, Scandentia, Dermoptera, Rodentia, and Lagomorpha. The
572 Primata group comprises 13 species: Macaca mulatta (macaque); Papio anubis (baboon), Pan
573 troglodytes (chimpanzee); Pan paniscus (bonobo); Homo sapiens (human); Gorilla gorilla
574 (gorilla); Pongo pygmaeus (orangutan); Hylobates lar (gibbon); Callithrix jacchus (marmoset);
575 Cebus cappuchinus (capuchin); Aotus trivirgatus (night monkey); Lemur catta (lemur); and
576 Galago senegalensis (bushbaby). The Scandentia group comprises 1 species: Tupaia belangeri
577 (tree shrew). The Dermoptera group comprises 1 species: Galeopterus variegatus (flying lemur).
578 The Rodentia group comprises 8 species: Fukomys anselli (mole rat); Cavia porcellus (guinea pig);
579 Sciurus carolinensis (squirrel); Glaucomys volans (flying squirrel); Ondata zibethicus (muskrat);
580 Peromyscus californicus (deer mouse); Mus musculus (mouse); and Castor canadensis (beaver).
581 The Lagomorpha group comprises 1 species: Ochotona macrotis (pika).
582 For the human non-neocortical structures, we converted the existing parcellations of the 7
583 structures, i.e., hippocampus (HIP), amygdala (AMY), thalamus (THA), nucleus accumbens
584 (NAc), globus pallidus (GP), putamen (PUT), and caudate (CAU), into volumetric binary masks
585 in the Montreal Neurological Institute (MNI) space at 2 mm isotropic voxel resolution. This is to
586 ensure that the coverage and number of voxels in the geometric parcellations match those of the
587 existing parcellations for fair comparison. Further details of the existing non-neocortical
588 parcellations are described in the ‘Benchmark brain parcellations’ section.
589
590 Derivation of geometric eigenmodes
591 Our parcellation method uses the geometric eigenmodes of the brain to delineate regional
592 boundaries. The eigenmodes are obtained by solving the Helmholtz equation defined in Eq. (1) of
593 the main text. The Laplace-Beltrami operator (LBO) in Eq. (1) captures the intrinsic geometry of
594 the brain structure of interest (e.g., cortical surface), i.e., geometric and spatial relations between
595 mesh vertices', and is defined generally as!®,
596

A= 1 z d iy 0 @
597 o w — axi g ax] ’

Lj
598
599 where x;, x; are the local coordinates, (g¥) == G~! with G being the matrix of inner product of
600 metric tensors g;; = (%, %), W = +/det G, and det denotes the determinant. For surfaces, such
i 0Xj

601 as the human, macaque, and marmoset neocortices, we constructed the LBO using a triangular
602 mesh representation of the TIw MRI-derived cortical sheet. For solid 3D structures, such as the
603 mouse neocortex and human non-neocortical structures, we converted their T1w MRI-derived
604 volumetric binary masks into tetrahedral meshes to account for the full 3D geometry of the
605 structures (see ref.*® for further details). Note, however, that the LBO can also be constructed using
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606 a model of a brain structure’s geometry derived from alternative methods (e.g., microscopy) and
607 is not restricted to T1w MRI.

608 To numerically calculate the geometric eigenmodes, we used our previously published code’®
609 based on the LaPy Python library!**1% installed on the MASSIVE High Performance Computing
610 facility!"’. The eigenvalue solutions of the Helmholtz equation in Eq. (1) are ordered sequentially
611 according to the spatial wavelength of the spatial patterns of each eigenmode;ie., 0 <14, <1, <
612 ---. Note that the first eigenvalue 4, is approximately equal to zero (wavelength > size of the brain)
613 and the corresponding eigenmode 1), is a constant function with no nodal lines (zero sets of the
614 function). Low-order eigenmodes 2, 3, and 4 correspond to spatial patterns with one nodal line and
615 have antinodes at the opposing ends of the rostrocaudal, dorsoventral, and mediolateral axes,
616 respectively. We further note that while our work is inspired by processes governing the
617 developing brain, we only analyzed the adult brain because low-order eigenmodes of both the
618 developing and adult brain are largely invariant!'%. Future work may consider the impact of cortical
619 growth on the reaction-diffusion mechanisms that we model here!%-!19,

