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 32 

Abstract 33 

The mammalian brain is comprised of anatomically and functionally distinct regions. Substantial 34 
work over the past century has pursued the generation of ever-more accurate maps of regional 35 
boundaries, using either expert judgement or data-driven clustering of functional, connectional, 36 
and/or architectonic properties. However, these approaches are often purely descriptive, have 37 
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limited generalizability, and do not elucidate the underlying generative mechanisms that shape the 38 
regional organization of the brain. Here, we develop a novel approach that leverages a simple, 39 
hierarchical principle for generating a multiscale parcellation of any brain structure in any 40 
mammalian species using only its geometry. We show that this approach yields regions at any 41 
resolution scale that are more homogeneous than those defined in nearly all existing benchmark 42 
brain parcellations in use today across hundreds of anatomical, functional, cellular, and molecular 43 
brain properties measured in humans, macaques, marmosets, and mice. We additionally show how 44 
our method can be generalized to previously unstudied mammalian species for which no 45 
parcellations exist. Finally, we demonstrate how our approach captures the essence of a simple, 46 
hierarchical reaction-diffusion mechanism, in which the geometry of a brain structure shapes the 47 
spatial expression of putative patterning molecules linked to the formation of distinct regions 48 
through development. Our findings point to a highly conserved and universal influence of 49 
geometry on the regional organization of the mammalian brain. 50 

 51 
Introduction 52 

Over 100 years ago, Brodmann famously used variations in cytoarchitecture to subdivide (or 53 
parcellate) the human cerebral cortex into 43 discrete regions1, which he considered to be “specific 54 
morphological organs” (p. 251), each representing an “exclusive individual function that is 55 
different from those of other organs” (pp. 251–252). His proposal––that the brain is composed of 56 
anatomically and functionally specialized subregions––has fundamentally influenced a century of 57 
subsequent research2,3, such that the prevailing orthodoxy in contemporary neuroscience is that 58 
coordinated behaviour arises from interactions between these discrete, specialized areas4,5. 59 
Despite the popularity of this paradigm, accurate and reliable delineation of regional boundaries 60 
has been challenging. Different anatomists have proposed their own cytoarchitectonic 61 
parcellations that differ both in the number of areas defined and the anatomical locations of their 62 
boundaries6. This variability has led some to question the validity, reliability, and utility of discrete 63 
cytoarchitectonic borders, particularly outside sharply delimited primary sensorimotor cortices7–9. 64 
More recent work has leveraged advances in non-invasive techniques, such as magnetic resonance 65 
imaging (MRI), to statistically cluster brain locations according to similarities in microstructural, 66 
anatomical, connectivity, and functional profiles10–13. This work has culminated in a recent 67 
flagship study by the Human Connectome Project (HCP)14 that synthesized multimodal measures 68 
to define 180 discrete regions per cortical hemisphere2––a >4-fold increase in the number of 69 
regions originally defined by Brodmann. 70 

This body of research has been foundational to our understanding of regional specialization in the 71 
brain, but it is limited in several key respects. First, all existing parcellations assume that discrete 72 
regions are separated by sharp transitions in brain structure and/or function, but many anatomists7, 73 
including Brodmann himself1, have observed that many areas of the primate cortex show more 74 
graded architectonic transitions (see also refs.15–17). Second, the regional borders defined according 75 
to different properties (e.g., cytoarchitecture, myeloarchitecture, chemoarchitecture, brain 76 
function) do not always coincide6,18, raising questions about which specific property should be 77 
prioritized. Third, the functional boundaries of many putative regions defined at any given scale 78 
can be malleable, shifting over time in accordance with changing cognitive demands19–21. Fourth, 79 
most parcellations are defined at a single spatial resolution when, in fact, the brain shows a non-80 
trivial anatomical and functional organization that spans multiple resolution scales22–24, including 81 
those that are supra-regional (e.g., broad cortical “types” of laminar differentiation25–29 and 82 
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distributed, large-scale networks30–32) and infra-regional (e.g., columns and hypercolumns33). 83 
Accordingly, multiple, spatially overlapping modes of structural and functional organization are 84 
evident even within regions with well-defined borders, such as V134, or those with clear subnuclear 85 
structure such as the thalamus35. Finally, nearly all existing approaches to brain parcellation are 86 
purely descriptive, identifying boundaries between regions according to expert or statistical 87 
clustering of patterns in data without any links to an underlying generative mechanism (for 88 
exceptions, see refs36–38). Such approaches rely on complex data pipelines that are heavily 89 
influenced by investigator choices10, complicating attempts to inter-relate and replicate findings 90 
across different contexts. Together, these considerations suggest that many traditional approaches 91 
do not yield brain parcellations that generalize across different contexts, resolutions, individuals, 92 
brain structures, and species.  93 

Here, we address these limitations by developing a simple, hierarchical, and geometric approach 94 
for regional parcellation that captures the essence of key physical constraints on physiological 95 
processes that shape the regional organization of the brain. Rather than trying to cluster different 96 
brain features into a statistically optimal solution, our approach only requires a model of the 97 
geometry of a brain structure as input and can be used as a unified parcellation method for any 98 
structure in any species and at any resolution scale. The method provides a direct mapping between 99 
discrete and more graded accounts of brain architecture, whilst also offering an intrinsically 100 
multiscale description of regional organization. We show that this simple method yields regions 101 
with more homogeneous anatomical, functional, cellular, and molecular properties than nearly all 102 
existing benchmark parcellations in use today. We then show how our approach aligns naturally 103 
with a classical reaction-diffusion mechanism of patterning substances that play an important, and 104 
perhaps minimally sufficient role, in shaping the initial blueprint of regional organization in the 105 
brain. 106 
 107 

A hierarchical, geometric approach for brain parcellation 108 
Early regionalization of brain structures is shaped by morphogens, which are secreted from 109 
specific patterning centers and diffuse through the developing cortical primordium along spatially 110 
continuous gradients39–41. For instance, in the midbrain and hindbrain, highly conserved gradients 111 
of Hox genes are sufficient to sharply delineate distinct expression domains, called prosomeres, 112 
that give rise to subdivisions of the diencephalon and secondary prosencephalon42. In the cortex, 113 
morphogens, such as fibroblast growth factor 8 (FGF8), Wnt, and Sonic Hedgehog (Shh), trigger 114 
the subsequent expression of distinct transcription factors (e.g., Pax6, Emx2, Couptf1) that further 115 
drive areal specification43–49. The superposition of these expression gradients spatially organizes 116 
neurogenic and other developmental dynamics, creating a rudimentary blueprint of areal identity 117 
that is gradually refined by thalamic innervation and activity-dependent mechanisms48,50–54. 118 
The expression gradients formed by morphogens and other patterning factors predominantly align 119 
with the rostrocaudal, dorsoventral, and mediolateral axes of the developing telencephalon50,51,55–120 
57. As such, they correspond to the cardinal axes of geometric variation in brain structure, which 121 
are formally described by the low-order geometric eigenmodes of the cortex derived from a 122 
mathematical decomposition of cortical geometry that is comparable to Fourier decomposition58,59 123 
(see details below). The equivalence between the expression gradients and geometric eigenmodes 124 
arises because the geometry of a medium shapes the spatial patterns that arise from the diffusion 125 
and interactions of any molecules within it, as dictated by Turing’s classical reaction-diffusion 126 
equations41,60. The low-order eigenmodes are the least physically stable in generic reaction-127 
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diffusion systems and are therefore the first patterns to be expressed61. The preponderance of such 128 
patterns in early expression gradients of the developing brain51 thus arises from the physical 129 
constraints that geometry imposes on molecular dynamics. 130 

We leverage this constraining effect of geometry to devise a simple algorithm for regional 131 
parcellation. The algorithm captures the essential features of a hypothesized set of reaction-132 
diffusion processes that shape the regional organization of the brain, without having to specify the 133 
full set of biophysical details of the molecular interactions involved. We begin by describing the 134 
application of our algorithm to the left hemisphere of the human neocortex, the surface geometry 135 
of which is approximated by a triangular mesh (with 32,492 vertices) derived from a population-136 
average template extracted from T1-weighted (T1w) MRI (Fig. 1A, top left). First, we calculate 137 
the surface’s geometric eigenmodes by solving the Helmholtz equation,  138 

𝛥𝜓 = −𝜆𝜓, (1) 139 

where 𝛥 is the Laplace-Beltrami operator (LBO), which accounts for the spatial relationships 140 
between vertices on the surface mesh (see ‘Derivation of geometric eigenmodes’ in Methods), and 141 
𝜓 = {𝜓!, 𝜓", …} is the family of geometric eigenmodes with corresponding eigenvalues, 𝜆 =142 
{𝜆!, 𝜆", … }. The eigenvalues are ordered sequentially and correspond to the effective spatial 143 
wavelength of each eigenmode, with 𝜆! ≈ 0 being the smallest eigenvalue and 𝜓! the 144 
corresponding eigenmode with the longest spatial wavelength (i.e., a spatially uniform or constant 145 
eigenmode).  146 

The nodal lines of the eigenmodes (i.e., points with zero magnitude) partition the cortex into 147 
positive and negative domains of approximately equal sizes. We use the first non-constant 148 
eigenmode 𝜓" with eigenvalue 𝜆" to partition the cortex into two subregions along the major 149 
rostrocaudal axis (Fig. 1A, top middle and right), as an initial approximation of regional boundaries 150 
at the coarsest resolution scale. This eigenmode defines the dominant axis of shape variation and 151 
it is the least physically stable, meaning that it will be the first spatial pattern expressed in a 152 
reaction-diffusion process61. This physical property aligns with experimental evidence that most 153 
patterning molecules identified to date are expressed along rostrocaudal gradients51. 154 

After the initial partition of the cortex along the nodal line of 𝜓" (Fig. 1A, top), we repeat the 155 
process successively on each new subregion over multiple iterations to generate a parcellation of 156 
any arbitrary scale (Fig. 1A, bottom). This hierarchical bipartition naturally yields parcellations 157 
with 2# parcels, where 𝑁 is the number of iterations (Fig. 1B). To derive a parcellation comprising 158 
any arbitrary number of regions (from 1 to 2#), we rely on a heuristic that uses the eigenvalues of 159 
the resulting sub-regional eigenmodes to prioritize sub-divisions with the smallest eigenvalues (see 160 
Supplementary Figs 1A–B and ‘Hierarchical partitioning’ in Methods). This iterative procedure, 161 
based on recursive bipartition, mimics the developmental processes that shape numerous 162 
hierarchically organized, multiscale biological systems, such as limbs and digits, bronchial trees, 163 
vascular networks, and segmented body plans, in which tissue elements emerge through the 164 
successive branching or division of previous ones60,62–66. Such a process has also been implicated 165 
in brain development and evolution; for instance, the neural tube divides into the spinal cord and 166 
cerebral vesicles (hindbrain, midbrain, and forebrain), the vesicles into neuromeres, and the 167 
neuromeres into smaller sub-fields across several resolution scales67,68. Critically, tissue geometry 168 
constrains the precise way in which these bipartitions occur69. 169 

Our simple algorithm rests on the assumption that geometric constraints and recursive bipartition 170 
capture the essential features of the complex cascade of developmental processes that shape the 171 
regional organization of the brain. In the following sections, we show how our simplification of 172 
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this process allows us to easily generalize our approach to any brain structure, resolution scale, 173 
and species, given a model of brain geometry either derived from MRI or alternative methods (e.g., 174 
microscopy). We then show more directly how our algorithm captures the core elements of a 175 
hierarchical reaction-diffusion process. 176 
 177 

 178 
Fig. 1. Hierarchical geometric parcellation of the human neocortex. (A) Schematic diagram of our iterative, 179 
hierarchical approach. In the first iteration, we divide the cortex into two subregions according to the nodal line 180 
of the first non-constant geometric eigenmode (white area, middle panel). In the second iteration, we repeat the 181 
process, this time by taking the first non-constant eigenmode estimated separately for the two subregions defined 182 
in the first iteration. This process is iterated several times to achieve a desired parcellation resolution, separately 183 
for the left and right hemispheres. (B) Example multiscale geometric parcellations with 8, 16, 32, and 64 parcels 184 
(from top to bottom). (C) 17 existing benchmark parcellations and corresponding geometric parcellations with 185 
matched number of parcels. The number beside the parcellation’s name denotes the total number of parcels 186 
across both hemispheres (e.g., Brodmann78 has 78 parcels in total across the left and right hemispheres). (D) 187 
Regional homogeneity based on FC (𝐻!") from the HCP, GSP, and Monash datasets. The numbers represent the 188 
percentage difference between the geometric and existing parcellations, where positive/red indicates superior 189 
performance for geometric parcellations. (E) Empirical and null 𝐻!" of the counterpart geometric parcellations 190 
in Fig. 1C based on 1000 randomized FCs. The blue diamonds correspond to the empirical 𝐻!" and the black 191 
dots correspond to the null data. Note that the scale of the x-axes is discontinuous (marked by the diagonal lines) 192 
because of the difference in magnitude of the empirical and null data. Each geometric parcellation showed 193 
significantly higher empirical 𝐻!" than the null data (two-sided p-value <0.001). 194 
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Geometric parcellations yield functionally, cellularly, and molecularly homogeneous regions 195 

We now investigate the degree to which our geometric parcellations accurately capture the 196 
organizational properties of the human neocortex. This accuracy is most commonly determined by 197 
the degree to which each region defines a homogeneous set of point-wise (i.e., vertex or voxel) 198 
measures12,70–73, with homogeneity commonly defined in relation to inter-vertex functional 199 
coupling (FC) (i.e., average within-region FC; see ‘Calculation of regional homogeneity’ in 200 
Methods). We follow this approach and quantify parcel-level FC homogeneity, 𝐻$%, as measured 201 
with resting-state functional magnetic resonance imaging (fMRI), in three independent datasets 202 
comprising a total of 2259 individuals [i.e., the Human Connectome Project (HCP)14; the 203 
Genomics Superstructure Project (GSP)74; and a dataset acquired in-house at Monash University 204 
(Monash)75]. We benchmark 𝐻$% with respect to 17 existing cortical parcellations that are widely 205 
used in the field and that have been constructed in diverse ways, including through the use of 206 
histological criteria (Histological), anatomical landmarks (Anatomical), multimodal imaging 207 
(Multimodal), or data-driven clustering of resting-state FC (Functional); see Fig. 1C, 208 
Supplementary Table 1, and ‘Benchmark brain parcellations’ in Methods. For each existing 209 
parcellation, we generate a corresponding geometric parcellation with the same number of parcels 210 
specific to the left and right hemispheres to ensure fair comparison. 211 
Figure 1D shows that our method yields parcels with higher homogeneity than 15 of the 17 212 
benchmark parcellations based on FC data from the HCP dataset and 16 of the 17 in the GSP and 213 
Monash datasets (Fig. 1D). The Cammoun219 atlas shows higher 𝐻&'  than the geometric 214 
parcellation only in the HCP dataset, but the difference is minimal (1.0%). The only benchmark 215 
parcellation with consistently and notably higher 𝐻&'  is the Schaefer300 atlas, which relies on 216 
extensive fMRI training data and a sophisticated clustering approach76 that is much more complex 217 
than our method.  218 

Figure 1C indicates that, at any given scale, the geometric parcellations resemble an approximately 219 
uniform grid (Supplementary Figs 1B) with highly uniform parcels (Supplementary Figs 1C–D) 220 
that are unlike the less regular regional borders seen in other parcellations. This grid-like structure 221 
partly arises from the hierarchical partitioning of our procedure. It mirrors similar organizational 222 
motifs observed in inter-regional axonal projections77 and may be considered analogous to a 223 
rectilinear map of areal organization that results from a superposition of continuous expression 224 
gradients of key patterning molecules51,53.  225 
To ensure that the strong performance of our geometric approach is not merely driven by the 226 
uniformity of its parcels, we conduct two analyses. First, we show that differences in 𝐻&'  between 227 
the geometric and existing parcellations are not associated with differences in the variance of 228 
parcel sizes (Supplementary Fig. 2). Second, we generate an ensemble of null FC matrices via the 229 
eigenstrapping method that randomizes fMRI data while preserving the spatial and temporal 230 
autocorrelation inherent in the data78 (Supplementary Figs 3A–B; see ‘Null FC matrices’ in 231 
Methods). We find that the empirical 𝐻$% of the geometric parcellations (Fig. 1E), and their 232 
performance relative to the existing benchmark parcellations (Supplementary Fig. 3C), are 233 
significantly higher than corresponding values observed in the null 𝐻$% ensembles (see 234 
Supplementary Fig. 4 for replication with an alternative null model79 described in Supplementary 235 
Information S2.2). These results indicate that it is the specific orientation and placement of the 236 
parcels of the geometric atlases, and not just low-level features such as the distribution of parcel 237 
sizes or the grid-like boundaries, that confers high functional homogeneity. 238 
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The grid-like structure of the geometric parcellations also arises in part from the use of a 239 
population-averaged cortical surface template, which smooths fine-scale anatomical variations and 240 
retains only coarse geometric features of the cortex. Applying our approach to individual cortical 241 
geometries yields regional borders that are more clearly aligned with the sulcal and gyral anatomy 242 
of individuals (Supplementary Fig. 5A; Supplementary Information S3) and yields regions with 243 
higher average 𝐻$% than the template-based approach (Supplementary Fig. 5B) especially at coarse 244 
resolutions. Moreover, we find that the high homogeneity of individual parcellations is specific to 245 
an individual’s FC data (Supplementary Fig. 5C), further supporting the specificity of the 246 
geometric effects captured by our approach. We nonetheless focus on template-based geometric 247 
parcellations in subsequent analyses because most of the brain phenotypes that we investigate to 248 
further validate our approach are not individual-specific (see also Supplementary Information S3). 249 