620

621 Hierarchical partitioning

622 Our geometric approach uses the nodal lines of the eigenmodes to partition a brain structure into
623 subregions. Specifically, we use only the first non-constant eigenmode 1),, which is the most
624 dominant axis of variation along the rostrocaudal direction at the first division, to partition the
625 structure into two subregions of approximately equal sizes. Although models of regional patterning
626 based on gradients aligned with other axes have been proposed!'!!, we focus only on the first non-
627 constant geometric eigenmode based on physical principles related to Turing instabilities to
628 identify the simplest possible mechanism through which a regional parcellation of the brain may
629 be obtained (see Supplementary Information S1). Other instabilities (with a shorter wavelength)
630 are more stable and cannot occur first.

631 We applied the bipartitioning in an iterative, hierarchical manner, calculating the first non-constant
632 geometric eigenmode of each subregion and using it to further subdivide the subregion. By
633 construction, performing N iterations will yield a parcellation with 2V parcels. However, the
634 multiscale organization of the brain means that the optimal number of regions to define remains
635 unclear. Hence, we generalized the approach across scales, such that one can set the number of
636 regions to an arbitrary number between 1 and 2. We do this by constructing a tree of eigenvalues
637 from each iteration of the approach. We performed a maximum of 9 iterations to reduce
638 computational burden (Supplementary Fig. 1A). We followed the tree of division from the first to
639 N iterations, tracking the parent and daughter subdivisions and arranging them according to the
640 magnitude of the eigenvalues of their first non-constant geometric eigenmodes. The lower the
641 eigenvalue is, the more dominant that subdivision is. Hence, to generate a parcellation withm > 1
642 regions, we retained the subdivisions corresponding to the first m — 1 smallest eigenvalues. To
643 ensure that the intrinsic uniformity of the region sizes of the geometric parcellation
644 (Supplementary Figs 1C-D) is maintained, we additionally constrained the method by choosing
645 all subdivisions within an iteration first before moving to the subdivisions of the subsequent
646 iteration. We performed this process to separately parcellate the left and right hemispheres.

647 The strength of our hierarchical approach is that it affords a multiscale insight into the brain’s
648 regional organization. Parcellations can thus be tailored to the problem of interest, unlike the
649 multitude of brain atlases available for use today that are only defined at a single resolution scale
650 and thus ignore the intrinsically hierarchical organization of the brain. For instance,
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651 cytoarchitectonic studies clearly differentiate primary sensory areas such as V1 and S1 from
652 adjacent regions, but it is still possible to identify further functional subdivisions within these
653 borders, such as areas processing sensory information from distinct body regions within S1 or
654 distinct, overlapping modes of functional organization within V13*, The correspondence between
655 such subregional organization and the areas defined by our approach remains to be explored, but
656 our method nonetheless allows one to test hypotheses about how such nested functional
657 organization may arise.
658 Our hierarchical bipartitioning approach mimics the processes that shape the embryonic
659 development of various hierarchically arranged organs such as limbs, digits and vascular trees®%-2-
660 66,112 ' A bipartitioning process is favored by nature because it provides subdivisions that are robust,
661 reliable, and insensitive to the size of the domain®. Hence, dividing domains of different sizes
662 (e.g., human vs marmoset brains) into two subdomains one step at a time ensures that the
663 subdomains will be relatively uniform in size compared to dividing the domains into several
664 regions at once. This is important because high patterning precision is needed for robust
665 development of brain organization (e.g., regions should generally be located in the same spatial
666 location across individuals of a species)®. An interesting avenue of further work could investigate
667 whether the regional organization of different brain areas is dictated by varying degrees of
668 hierarchical depth in this recursive process.
669
670 Calculation of regional homogeneity
671 We compared the degree to which the geometric parcellations accurately capture the organization
672 of the brain relative to existing benchmark parcellations (see ‘Benchmark brain parcellations’
673 section), with accuracy quantified in terms of parcel homogeneity. We assume that a parcel’s
674 boundary is likely accurate if the vertices or voxels enclosed by the parcel are homogeneous in
675 some way. This homogeneity is commonly defined in relation to inter-vertex or inter-voxel
676 functional coupling (FC)!27%-7 (i.e., accurate parcels are those that define sets of vertices or voxels
677 that show high internal FC with each other), but we go beyond this common practice by
678 additionally measuring homogeneity in terms of more diverse brain phenotypes or maps related to
679 morphometry, microstructure, cytoarchitecture, metabolism, gene expression, chemoarchitecture,
680 and task-related functional architecture (see ‘Brain phenotypes’ section). This is to avoid reliance
681 on one single measure or imaging modality and to provide a comprehensive validation of the
682 geometric parcellations across diverse aspects of brain structure and function.
683 Note that recent work has proposed a different metric to compare the performance of brain
684 parcellations!!?, but it is most suitable only for functional data (e.g., resting-state and task-based
685 fMRI), relies on an a priori choice of various heuristics (e.g., spatial bin size and weighted
686 averaging scheme), and requires certain conditions in the data to be satisfied that are not always
687 guaranteed (e.g., stability of within- and between-vertex correlations of functional profiles).
688 Hence, we decided to use homogeneity (described below) to have a single, simple metric that can
689 be generalized across diverse brain phenotypes or maps.
690 For each parcellation (geometric or existing), we calculated the overall parcellation homogeneity,
691 H, as per prior work’>76, as a weighted average,
692