Having established the high FC-based functional homogeneity of the geometric parcellations with 250 
respect to three independent datasets, we next evaluate parcel-level homogeneity across 242 251 
diverse non-FC cortical phenotypes or maps drawn from open-source repositories14,80,81 (Fig. 2A; 252 
see ‘Brain phenotypes’ in Methods for details). These maps include 1 morphometry map (cortical 253 
thickness); 3 microstructure maps (T1w:T2w ratio – an MRI metric that indirectly probes 254 
intracortical myeloarchitecture82, NDI – neurite density index, and ODI – orientation dispersion 255 
index); 50 cytoarchitecture maps (layer-specific cell density); 5 metabolism maps derived from 256 
positron emission tomography (PET) (CMRGlu – cerebral metabolic rate of glucose, CBV – 257 
cerebral blood volume, CBF – cerebral blood flow, CMRO2 – cerebral metabolic rate of oxygen, 258 
and synaptic density); 1 gene expression map (first principal component of gene profiles); 19 259 
chemoarchitecture maps (i.e., neurotransmitter receptor density maps derived from PET); 47 HCP 260 
task-activation maps; and 116 meta-analytic task-activation maps from Neurosynth81. For each 261 
map, we estimate map-specific homogeneity, denoted 𝐻()*, as the inverse of the variance of map 262 
values across the vertices within a region (see ‘Calculation of regional homogeneity’ in Methods). 263 
Comparing 𝐻()* for different parcellations across such a diverse set of brain maps ensures that 264 
our findings cannot be attributed to the idiosyncrasies of any specific imaging modality (e.g., 265 
fMRI) or brain property (e.g., FC). 266 
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 267 
Fig. 2. Homogeneity of the geometric parcellations across diverse maps of the human neocortex. (A) 268 
Examples from 242 non-FC brain maps derived from various modalities capturing distinct phenotypes, including 269 
those related to morphometry, microstructure, cytoarchitecture, metabolism, gene expression, 270 
chemoarchitecture, HCP task activation, and Neurosynth task activations. The number beside the phenotype’s 271 
group name denotes the total number of available maps. For phenotypes with more than three maps, only three 272 
representative maps are visually shown for brevity. (B) Percentage difference in the homogeneity of geometric 273 
parcellations relative to existing parcellations. Each row shows the result for one parcellation and each column 274 
shows the result for one brain map (including the three FC-based results in Fig. 1D), where red indicates superior 275 
performance for geometric parcellations. (C) Binarized version of panel B, where gray indicates superior or 276 
equivalent performance for geometric parcellations, with equivalence quantified as a difference threshold of 277 
±1%. (D) Percentage of maps where the geometric parcellations have superior or equivalent performance relative 278 
to the existing parcellations. 279 
 280 

Figures 2B–C show that the geometric parcellations consistently demonstrate superior 281 
performance, outperforming some existing parcellations in certain maps by more than 100%. More 282 
specifically, we find that the geometric parcellations have higher or equivalent homogeneity for 283 
>78% of the brain maps relative to 16 out of 17 benchmark parcellations (Fig. 2D; see 284 
Supplementary Fig. 6A for other equivalence thresholds). The exception is again the Schaefer300 285 
atlas, which shows higher homogeneity than its geometric counterpart across 79.2% of the maps, 286 
highlighting the excellent generalizability of this FC-derived parcellation. However, the average 287 
performance difference between Schaefer300 and the corresponding geometric parcellation is 288 
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4.5% (min=1.0%, max=14.4%), which is small compared to, for example, the difference between 289 
geometric and histological parcellations, where the former show an average homogeneity 290 
advantage of 23.3% (min=1.0%, max=127%). These findings suggest that atlases derived from 291 
gold-standard cytoarchitecture and other histological techniques define parcels that lack 292 
generalizable homogeneity across multiple brain phenotypes. 293 

Despite these comparisons, we emphasize that our goal here is not to identify a single ‘optimum’ 294 
parcellation for all applications, since the utility of an atlas will depend on the question under 295 
investigation (e.g., see ref.83 for a systematic comparison of atlases). Instead, the strong 296 
performance of our simple approach, which requires only a model of the geometry of the cortex 297 
from a T1w anatomical scan, implies that it approximates the key features of a generative process 298 
that shapes a rough blueprint of cortical regional organization. The final boundaries of cortical 299 
areas may then be refined by experience-dependent and other processes, which may be somewhat 300 
better captured by the sophisticated FC-based clustering algorithm used to define the Schaefer300 301 
atlas. Our results nonetheless demonstrate how a simple process, influenced only by geometry, is 302 
sufficient to delineate cortical regions with high functional, cellular, and molecular homogeneity.  303 

 304 
Geometric constraints on cortical regionalization generalize to other mammals 305 

We propose that the hierarchical geometric processes implicit in our parcellation method capture 306 
the essence of a highly conserved mechanism for defining the multiscale regional organization of 307 
the brain. We now test this conservation by investigating the generalizability of our approach to 308 
the neocortices of other non-human species; specifically, the macaque, marmoset, and mouse. For 309 
the macaque and marmoset, we apply the same algorithm used in Fig. 1A to a triangular mesh 310 
representation of their population-averaged cortical surfaces (10,242 vertices for each hemisphere 311 
of the macaque; 37,974 and 38,094 for the left and right hemispheres of the marmoset, 312 
respectively). For the mouse, we apply the algorithm to its neocortex in three-dimensional (3D) 313 
volumetric space (200 µm isotropic voxel resolution; see ‘Derivation of geometric eigenmodes’ in 314 
Methods) because existing atlases of the mouse brain are only available in volumetric space. 315 

We benchmark the performance of our geometric approach against 15 existing parcellations 316 
derived from histological and multimodal data (Fig. 3A; Supplementary Table 1) and 114 different 317 
cortical phenotypes available across the three species (10, 4, and 1 parcellations and 20, 5, and 89 318 
phenotypes for the macaque, marmoset, and mouse, respectively). The phenotypes are related to 319 
resting-state FC (measured using fMRI and calcium imaging), morphometry, microstructure, 320 
chemoarchitecture, cytoarchitecture, and gene expression (see ‘Benchmark brain parcellations’ 321 
and ‘Brain phenotypes’ in Methods for details). Once again, our use of both in vivo and ex vivo 322 
data spanning functional, cellular, and molecular properties across all the three species ensures 323 
that our findings cannot be attributed to the specific details of any specific measurement modality 324 
or brain property. 325 
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 326 
Fig. 3. Geometric parcellations of the macaque, marmoset, and mouse neocortex. (A) Existing benchmark 327 
parcellations and corresponding geometric parcellations with matched number of parcels. The number beside 328 
the parcellation’s name denotes the total number of parcels across both hemispheres. (B) Percentage difference 329 
in the homogeneity of geometric parcellations relative to existing parcellations. Each row shows the result for 330 
one parcellation and each column shows the result for one brain map, where red indicates superior performance 331 
for geometric parcellations. (C) Binarized version of panel B, where gray indicates superior or equivalent 332 
performance for geometric parcellations, with equivalence quantified as a difference threshold of ±1%. For 333 
panels B and C, the number beside the phenotype’s group name denotes the total number of available maps. (D) 334 
Percentage of maps where the geometric parcellations have superior or equivalent performance relative to the 335 
existing parcellations.  336 
 337 

Figures 3B–C show that our geometric parcellations again consistently demonstrate superior 338 
performance relative to existing parcellations. Specifically, we find that the geometric 339 
parcellations have higher or equivalent homogeneity for >65%, 100%, and 94.4% of the brain 340 
phenotypes in the macaque, marmoset, and mouse, respectively (Fig. 3D; see Supplementary Figs 341 
6B–D for other equivalence thresholds). In the macaque, the only instances in which our geometric 342 
parcellation show lower homogeneity are relative to BoninBailey52, Brodmann58, and 343 
Brodmann82 parcellations in 2, 7, and 4 out of 20 maps, respectively. Notably, these parcellations 344 
only outperform the geometric parcellations by an average of 3.5% (min=1.2%, max=7.4%). This 345 
value is small compared to the 12.6%, 14.3%, and 18.0% higher FC homogeneity of the geometric 346 
parcellations relative to the BoninBailey52, Brodmann58, and Brodmann82 atlases, respectively. 347 
In the mouse, the ABA80 atlas only outperforms the geometric parcellations in 5 out of 89 maps 348 
(all related to gene expression) by an average of 5.4% (min=1.8%, max=12.8%).  349 
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The strong performance of the geometric approach is notable given that many of the non-human 350 
primate and mouse parcellations have been defined through careful cytoarchitectonic analysis, 351 
which is often considered the gold standard in the field. As suggested by the analysis of the human 352 
data, our results in these animals indicate that such parcellations may only characterize one specific 353 
aspect of organization at a particular spatial scale that may not generalize to other properties of 354 
cortical organization. Conversely, the consistently strong performance of the geometric 355 
parcellations further supports the universality of our approach in defining homogeneous parcels at 356 
any arbitrary resolution for any species. 357 
A key advantage of our approach is that it is simple, fast, and flexible, requiring only a geometric 358 
model of a given brain structure, which can easily be obtained from T1w MRI. This simplicity 359 
contrasts with classical approaches that require expensive and time-consuming manual 360 
investigation of regional cytoarchitecture or the application of sophisticated cluster analyses to 361 
high-dimensional physiological data. The simplicity and generality of our algorithm means that it 362 
can easily be applied to generate a reasonable first approximation of the regional organization of 363 
species that have not been extensively studied and for which no parcellations exist.  364 

To further demonstrate the flexibility of our approach, we use an open-source repository of cortical 365 
surfaces of 24 various species from the Euarchontoglires superorder of mammals (also known as 366 
Supraprimates), which includes the groups of Primata, Scandentia, Dermoptera, Rodentia, and 367 
Lagomorpha84. Figure 4 shows that we can successfully produce geometric parcellations for any 368 
species at any arbitrary resolution within the spatial limits of MRI (the example panels show 8, 16, 369 
and 32 parcels). These new parcellations open new opportunities to study the regional properties 370 
of the brains of these mammalian species that would not otherwise be possible. We provide this 371 
library of parcellations as an open resource to facilitate future comparative research and validation 372 
(see ‘Data availability’ section). 373 
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 374 
Fig. 4. Geometric parcellations of 24 diverse mammalian species. The center graph shows the phylogenetic 375 
relationships between the species from 5 groups of the Euarchontoglires mammalian superorder84; i.e., Primata, 376 
Scandentia, Dermoptera, Rodentia, and Lagomorpha. For each species, the insets show their example geometric 377 
parcellations with 8, 16, and 32 parcels (from inner to outer ring). 378 
 379 
Geometric constraints on regionalization generalize to non-neocortical structures 380 

Having demonstrated the generality of our approach for characterizing the regionalization of the 381 
cortex of diverse species, we next consider how geometry shapes the multiscale regionalization of 382 
non-neocortical (i.e., subcortical and allocortical) structures of the human brain, focusing on the 383 
following 7 structures: hippocampus (HIP); amygdala (AMY); thalamus (THA); nucleus 384 
accumbens (NAc); globus pallidus (GP); putamen (PUT); and caudate (CAU). We generate 385 
geometric parcellations specific to each of these 7 structures using 3D volumetric (voxel-based) 386 
models of their geometry derived from T1w MRI (at 2 mm isotropic voxel resolution)58. We then 387 
evaluate the performance of the geometric parcellations against 20 existing benchmark 388 
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parcellations across the 7 structures (Fig. 5A; Supplementary Table 2; specifically 4, 2, 6, 2, 2, 2, 389 
and 2 parcellations for HIP, AMY, THA, NAc, GP, PUT, and CAU, respectively) in the three 390 
independent resting-state fMRI FC datasets analyzed in Fig. 1 (i.e., HCP, GSP, and Monash). 391 
These benchmark parcellations were derived using a variety of approaches based on 392 
cytoarchitecture, myeloarchitecture, resting-state fMRI, and diffusion MRI (Supplementary Table 393 
2). 394 
 395 

 396 
Fig. 5. Geometric parcellations of 7 human non-neocortical structures. (A) Existing benchmark parcellations 397 
and corresponding geometric parcellations with matched number of parcels across the 7 structures (HIP: 398 
hippocampus; AMY: amygdala; THA: thalamus; NAc: nucleus accumbens; GP: globus pallidus; PUT: putamen; 399 
CAU: caudate). The number beside the parcellation’s name denotes the total number of parcels across both 400 
hemispheres. (B) Percentage difference in the homogeneity of geometric parcellations relative to existing 401 
parcellations. Each row shows the result for one parcellation and each column shows the result for one FC 402 
dataset, where red indicates superior performance for geometric parcellations. (C) Binarized version of panel B, 403 
where gray indicates superior or equivalent performance for geometric parcellations, with equivalence quantified 404 
as a difference threshold of ±1%. (D) Percentage of maps where the geometric parcellations have superior or 405 
equivalent performance relative to the existing parcellations. 406 
 407 
Figures 5B–D show that the geometric parcellations of the 7 human non-neocortical structures 408 
consistently show higher or equivalent 𝐻&'  relative to existing parcellations. The only exception 409 
is the comparison with the Melbourne16 THA parcellation on the HCP dataset and the PD4 GP 410 
parcellation on the GSP dataset, where the homogeneity difference is 1.1% and 2.1%, respectively 411 
(slightly above our homogeneity equivalence threshold of 1%; see Supplementary Fig. 6E for other 412 
thresholds). Moreover, the geometric parcellations across different scales strongly correspond to 413 
the boundaries defined by many of the existing parcellations, particularly those of the Melbourne4 414 
parcellations for HIP, AMY, NAc, GP, PUT, and CAU (average Dice coefficients of 0.93, 0.94, 415 
0.95, 0.97, 0.93, and 0.94, respectively). This is because the Melbourne parcellations draw regional 416 
boundaries based on sharp transitions in spatially varying FC gradients, which correspond almost 417 
precisely with the geometric eigenmodes of these non-neocortical structures58. Our geometric 418 
approach thus achieves a similar result without the need for data-intensive analyses of fMRI data. 419 
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Together, these findings further underscore the universality of geometric constraints on the 420 
regional organization of different brain structures. 421 
 422 