n
693 H= jﬁ—SP (3)

i=15
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694
695 where n is the total number of parcels across both hemispheres, S; is the size of parcel i (i.e., total
696 number of vertices or voxels enclosed by the parcel), and P; is the summary statistic for parcel i
697 calculated from the phenotype or map of interest. For resting-state FC, P; is the average FC
698 between all pairs of vertices or voxels within the parcel, such that a higher P; means that the parcel
699 is highly homogeneous. For non-FC spatial maps, P; is the variance of map values across all
700 vertices or voxels within the parcel, such that a lower P; means that the parcel is highly
701 homogeneous. We used a weighted average in Eq. (3) to take into account the fact that parcels
702 with larger sizes will tend to have lower homogeneity (Supplementary Fig. 8A), following
703 previous work!'>72, and to reduce the gyral and sulcal bias prevalent in cortical surface
704 reconstructions!!*, The weighted average effectively decreases and increases the contribution of
705 small and large parcels, respectively (Supplementary Fig. 8B). We pooled all P; values from both
706 the left and right hemispheres to calculate a whole-brain homogeneity value, except for cases in
707 which maps were only available in one hemisphere.
708 We then compared the homogeneity of the geometric and existing parcellations (H8e°™etric yg
709 HeXisting) a5 a percentage difference,
710

ngometric _ Hexisting
711 6H=100><( — ) 4)

HeXlStlng

712
713 For non-FC maps, we took the inverse of H in Eq. (3) before substituting in Eq. (4) to ensure that
714 6H > 0 consistently means that the geometric parcellation is more homogeneous than the existing
715 parcellation.
716
717 Benchmark brain parcellations
718 We compared the homogeneity of our geometric parcellations to several existing benchmark
719 parcellations of the human, macaque, marmoset, and mouse neocortices (Supplementary Table 1)
720 and human non-neocortical structures (Supplementary Table 2). These were chosen because they
721 are among the most used in the field and they were derived using diverse approaches and measures,
722 including expert delineation and/or data-driven analysis of histological and/or imaging data (see
723 references in the last column of Supplementary Tables 1-2). This diversity allows us to
724 comprehensively assess the quality of the geometric parcellations. For each existing parcellation,
725 we constructed a geometric parcellation specific to the left and right hemispheres with matched
726 number of parcels (see the third column of Supplementary Tables 1-2) to ensure fair comparison.
727 Most of the parcellations were obtained directly from the references in the last column of
728 Supplementary Tables 1-2, with some exceptions. Histological parcellations of the human
729 neocortex (i.e., Brodmann78, Smith88, Flechsigd2, and Kleist98) corresponded to the
730 reconstructed versions in MNI space provided by ref.!!>. Parcellations of the macaque cortex (i.e.,
731 BoninBailey52, Brodmann58, FVEI153, Markovl58, Markov182, Composite233, and
732 Paxinos285) were obtained from ref.!'®. All parcellations of the marmoset neocortex were obtained
733 from the Marmoset Brain Mapping Project (https://marmosetbrainmapping.org/). All parcellations
734 of the human non-neocortical structures, except the Melbourne parcellations, were obtained from
735 https://www.lead-dbs.org. =~ The  Melbourne  parcellations ~ were  obtained  from
736 https://github.com/yetianmed/subcortex. Finally, parcellations of the human, macaque, and
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737 marmoset neocortices originally defined in volume space were projected onto surface space using
738 the volume-to-surface-mapping command of the Connectome Workbench software. Small parcels
739 with less than 20 vertices were removed because they may have resulted from inaccuracies in the
740 volume-to-surface projection, especially for parcellations with subcortical areas included'>!'!”.
741 This step only affected the total number of parcels for the Craddock and Aicha parcellations of the
742 human neocortex (i.e., fewer parcels than in the original volume representations).