Hierarchical geometric parcellation mimics a sequential reaction-diffusion process 423 
Our geometric algorithm rests on an implicit generative model of the brain’s regional organization 424 
that emphasizes two principal mechanisms: (1) the fundamental physical constraints imposed by 425 
geometry on the diffusion of early patterning molecules; and (2) recursive bipartition to generate 426 
a hierarchical, multiscale architecture. Here, we demonstrate how these two mechanisms capture 427 
the essence of a generic reaction-diffusion process hypothesized to play a role in establishing a 428 
multiscale map of regional organization in the developing brain.  429 
For brevity, we focus on the human neocortex and simulate a linearized reaction-diffusion (RD) 430 
model of an activator-inhibitor type60 (see ‘Reaction-diffusion model’ in Methods). We emphasize 431 
that our model is not intended to precisely capture the actions of any specific molecule or 432 
interactions between a set of molecules, as their biophysical details are often unknown (for 433 
exceptions, see refs85,86). The model instead identifies a minimally sufficient set of physiological 434 
mechanisms that can yield the regional patterning implied by our geometric parcellation algorithm.  435 
We first focus on molecules seeded at maximally distant points near the rostral and caudal poles 436 
of the left hemisphere (Fig. 6A), following evidence that several morphogens and transcription 437 
factors (e.g., Emx2 and Pax6) show opposing concentration gradients along the rostrocaudal (RC) 438 
axis50,56. Depending on model parameter combinations, Turing has shown that our type of model 439 
can lead to the spontaneous emergence of spatially non-constant solutions, via what is termed a 440 
spatial Turing instability41 (see ‘Reaction-diffusion model’ in Methods for the instability 441 
conditions). Figure 6B (top row) shows the equilibrium RD solution for (𝑢 − 𝑣) using the seeds 442 
in Fig. 6A and parameters that induce a Turing instability (see ‘Reaction-diffusion model’ in 443 
Methods for the specific parameters). The model RD solution gives rise to an increase of 𝑢 and 𝑣 444 
in separate halves of the cortex (𝑢 > 𝑣 in one half towards the rostral pole and 𝑣 > 𝑢 in the other 445 
half towards the caudal pole), partitioning the cortex into two subregions separated by a nodal line 446 
that bears a striking qualitative resemblance to the RC eigenmode (Fig. 6B bottom row)––the 447 
starting point of our parcellation algorithm (Fig. 1A). The high similarity of the model RD solution 448 
and RC eigenmode and their corresponding parcellations are quantitatively evidenced by a high 449 
spatial correlation (0.85) and ahigh Dice coefficient (0.82). Note that the spatial pattern of the 450 
model RD solution in Fig. 6B is robust and can be reproduced when the linear activator-inhibitor 451 
interactions in the model are changed to nonlinear functions (Supplementary Fig. 7). 452 
 453 
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 454 
Fig. 6. Model-based parcellation via a reaction-diffusion process. (A) We use a reaction-diffusion model that 455 
assumes two molecules, 𝑢 and 𝑣, are seeded from distinct locations and diffuse in space and time with diffusion 456 
constants 𝐷# and 𝐷$, respectively. The schematic shows example seed locations of the molecules at maximally 457 
distant points near the rostral and caudal poles of the left hemisphere, specifically at regions 10pp (orbital 458 
prefrontal cortex) and V3B for 𝑢 and 𝑣, respectively, based on the Glasser360 parcellation2. The constants 𝑎, 𝑏, 459 
𝑐, and 𝑑 are assumed to be positive, such that the interaction assigns molecule 𝑢 to be the activator and molecule 460 
𝑣 to be the inhibitor. (B) The top row shows an example model reaction-diffusion (RD) solution (𝑢 − 𝑣) and 461 
parcellation using parameter combinations that induce a Turing spatial instability. The instability conditions are: 462 
𝐷# < 𝐷$; 𝑎 < 𝑑; 𝑎𝑑 < 𝑏𝑐; and 𝑑 𝐷$ < 𝑎 𝐷#⁄⁄ . The molecules are seeded at the locations described in panel A. 463 
The bottom row shows the rostrocaudal (RC) geometric eigenmode and parcellation. Correspondences between 464 
the model RD solution and RC eigenmode and their respective parcellations are quantitatively shown in terms 465 
of spatial correlation and Dice coefficient, respectively. (C) The two matrices show the spatial correlation of the 466 
model RD solutions and the RC geometric eigenmode (top matrix) and the Dice coefficients of their resulting 467 
parcellations (bottom matrix) when molecules 𝑢 and 𝑣 are seeded in various locations. Each location is assigned 468 
to one of five anatomical cortices: Occipital (Occ); Temporal (Temp); Parietal (Par); Insular (Ins); and Frontal 469 
(Fr). Correlations remain high as long as the activator 𝑢 is seeded anywhere in the front of the brain and the 470 
inhibitor 𝑣 is seeded anywhere in the back of the brain. (D) RD-RC spatial correlation and Dice coefficient when 471 
the inhibitor 𝑣 is seeded at V1 and the activator 𝑢 is seeded anywhere. Each point represents a different seed 472 
location for 𝑢. Three pairs of the molecules’ seed locations are highlighted that either provide high spatial 473 
correlation, high Dice coefficient, or both. (E) Seed locations of the molecules, resulting model RD solution, 474 
and resulting RD parcellation (from left to right) of the three pairs highlighted in panel D. 475 
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Figure 6C shows the effect of seeding molecules 𝑢 and 𝑣 at different locations using the parameter 476 
combinations that produce the RD solution in Fig. 6B. The correspondence between the model RD 477 
solution and RC geometric eigenmode, and their resulting parcellations, is extremely robust, with 478 
high spatial correlations (mean=0.75, median=0.79, min=-0.07, max=0.99) and high Dice 479 
coefficients (mean=0.84, median=0.85, min=0.48, max=0.98) obtained as long as the activator 480 
molecule 𝑢 is seeded anywhere in the frontal cortex and the inhibitor molecule 𝑣 is seeded 481 
anywhere in the occipital or temporal cortices. 482 

Some of the most robust correspondences between the model RD solution and RC geometric and 483 
their respective parcellations are obtained when the inhibitor molecule 𝑣 is seeded at region V1 484 
(primary visual cortex) regardless of the seed location of the activator molecule 𝑢, with mean 485 
spatial correlation of 0.80 (min=0.62, max=0.87) and mean Dice coefficient of 0.86 (min=0.73, 486 
max=0.92) as shown in Fig. 6D. This result is notable given that V1 is the most 487 
cytoarchitectonically and transcriptomically distinct region of the primate neocortex45,87,88 and is 488 
the last such region to complete neurogenesis89. Figure 6E shows specific optimal solutions with 489 
either high spatial correlation, high Dice coefficient, or both when the activator molecule 𝑢 is 490 
seeded at regions OFC (orbitofrontal cortex), 6a (premotor cortex), and 9m (anterior part of the 491 
dorsomedial prefrontal cortex), respectively. This robustness supports a consistent geometrically 492 
constrained blueprint for regional patterning in the face of biological noise90. 493 

In principle, the RD model can be iterated to generate recursive divisions within each partition to 494 
obtain a parcellation at any given scale that will strongly resemble the results of our purely 495 
geometric approach. The model thus implies that spatial variations in molecular concentrations 496 
defined by the equilibrium solutions of the RD process represent thresholds for triggering the 497 
diffusion of other molecules and more finely-tuned cellular and molecular processes within each 498 
subdomain or partition. This process echoes the threshold-dependent molecular dynamics 499 
proposed in Wolpert’s classical model of the French Flag problem, which aims to understand how 500 
positional information is conferred upon developing cellular arrays91,92. Our model implies that the 501 
new molecule distributions further destabilize along the dominant geometric eigenmode of each 502 
subregion to yield another division into two new subregions. In this way, the recursive bipartitions 503 
of our geometric algorithm can be understood as a hierarchical sequence of Turing instabilities, 504 
with each stage triggering the next set of reaction-diffusion processes that is very robust to the 505 
specific parameterization and details of the model (see Supplementary Information S1 for details). 506 
Indeed, our hierarchical geometric parcellation hypothesizes that once concentration levels 507 
saturate following the first division, a second instability is triggered within each of the two 508 
subregions that leads to further two-fold divisions of the subregions. Following this process, we 509 
would only need log"𝑁 hierarchical levels to produce 𝑁 regions, which is efficient and 510 
biologically feasible (see Supplementary Information S1.4). A similar mechanism of threshold-511 
dependent cascading is thought to underlie the progressive segmentation of the Drosophila body 512 
plan along the RC axis93,94. This recursive process may thus capture a conserved aspect of regional 513 
patterning that supports the progressive compartmentalization of different structures65,68,95, which 514 
can be effectively approximated by the first non-constant geometric eigenmode (i.e., the RC 515 
eigenmode at the first division). Accordingly, this eigenmode strongly aligns with a highly 516 
conserved gradient of neurogenic timing and neuronal density in mammals96,97.  517 

 518 
  519 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2025. ; https://doi.org/10.1101/2025.01.30.635820doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.30.635820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

17 

Conclusions 520 

An accurate understanding of the regional organization of the mammalian brain is essential for 521 
comprehending the functional specialization of distinct brain regions, and is fundamental for 522 
models that characterize how these specialized functions are integrated to support coordinated 523 
behavior4,5. Distinct regions of the brain have traditionally been defined using descriptive 524 
approaches that are agnostic to how the regions arise in the first place. Here, we have developed a 525 
generative approach to brain parcellation that relies on a simple, hierarchical, and geometrically 526 
constrained process to derive a regional parcellation of the brain at any given resolution scale. We 527 
have shown that this approach defines regions in both neocortical and non-neocortical structures 528 
with greater functional, cellular, and molecular homogeneity than those in almost all existing, 529 
popular benchmark parcellations in humans, macaques, marmosets, and mice brains. Critically, 530 
we have demonstrated that the simplicity of our approach, which only requires a model of brain 531 
geometry as input (e.g., from T1w MRI), allows it to be generalized to any brain structure in any 532 
mammalian species to create a parcellation of any arbitrary resolution within seconds. We further 533 
demonstrate that our approach mimics a sequential reaction-diffusion process that may represent 534 
a conserved developmental mechanism for establishing a multiscale map of regional organization 535 
in the mammalian brain. 536 