743

744 Brain phenotypes

745 We used various brain phenotypes specific to the human, macaque, marmoset, and mouse species
746 to compare the regional homogeneity of the geometric and existing benchmark parcellations. All
747 data were obtained from published studies and/or open-access repositories, unless otherwise stated.
748 All data were for the whole brain (includes left and right hemispheres), unless otherwise stated.
749

750 Human neocortex

751 We analyzed resting-state functional MRI (fMRI) FC matrices from three independent datasets
752 [the Human Connectome Project (HCP)!4; the Genomics Superstructure Project (GSP)74; and a
753 dataset acquired in-house at Monash University (Monash)”®] and 242 non-FC brain maps divided
754 into the following 8 categories: morphometry (1 map); microstructure (3 maps); cytoarchitecture
755 (50 maps); metabolism (5 maps); gene expression (1 map); chemoarchitecture (19 maps); HCP
756 task activation (47 maps); and Neurosynth (116 maps). All data were mapped onto the fsSLR_ 32k
757 surface space, with 32,492 vertices per hemisphere.

758 The HCP FC matrix was derived from preprocessed resting-state fMRI data acquired in 255
759 unrelated healthy individuals (ages 22-35; 132 females), which is the largest HCP sample
760 excluding twins or siblings and with all participants having completed resting-state and task-
761 evoked data'®. In brief, the fMRI parameters were: field strength of 3 T, isotropic voxel size of
762 2 mm, repetition time (TR) of 720 ms, echo time (TE) of 33.1 ms, left to right encoding direction,
763 and scanning duration of 14.4 min with a total of 1200 time frames. All other acquisition
764 parameters can be found in ref.!%. Each individual’s data were preprocessed by the HCP team via
765 their minimal preprocessing pipeline!!'®, which included ICA-FIX to correct for structured noise
766 and residual confounds!!'?, and mapped onto the fSLR_32k surface space. For each participant, we
767 calculated the Pearson correlation coefficient of pairs of vertex-level time series, resulting in a
768 32,492x32,492 FC matrix per hemisphere. We then took the average of the individual-specific FC
769 matrices across the 255 individuals to construct a group-averaged FC matrix for each hemisphere.
770 The GSP FC matrix was derived from resting-state fMRI data acquired in 1564 healthy individuals
771 (ages 18-35; 901 females)’*. In brief, the fMRI parameters were: field strength of 3 T, isotropic
772 voxel size of 3 mm, TR of 3000 ms, TE of 30 ms, and scanning duration of 6.2 min with a total of
773 124 time frames. All other acquisition parameters can be found in ref.”®. Each individual’s data
774 were preprocessed via the standard pipeline of fMRIPrep v22.0.0!2%12! denoised with ICA-FIX,
775 and mapped onto the fSLR 32k surface space. We then removed the first 5 time frames to stabilize
776 the signal. We then calculated individual-specific FC matrices and took the average across the
777 1564 individuals to construct a group-averaged 32,492x32,492 FC matrix for each hemisphere.
778 The Monash FC matrix was derived from multiband resting-state fMRI data acquired in 440
779 healthy individuals (ages 21; all females)’>. In brief, the fMRI parameters were: field strength of
780 3 T, isotropic voxel size of 3 mm, TR of 754 ms, TE of 21 ms, and scanning duration of 7.7 min
781 with a total of 616 time frames. All other acquisition parameters can be found in ref.”>. Each
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782 individual’s data were preprocessed via an in-house pipeline, which included ICA-FIX, global
783 signal regression, and 3 mm spatial smoothing (see ref.” for further details of the preprocessing),
784 and mapped onto the fsLR 32k surface space. We then calculated individual-specific FC matrices
785 and took the average across the 440 individuals to construct a group-averaged 32,492x32,492 FC
786 matrix for each hemisphere. The diversity of preprocessing pipelines used across the HCP, GSP,
787 and Monash datasets ensured that our findings are not specific to any single data processing
788 approach.

789 The morphometry map represents cortical thickness and was obtained from the HCP repository!>.
790 The 3 microstructure maps represent the ratio of TIw and T2w MRI signal and diffusion MRI-
791 derived estimates of neurite density index (NDI) and orientation dispersion index (ODI). TIw:T2w
792 ratio indirectly quantifies intracortical myeloarchitecture and was obtained from ref.®?, while NDI
793 and ODI respectively quantify the packing density of axons or dendrites and orientational
794 coherence of neurites and were obtained from ref.!?2. The 50 cytoarchitecture maps represent cell
795 density profiles across 50 equidistant layers between the white and pial cortical layers of the
796 BigBrain atlas'?* and were obtained from ref.!?4,

797 The metabolism, gene expression, and chemoarchitecture maps were obtained from the neuromaps
798 repository®’. The 5 metabolism maps represent positron emission tomography (PET)-based
799 markers of cerebral metabolic rate of glucose (CMRGlu), cerebral blood volume (CBV), cerebral
800 blood flow (CBF), cerebral metabolic rate of oxygen (CMRO>), and synaptic density based on
801 BPnd tracer binding to SV2a!?>!26, The gene expression map represents the first principal
802 component of all genes in the Allen Human Brain atlas'?’. The 19 chemoarchitecture maps
803 represent PET-based densities of neurotransmitter receptors of acetylcholine (a4f2, M1, and
804 VACht), cannabinoid (CBi), dopamine (Di, D2, and DAT), GABA (GABA-A o5 subunit),
805 glutamate (mGluRs and NMDA), histamine (H3), mu-opioid (MOR), norepinephrine (NET), and
806 serotonin (5-HT1A, S-HTlB, 5-HT2A, 5-HT4, 5-HT6, and 5-HTT)128_146.

807 The 47 HCP task-activation maps represent unthresholded maps of task activations across 7 task
808 domains of social, motor, gambling, working memory, language, emotion, and relational'’. Each
809 map represents a key contrast commonly used in the literature that shows the major activation
810 pattern elicited by the task. See refs>®!47 and Supplementary Table 3 for details of each task and
811 contrast. We used the task maps as provided by HCP.

812 The 116 Neurosynth maps represent the association between voxels and cognitive terms obtained
813 from Neurosynth, a meta-analytical tool that synthesizes results from more than 14,000 published
814 fMRI studies by searching for keywords (e.g., action) published alongside fMRI voxel
815 coordinates®!. The unthresholded association maps were downloaded from https://neurosynth.org/.
816 Although there are >1000 terms reported in Neurosynth, we only focused on 116 terms that are
817 related to 11 cognition- and behavior-related concepts selected from the Cognitive Atlas!#8, which
818 is a public ontology of concepts and terms used in cognitive science. See Supplementary Table 4
819 for the full list of terms we used.

820

821 Macaque neocortex

822 We analyzed 1 resting-state fMRI FC matrix and 19 non-FC brain maps divided into the following
823 3 categories: morphometry (1 map); microstructure (1 map); and chemoarchitecture (17 maps).
824 All data were mapped onto the fSLR 10k surface space, with 10,242 vertices per hemisphere.
825 The FC matrix was derived from preprocessed resting-state fMRI data acquired in 6 individuals!#®.
826 In brief, the fMRI parameters were: field strength of 3 T, isotropic voxel size of 1.25 mm, TR of
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827 2000 ms, TE of 30 ms, and scanning duration of 40 min with a total of 1200 time frames. All other
828 acquisition parameters can be found in ref.!#’. Each individual’s data were preprocessed via an
829 HCP-style pipeline adapted to non-human primates (NHP) pipeline
830 (https://github.com/Washington-University/NHPPipelines) and mapped onto the fsLR 10k
831 surface space. We then calculated individual-specific FC matrices and took the average across the
832 6 individuals to construct a group-averaged 10,242x10,242 FC matrix for each hemisphere.