We emphasize that while a reaction-diffusion mechanism has extensive biological 537 
applicability85,86,98, the mechanism itself and the hierarchical approach we propose are 538 
approximations and exclude more complex molecular interactions. For instance, some aspects of 539 
areal patterning do not need two interacting morphogens99,100 and patterning gradients that 540 
predominantly run along the non-rostrocaudal axes of the brain (at the first division) have also 541 
been identified51. Future work could extend our approach to account for these higher-order 542 
influences, in addition to the role of thalamocortical afferents, which are likely to perturb the initial 543 
organization established by our recursive geometric procedure, interacting with postnatal brain 544 
growth and activity-dependent processes to refine areal boundaries51. Nonetheless, the striking 545 
performance of our method demonstrates that a simple, neurodevelopmentally-inspired 546 
hierarchical process anchored by the dominant geometric eigenmode is minimally sufficient to 547 
create a robust and highly generalized blueprint of areal organization, offering a unified approach 548 
to study the multiscale regional organization of any mammalian brain structure. Its flexibility for 549 
use in species for which no parcellations exist offers immediate practical and neuroscientific 550 
advantages for comparative research. The strong performance of our approach, observed across 551 
diverse anatomical, cellular, molecular, and functional properties, points to a fundamental role of 552 
geometry in shaping the regional organization of the mammalian brain. 553 
 554 
 555 
Methods 556 

Geometry of neocortical and non-neocortical structures  557 
The only input to our geometric parcellation approach is a T1w magnetic resonance imaging 558 
(MRI)-derived representation of a brain structure’s geometry either at the vertex level (for 559 
surfaces) or voxel level (for volumes). For the human neocortex, we used the fsaverage template 560 
of its midthickness surface101, resampled in fsLR_32k space with 32,492 vertices for each 561 
hemisphere. For the macaque neocortex, we used the Yerkes19 template of its midthickness 562 
surface102, resampled in fsLR_10k space with 10,242 vertices for each hemisphere. For the 563 
marmoset neocortex, we used the Marmoset Brain Mapping v3 (MBMv3) template of its 564 
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midthickness surface103, resampled in fsaverage_38k space with 37,974 and 38,094 vertices for 565 
the left and right hemispheres, respectively. For the mouse neocortex, we used the Allen Mouse 566 
Brain Common Coordinate Framework v3 (CCFv3) template in three-dimensional (3D) 567 
volumetric space at 200 µm isotropic voxel resolution.  568 
For the 24 Euarchontoglires mammalian species, we used reconstructions of their cortical surfaces 569 
in fsaverage6 space with 40,962 vertices for each hemisphere84. Phylogenetically, the 24 species 570 
belong to 5 groups; i.e., Primata, Scandentia, Dermoptera, Rodentia, and Lagomorpha. The 571 
Primata group comprises 13 species: Macaca mulatta (macaque); Papio anubis (baboon), Pan 572 
troglodytes (chimpanzee); Pan paniscus (bonobo); Homo sapiens (human); Gorilla gorilla 573 
(gorilla); Pongo pygmaeus (orangutan); Hylobates lar (gibbon); Callithrix jacchus (marmoset); 574 
Cebus cappuchinus (capuchin); Aotus trivirgatus (night monkey); Lemur catta (lemur); and 575 
Galago senegalensis (bushbaby). The Scandentia group comprises 1 species: Tupaia belangeri 576 
(tree shrew). The Dermoptera group comprises 1 species: Galeopterus variegatus (flying lemur). 577 
The Rodentia group comprises 8 species: Fukomys anselli (mole rat); Cavia porcellus (guinea pig); 578 
Sciurus carolinensis (squirrel); Glaucomys volans (flying squirrel); Ondata zibethicus (muskrat); 579 
Peromyscus californicus (deer mouse); Mus musculus (mouse); and Castor canadensis (beaver). 580 
The Lagomorpha group comprises 1 species: Ochotona macrotis (pika).  581 

For the human non-neocortical structures, we converted the existing parcellations of the 7 582 
structures, i.e., hippocampus (HIP), amygdala (AMY), thalamus (THA), nucleus accumbens 583 
(NAc), globus pallidus (GP), putamen (PUT), and caudate (CAU), into volumetric binary masks 584 
in the Montreal Neurological Institute (MNI) space at 2 mm isotropic voxel resolution. This is to 585 
ensure that the coverage and number of voxels in the geometric parcellations match those of the 586 
existing parcellations for fair comparison. Further details of the existing non-neocortical 587 
parcellations are described in the ‘Benchmark brain parcellations’ section. 588 
 589 

Derivation of geometric eigenmodes 590 
Our parcellation method uses the geometric eigenmodes of the brain to delineate regional 591 
boundaries. The eigenmodes are obtained by solving the Helmholtz equation defined in Eq. (1) of 592 
the main text. The Laplace-Beltrami operator (LBO) in Eq. (1) captures the intrinsic geometry of 593 
the brain structure of interest (e.g., cortical surface), i.e., geometric and spatial relations between 594 
mesh vertices104, and is defined generally as105, 595 

 596 
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where 𝑥+ , 𝑥, are the local coordinates, (𝑔+,) ≔ 𝐺.! with 𝐺 being the matrix of inner product of 599 
metric tensors 𝑔+, ≔ 〈 /

/0!
, /
/0"
〉, 𝑊 ≔ √det 𝐺, and det denotes the determinant. For surfaces, such 600 

as the human, macaque, and marmoset neocortices, we constructed the LBO using a triangular 601 
mesh representation of the T1w MRI-derived cortical sheet. For solid 3D structures, such as the 602 
mouse neocortex and human non-neocortical structures, we converted their T1w MRI-derived 603 
volumetric binary masks into tetrahedral meshes to account for the full 3D geometry of the 604 
structures (see ref.58 for further details). Note, however, that the LBO can also be constructed using 605 
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a model of a brain structure’s geometry derived from alternative methods (e.g., microscopy) and 606 
is not restricted to T1w MRI.  607 
To numerically calculate the geometric eigenmodes, we used our previously published code58 608 
based on the LaPy Python library104,106 installed on the MASSIVE High Performance Computing 609 
facility107. The eigenvalue solutions of the Helmholtz equation in Eq. (1) are ordered sequentially 610 
according to the spatial wavelength of the spatial patterns of each eigenmode; i.e., 0 ≤ 𝜆! ≤ 𝜆" ≤611 
⋯. Note that the first eigenvalue 𝜆! is approximately equal to zero (wavelength ≫ size of the brain) 612 
and the corresponding eigenmode 𝜓! is a constant function with no nodal lines (zero sets of the 613 
function). Low-order eigenmodes 2, 3, and 4 correspond to spatial patterns with one nodal line and 614 
have antinodes at the opposing ends of the rostrocaudal, dorsoventral, and mediolateral axes, 615 
respectively. We further note that while our work is inspired by processes governing the 616 
developing brain, we only analyzed the adult brain because low-order eigenmodes of both the 617 
developing and adult brain are largely invariant108. Future work may consider the impact of cortical 618 
growth on the reaction-diffusion mechanisms that we model here109,110. 619 

 620 
Hierarchical partitioning 621 

Our geometric approach uses the nodal lines of the eigenmodes to partition a brain structure into 622 
subregions. Specifically, we use only the first non-constant eigenmode 𝜓", which is the most 623 
dominant axis of variation along the rostrocaudal direction at the first division, to partition the 624 
structure into two subregions of approximately equal sizes. Although models of regional patterning 625 
based on gradients aligned with other axes have been proposed111, we focus only on the first non-626 
constant geometric eigenmode based on physical principles related to Turing instabilities to 627 
identify the simplest possible mechanism through which a regional parcellation of the brain may 628 
be obtained (see Supplementary Information S1). Other instabilities (with a shorter wavelength) 629 
are more stable and cannot occur first.  630 
We applied the bipartitioning in an iterative, hierarchical manner, calculating the first non-constant 631 
geometric eigenmode of each subregion and using it to further subdivide the subregion. By 632 
construction, performing 𝑁 iterations will yield a parcellation with 2# parcels. However, the 633 
multiscale organization of the brain means that the optimal number of regions to define remains 634 
unclear. Hence, we generalized the approach across scales, such that one can set the number of 635 
regions to an arbitrary number between 1 and 2#. We do this by constructing a tree of eigenvalues 636 
from each iteration of the approach. We performed a maximum of 9 iterations to reduce 637 
computational burden (Supplementary Fig. 1A). We followed the tree of division from the first to 638 
𝑁 iterations, tracking the parent and daughter subdivisions and arranging them according to the 639 
magnitude of the eigenvalues of their first non-constant geometric eigenmodes. The lower the 640 
eigenvalue is, the more dominant that subdivision is. Hence, to generate a parcellation with 𝑚 > 1 641 
regions, we retained the subdivisions corresponding to the first 𝑚 − 1 smallest eigenvalues. To 642 
ensure that the intrinsic uniformity of the region sizes of the geometric parcellation 643 
(Supplementary Figs 1C–D) is maintained, we additionally constrained the method by choosing 644 
all subdivisions within an iteration first before moving to the subdivisions of the subsequent 645 
iteration. We performed this process to separately parcellate the left and right hemispheres. 646 

The strength of our hierarchical approach is that it affords a multiscale insight into the brain’s 647 
regional organization. Parcellations can thus be tailored to the problem of interest, unlike the 648 
multitude of brain atlases available for use today that are only defined at a single resolution scale 649 
and thus ignore the intrinsically hierarchical organization of the brain. For instance, 650 
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cytoarchitectonic studies clearly differentiate primary sensory areas such as V1 and S1 from 651 
adjacent regions, but it is still possible to identify further functional subdivisions within these 652 
borders, such as areas processing sensory information from distinct body regions within S1 or 653 
distinct, overlapping modes of functional organization within V134. The correspondence between 654 
such subregional organization and the areas defined by our approach remains to be explored, but 655 
our method nonetheless allows one to test hypotheses about how such nested functional 656 
organization may arise.  657 

Our hierarchical bipartitioning approach mimics the processes that shape the embryonic 658 
development of various hierarchically arranged organs such as limbs, digits and vascular trees60,62–659 
66,112. A bipartitioning process is favored by nature because it provides subdivisions that are robust, 660 
reliable, and insensitive to the size of the domain65. Hence, dividing domains of different sizes 661 
(e.g., human vs marmoset brains) into two subdomains one step at a time ensures that the 662 
subdomains will be relatively uniform in size compared to dividing the domains into several 663 
regions at once. This is important because high patterning precision is needed for robust 664 
development of brain organization (e.g., regions should generally be located in the same spatial 665 
location across individuals of a species)90. An interesting avenue of further work could investigate 666 
whether the regional organization of different brain areas is dictated by varying degrees of 667 
hierarchical depth in this recursive process. 668 
 669 

Calculation of regional homogeneity 670 
We compared the degree to which the geometric parcellations accurately capture the organization 671 
of the brain relative to existing benchmark parcellations (see ‘Benchmark brain parcellations’ 672 
section), with accuracy quantified in terms of parcel homogeneity. We assume that a parcel’s 673 
boundary is likely accurate if the vertices or voxels enclosed by the parcel are homogeneous in 674 
some way. This homogeneity is commonly defined in relation to inter-vertex or inter-voxel 675 
functional coupling (FC)12,70–73 (i.e., accurate parcels are those that define sets of vertices or voxels 676 
that show high internal FC with each other), but we go beyond this common practice by 677 
additionally measuring homogeneity in terms of more diverse brain phenotypes or maps related to 678 
morphometry, microstructure, cytoarchitecture, metabolism, gene expression, chemoarchitecture, 679 
and task-related functional architecture (see ‘Brain phenotypes’ section). This is to avoid reliance 680 
on one single measure or imaging modality and to provide a comprehensive validation of the 681 
geometric parcellations across diverse aspects of brain structure and function. 682 
Note that recent work has proposed a different metric to compare the performance of brain 683 
parcellations113, but it is most suitable only for functional data (e.g., resting-state and task-based 684 
fMRI), relies on an a priori choice of various heuristics (e.g., spatial bin size and weighted 685 
averaging scheme), and requires certain conditions in the data to be satisfied that are not always 686 
guaranteed (e.g., stability of within- and between-vertex correlations of functional profiles). 687 
Hence, we decided to use homogeneity (described below) to have a single, simple metric that can 688 
be generalized across diverse brain phenotypes or maps.  689 

For each parcellation (geometric or existing), we calculated the overall parcellation homogeneity, 690 
𝐻, as per prior work72,76, as a weighted average, 691 
 692 

𝐻 =
∑ 𝑆+𝑃+1
+2!
∑ 𝑆+1
+2!

, (3) 693 
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 694 
where 𝑛 is the total number of parcels across both hemispheres, 𝑆+ is the size of parcel 𝑖 (i.e., total 695 
number of vertices or voxels enclosed by the parcel), and 𝑃+ is the summary statistic for parcel 𝑖 696 
calculated from the phenotype or map of interest. For resting-state FC, 𝑃+ is the average FC 697 
between all pairs of vertices or voxels within the parcel, such that a higher 𝑃+ means that the parcel 698 
is highly homogeneous. For non-FC spatial maps, 𝑃+ is the variance of map values across all 699 
vertices or voxels within the parcel, such that a lower 𝑃+ means that the parcel is highly 700 
homogeneous. We used a weighted average in Eq. (3) to take into account the fact that parcels 701 
with larger sizes will tend to have lower homogeneity (Supplementary Fig. 8A), following 702 
previous work12,72, and to reduce the gyral and sulcal bias prevalent in cortical surface 703 
reconstructions114. The weighted average effectively decreases and increases the contribution of 704 
small and large parcels, respectively (Supplementary Fig. 8B). We pooled all 𝑃+ values from both 705 
the left and right hemispheres to calculate a whole-brain homogeneity value, except for cases in 706 
which maps were only available in one hemisphere.  707 

We then compared the homogeneity of the geometric and existing parcellations (𝐻345(46789 vs 708 
𝐻4:8;68<3) as a percentage difference,  709 

 710 

𝛿𝐻 = 100 × =
𝐻345(46789 − 𝐻4:8;68<3

𝐻4:8;68<3 ? . (4) 711 

 712 
For non-FC maps, we took the inverse of 𝐻 in Eq. (3) before substituting in Eq. (4) to ensure that 713 
𝛿𝐻 > 0 consistently means that the geometric parcellation is more homogeneous than the existing 714 
parcellation. 715 

 716 
Benchmark brain parcellations 717 

We compared the homogeneity of our geometric parcellations to several existing benchmark 718 
parcellations of the human, macaque, marmoset, and mouse neocortices (Supplementary Table 1) 719 
and human non-neocortical structures (Supplementary Table 2). These were chosen because they 720 
are among the most used in the field and they were derived using diverse approaches and measures, 721 
including expert delineation and/or data-driven analysis of histological and/or imaging data (see 722 
references in the last column of Supplementary Tables 1–2). This diversity allows us to 723 
comprehensively assess the quality of the geometric parcellations. For each existing parcellation, 724 
we constructed a geometric parcellation specific to the left and right hemispheres with matched 725 
number of parcels (see the third column of Supplementary Tables 1–2) to ensure fair comparison. 726 
Most of the parcellations were obtained directly from the references in the last column of 727 
Supplementary Tables 1–2, with some exceptions. Histological parcellations of the human 728 
neocortex (i.e., Brodmann78, Smith88, Flechsig92, and Kleist98) corresponded to the 729 
reconstructed versions in MNI space provided by ref.115. Parcellations of the macaque cortex (i.e., 730 
BoninBailey52, Brodmann58, FVE153, Markov158, Markov182, Composite233, and 731 
Paxinos285) were obtained from ref.116. All parcellations of the marmoset neocortex were obtained 732 
from the Marmoset Brain Mapping Project (https://marmosetbrainmapping.org/). All parcellations 733 
of the human non-neocortical structures, except the Melbourne parcellations, were obtained from 734 
https://www.lead-dbs.org. The Melbourne parcellations were obtained from 735 
https://github.com/yetianmed/subcortex. Finally, parcellations of the human, macaque, and 736 
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marmoset neocortices originally defined in volume space were projected onto surface space using 737 
the volume-to-surface-mapping command of the Connectome Workbench software. Small parcels 738 
with less than 20 vertices were removed because they may have resulted from inaccuracies in the 739 
volume-to-surface projection, especially for parcellations with subcortical areas included12,117. 740 
This step only affected the total number of parcels for the Craddock and Aicha parcellations of the 741 
human neocortex (i.e., fewer parcels than in the original volume representations). 742 
 743 