833 The morphometry and microstructure maps represent cortical thickness and T1w:T2w ratio,
834 respectively, and were obtained from ref.!®, The 17 chemoarchitecture maps represent
835 autoradiographic densities in the left hemisphere of neurotransmitter receptors of acetylcholine
836 Mi, Mz, and M3), dopamine (D1), GABA (GABA-A, GABA-A/BZ, and GABA-B), glutamate
837 (AMPA, Kainate, and NMDA), noradrenaline (o1 and o), and serotonin (5-HTia, 5-HT2) and
838 averaged densities of excitatory (i.e., glutamate), inhibitory (i.e., GABA), and modulatory (i.e.,
839 serotonin, acetylcholine, and noradrenaline) receptors. The receptor maps were obtained from
840 ongoing unpublished work, with all receptor density estimates reconstructed via the pipeline
841 described in ref.!*!. Note that the chemoarchitecture maps were only available for the left
842 hemisphere; hence, we restricted the calculation of homogeneity with respect to those maps to the
843 left hemisphere.

844

845 Marmoset neocortex

846 We analyzed resting-state fMRI FC matrices from two independent sites [the Institute of
847 Neuroscience (ION) in China and the National Institutes of Health (NIH) in the USA]"? and 3
848 non-FC brain maps divided into the following 3 categories: morphometry (1 map); microstructure
849 (1 map); and cytoarchitecture (1 map). All data were mapped onto the fsaverage 38k surface
850 space, with 37,974 and 38,094 vertices for the left and right hemispheres, respectively.

851 The FC matrices were derived from preprocessed resting-state fMRI data acquired in 10
852 individuals in each site (i.e., ION and NIH)!2, In brief, the fMRI parameters for the ION site were:
853 field strength of 9.4 T, isotropic voxel size of 0.5 mm, TR of 2000 ms, TE of 18 ms, right to left
854 encoding direction, and scanning duration of 17.1 min with a total of 512 time frames. The fMRI
855 parameters for the NIH site were: field strength of 7 T, isotropic voxel size of 0.5 mm, TR of
856 2000 ms, TE of 22.2 ms, right to left encoding direction, and scanning duration of 17.1 min with
857 a total of 512 time frames. All other acquisition parameters can be found in ref.!>2. Each
858 individual’s data were preprocessed via the Marmoset Brain Mapping Project’s pipeline (see
859 https://marmosetbrainmapping.org/) and mapped onto the fsaverage 38k surface space. For each
860 of the two sites, we then calculated individual-specific FC matrices and took the average across
861 the 10 individuals to construct a group-averaged 37,974x37,974 and 38,094x38,094 FC matrix for
862 the left and right hemispheres, respectively.

863 The morphometry and microstructure maps represent cortical thickness and T1w:T2w ratio,
864 respectively, and were obtained from ref.!%. The cytoarchitecture map represents cell density
865 profiles in the left hemisphere derived from Nissl-stains and was obtained from ref.!>*. Note that
866 the cytoarchitecture map was only available for the left hemisphere; hence, we restricted the
867 calculation of homogeneity with respect to that map to the left hemisphere.

868

869 Mouse neocortex

870 We analyzed resting-state FC matrices derived from fMRI!>* and Ca?* imaging!*> and 87 non-FC
871 maps divided into the following 3 categories: microstructure (1 map); cytoarchitecture (1 map);
872 and gene expression (85 maps). All data were mapped onto the Allen Mouse Brain CCFv3
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873 volumetric space with 200 pum isotropic voxel resolution (except for the Ca®* data, which were in
874 2D space; see below or Supplementary Information S4).

875 The fMRI FC matrix was derived from preprocessed resting-state fMRI data acquired in 193
876 individuals'>*. The data were pooled from 17 independent datasets across multiple centers. In brief,
877 the fMRI parameters were: field strengths ranging from 4.7 to 11.7 T, isotropic voxel size of 200
878 pum, TRs ranging from 1000 to 2000 ms, TEs ranging from 10 to 25 ms, and number of time frames
879 ranging from 150 to 1000. All other acquisition parameters can be found in ref.!>*, All data were
880 preprocessed via a unified pipeline (see ref.!>* for further details of the preprocessing) and mapped
881 onto the CCFv3 volumetric space. We then calculated individual-specific FC matrices and took
882 the average across the 193 individuals to construct a group-averaged voxel-level FC matrix for
883 each hemisphere.

884 The Ca?" FC matrix was derived from preprocessed resting-state cortex-wide fluorescence Ca?*
885 data acquired in 9 individuals!>. In brief, the Ca?" data were recorded using an in-house
886 fiberscope!> and an sSCMOS camera (512x512 pixels). The acquisition interleaved cyan (470/24,
887 Ca*"-sensitive) and violet (395/25, Ca?'-insensitive) wavelengths using a Lumencor (LLE 7Ch
888 Controller) light source at 20 Hz. The violet wavelength was for measuring background noise,
889 which was regressed from the cyan data to obtain the final data at 10 Hz temporal resolution. The
890 resulting images have a 25x25 pum resolution. The exposure time of each wavelength (violet and
891 cyan) was 40 ms to avoid artifacts caused by the rolling shutter. All other acquisition parameters
892 and preprocessing can be found in ref.!>>, Since the Ca?* data were in 2D space, we projected the
893 Allen Mouse Brain Atlas (i.e., ABAS8O in Fig. 3A) and the corresponding geometric parcellation
894 in 3D volume space to the 2D imaging plane of the Ca** data. See Supplementary Information S4
895 for further details about the imaging data, preprocessing, and volume-to-2D plane projection of
896 the parcellations. We then calculated individual-specific FC matrices for each hemisphere. We
897 used the pixel-level FC matrices and 2D plane-projected parcellations to calculate regional
898 homogeneity for each individual, which we then averaged for the final analysis.

899 The microstructure map represents Tlw:T2w ratio and was obtained from refs!>®!57. The
900 cytoarchitecture map represents cell density profiles derived from Nissl-stains and was obtained
901 from ref.!>®, The 85 gene expression maps represent gene-expression profiles and were obtained
902 from ref.!>. Although there are >4000 gene-expression maps available from the above dataset, we
903 restricted our analysis to 85 brain-related genes expressed in the brain chosen based on the criteria
904 developed in ref.!'*’. See Supplementary Table 5 for the list of genes we analyzed.

905

906 Human non-neocortical structures

907 We analyzed the same three independent resting-state fMRI datasets used for the human neocortex
908 (i.e., HCP, GSP, and Monash). We analyzed the data in their original volumetric space smoothed
909 with a full width at half maximum (FWHM) of 6 mm and then constructed a group-averaged voxel-
910 level FC matrix for each hemisphere of each non-neocortical structure.

911

912 Null FC matrices

913 In Fig. 1E, we used the eigenstrapping method to randomize fMRI data and generate null FC
914 matrices’® (see Supplementary Information S2.1 for details). We first generated 1000 randomly
915 rotated surrogate geometric eigenmodes of the human neocortical surface, separately for the left
916 and right hemispheres (Supplementary Fig. 3A). We applied the surrogate eigenmodes to
917 reconstruct each time volume of each individual’s fMRI (Supplementary Fig. 3B), effectively
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918 creating 1000 surrogates of the vertex by time fMRI data. Note that the same set of rotated
919 eigenmodes was used across individuals. For each surrogate, we calculated individual-specific FC
920 matrices and took the average across the individuals to construct 1000 null group-averaged FC
921 matrices for each hemisphere. This approach generates a randomized map that retains the exact
922 spatial and temporal autocorrelation of the original data without relying on heuristics employed in
923 other popular methods, such as the Spin test’-1%:161 " that could affect proper statistical inference
924 on brain data’®!62163 We nonetheless replicate our null findings using the Spin test for
925 completeness (see Supplementary Information S2.2 and Supplementary Figure 4).
926
927 Reaction-diffusion model
928 Reaction-diffusion models are used ubiquitously to study various forms of biological pattern
929 formation!®*. The generalized model of two coupled molecules, u and v, spatiotemporally
930 diffusing and reacting in a system is commonly defined in terms of the following equations®®-6!:
931
ou(r,t
932 % = f(u(r,t),v(r,t)) + D,V?u(r,t), (5)
Jv(r,t
> Y~ gt 1), v(,0) + D,7u(r, 1), ©)
934
935 where u(r, t) and v(r,t) denote the local concentration of molecules u and v, respectively, at
936 spatial location r at time t. For brevity, we will drop the (r, t) in subsequent equations, but u and
937 v are treated as functions in space and time, unless otherwise stated. The terms f (u, v) and g(u, v)
938 model the reactions of the molecules (e.g., production and elimination of concentrations), while
939 the terms D, V?u and D, V?v model the diffusion of the molecules with D,, and D,, being positive
940 diffusion constants. Assuming the molecules have uniform concentrations at equilibrium, solutions
941 that depart from the equilibrium can be obtained as follows (see Supplementary Information S1.1
942 for the derivation):
943
ou
944 il bv + D, V?u, @)
v
945 ikl dv + D,V?v. (8)
946
947 By setting the constants a, b, ¢, and d as positive numbers, the form of Eqs (7) and (8) assigns
948 molecule u as the activator and molecule v as the inhibitor. Turing has shown that certain regimes
949 of the model’s parameters (e.g., inhibitor diffuses much faster than the activator) can destabilize
950 the uniform stationary states of the molecules’ concentrations, leading to the spontaneous
951 emergence of a spatially non-constant solution at equilibrium that defines a spatial pattern, called
952 a Turing instability*!, that can mimic various patterns found in nature (e.g., leopard spots, zebra
953 stripes; see refs®!:16° for a collection of related articles). One can show that it is the relation between
954 the model constants, and not their specific values, that give rise to spatial Turing instabilities (see
955 Supplementary Information S1.2 for the derivation). Specifically, instabilities will occur as long
956 as the model constants satisfy all of the following conditions: D,, < D,; a < d; ad < bc; and Di <
957 =,
Dy
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958 In Fig. 6, we simulated the model in Egs (7) and (8) on the left hemisphere of the human neocortex,
959 seeding molecules u and v at distinct areas defined by the HCP-MMP1 atlas (i.e., Glasser360 in
960 Fig. 1C)?. The example steady-state solution in Fig. 6B (top row) with Turing instability was
961 obtained using the parameters: a = 2; b = 4;c = 2;d = 3; D,, = 50; and D,, = 100.
962 We reiterate that the spatial pattern of the instability shown in Fig. 6B is invariant to the specific
963 values of these parameters as long as the model parameter combinations meet the conditions
964 defined above for the instability to emerge. Moreover, our hierarchical algorithm need not
965 necessarily result from a reaction-diffusion process, given prior work demonstrating that a
966 bipartition could be obtained using a single diffusion gradient (as in Wolpert’s French Flag
967 Problem®®!%). This invariance to model parameters and dynamics supports the robustness of the
968 underlying process of recursive bipartition based on geometry and suggests that multiple
969 mechanisms may achieve the same end. We used an activator-inhibitor reaction-diffusion process
970 here given evidence that some areal patterning molecules are mutually antagonistic (e.g., see
971 refsd>:166.167) "bhut acknowledge that this is not the only process that may achieve the end results we
972 describe. Indeed, experimental studies have shown that morphogen gradients can delineate
973 regional tissue boundaries using a variety of physiological processes® and that the actual processes
974 driving the regional patterning of the brain are likely complex, involving time-dependent
975 interactions between multiple molecular signals**>!:168, We used a basic reaction-diffusion model
976 here to demonstrate a simple mechanism through which geometric constraints via eigenmodes®->
977 can plausibly give rise to the multiscale regional architecture implied by our parcellation
978 algorithm, and we welcome further work that improves on the physiological plausibility of this
979 mechanism.
980
981 Data availability
982 All source data to generate the results of the study and species-specific geometric parcellations of
983 varying resolutions will be made openly available at
984 https://github.com/NSBLab/geometric_parcellation upon publication.
985
986 Code availability
987 All computer codes to generate the parcellations, analyze results, and reproduce the figures of the
988 study will be made openly available at https://github.com/NSBLab/geometric_parcellation upon
989 publication.
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