Brain phenotypes  744 
We used various brain phenotypes specific to the human, macaque, marmoset, and mouse species 745 
to compare the regional homogeneity of the geometric and existing benchmark parcellations. All 746 
data were obtained from published studies and/or open-access repositories, unless otherwise stated. 747 
All data were for the whole brain (includes left and right hemispheres), unless otherwise stated. 748 
 749 
Human neocortex 750 
We analyzed resting-state functional MRI (fMRI) FC matrices from three independent datasets 751 
[the Human Connectome Project (HCP)14; the Genomics Superstructure Project (GSP)74; and a 752 
dataset acquired in-house at Monash University (Monash)75] and 242 non-FC brain maps divided 753 
into the following 8 categories: morphometry (1 map); microstructure (3 maps); cytoarchitecture 754 
(50 maps); metabolism (5 maps); gene expression (1 map); chemoarchitecture (19 maps); HCP 755 
task activation (47 maps); and Neurosynth (116 maps). All data were mapped onto the fsLR_32k 756 
surface space, with 32,492 vertices per hemisphere. 757 

The HCP FC matrix was derived from preprocessed resting-state fMRI data acquired in 255 758 
unrelated healthy individuals (ages 22–35; 132 females), which is the largest HCP sample 759 
excluding twins or siblings and with all participants having completed resting-state and task-760 
evoked data14. In brief, the fMRI parameters were: field strength of 3 T, isotropic voxel size of 761 
2 mm, repetition time (TR) of 720 ms, echo time (TE) of 33.1 ms, left to right encoding direction, 762 
and scanning duration of 14.4 min with a total of 1200 time frames. All other acquisition 763 
parameters can be found in ref.14. Each individual’s data were preprocessed by the HCP team via 764 
their minimal preprocessing pipeline118, which included ICA-FIX to correct for structured noise 765 
and residual confounds119, and mapped onto the fsLR_32k surface space. For each participant, we 766 
calculated the Pearson correlation coefficient of pairs of vertex-level time series, resulting in a 767 
32,492´32,492 FC matrix per hemisphere. We then took the average of the individual-specific FC 768 
matrices across the 255 individuals to construct a group-averaged FC matrix for each hemisphere. 769 

The GSP FC matrix was derived from resting-state fMRI data acquired in 1564 healthy individuals 770 
(ages 18–35; 901 females)74. In brief, the fMRI parameters were: field strength of 3 T, isotropic 771 
voxel size of 3 mm, TR of 3000 ms, TE of 30 ms, and scanning duration of 6.2 min with a total of 772 
124 time frames. All other acquisition parameters can be found in ref.74. Each individual’s data 773 
were preprocessed via the standard pipeline of fMRIPrep v22.0.0120,121, denoised with ICA-FIX, 774 
and mapped onto the fsLR_32k surface space. We then removed the first 5 time frames to stabilize 775 
the signal. We then calculated individual-specific FC matrices and took the average across the 776 
1564 individuals to construct a group-averaged 32,492´32,492 FC matrix for each hemisphere. 777 
The Monash FC matrix was derived from multiband resting-state fMRI data acquired in 440 778 
healthy individuals (ages 21; all females)75. In brief, the fMRI parameters were: field strength of 779 
3 T, isotropic voxel size of 3 mm, TR of 754 ms, TE of 21 ms, and scanning duration of 7.7 min 780 
with a total of 616 time frames. All other acquisition parameters can be found in ref.75. Each 781 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2025. ; https://doi.org/10.1101/2025.01.30.635820doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.30.635820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

23 

individual’s data were preprocessed via an in-house pipeline, which included ICA-FIX, global 782 
signal regression, and 3 mm spatial smoothing (see ref.75 for further details of the preprocessing), 783 
and mapped onto the fsLR_32k surface space. We then calculated individual-specific FC matrices 784 
and took the average across the 440 individuals to construct a group-averaged 32,492´32,492 FC 785 
matrix for each hemisphere. The diversity of preprocessing pipelines used across the HCP, GSP, 786 
and Monash datasets ensured that our findings are not specific to any single data processing 787 
approach. 788 

The morphometry map represents cortical thickness and was obtained from the HCP repository15. 789 
The 3 microstructure maps represent the ratio of T1w and T2w MRI signal and diffusion MRI-790 
derived estimates of neurite density index (NDI) and orientation dispersion index (ODI). T1w:T2w 791 
ratio indirectly quantifies intracortical myeloarchitecture and was obtained from ref.82, while NDI 792 
and ODI respectively quantify the packing density of axons or dendrites and orientational 793 
coherence of neurites and were obtained from ref.122. The 50 cytoarchitecture maps represent cell 794 
density profiles across 50 equidistant layers between the white and pial cortical layers of the 795 
BigBrain atlas123 and were obtained from ref.124. 796 

The metabolism, gene expression, and chemoarchitecture maps were obtained from the neuromaps 797 
repository80. The 5 metabolism maps represent positron emission tomography (PET)-based 798 
markers of cerebral metabolic rate of glucose (CMRGlu), cerebral blood volume (CBV), cerebral 799 
blood flow (CBF), cerebral metabolic rate of oxygen (CMRO2), and synaptic density based on 800 
BPnd tracer binding to SV2a125,126. The gene expression map represents the first principal 801 
component of all genes in the Allen Human Brain atlas127. The 19 chemoarchitecture maps 802 
represent PET-based densities of neurotransmitter receptors of acetylcholine (a4b2, M1, and 803 
VACht), cannabinoid (CB1), dopamine (D1, D2, and DAT), GABA (GABA-A a5 subunit), 804 
glutamate (mGluR5 and NMDA), histamine (H3), mu-opioid (MOR), norepinephrine (NET), and 805 
serotonin (5-HT1A, 5-HT1B, 5-HT2A, 5-HT4, 5-HT6, and 5-HTT)128–146.  806 
The 47 HCP task-activation maps represent unthresholded maps of task activations across 7 task 807 
domains of social, motor, gambling, working memory, language, emotion, and relational147. Each 808 
map represents a key contrast commonly used in the literature that shows the major activation 809 
pattern elicited by the task. See refs58,147 and Supplementary Table 3 for details of each task and 810 
contrast. We used the task maps as provided by HCP. 811 

The 116 Neurosynth maps represent the association between voxels and cognitive terms obtained 812 
from Neurosynth, a meta-analytical tool that synthesizes results from more than 14,000 published 813 
fMRI studies by searching for keywords (e.g., action) published alongside fMRI voxel 814 
coordinates81. The unthresholded association maps were downloaded from https://neurosynth.org/. 815 
Although there are >1000 terms reported in Neurosynth, we only focused on 116 terms that are 816 
related to 11 cognition- and behavior-related concepts selected from the Cognitive Atlas148, which 817 
is a public ontology of concepts and terms used in cognitive science. See Supplementary Table 4 818 
for the full list of terms we used.  819 
 820 
Macaque neocortex 821 
We analyzed 1 resting-state fMRI FC matrix and 19 non-FC brain maps divided into the following 822 
3 categories: morphometry (1 map); microstructure (1 map); and chemoarchitecture (17 maps). 823 
All data were mapped onto the fsLR_10k surface space, with 10,242 vertices per hemisphere. 824 

The FC matrix was derived from preprocessed resting-state fMRI data acquired in 6 individuals149. 825 
In brief, the fMRI parameters were: field strength of 3 T, isotropic voxel size of 1.25 mm, TR of 826 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 1, 2025. ; https://doi.org/10.1101/2025.01.30.635820doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.30.635820
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 
 

24 

2000 ms, TE of 30 ms, and scanning duration of 40 min with a total of 1200 time frames. All other 827 
acquisition parameters can be found in ref.149. Each individual’s data were preprocessed via an 828 
HCP-style pipeline adapted to non-human primates (NHP) pipeline 829 
(https://github.com/Washington-University/NHPPipelines) and mapped onto the fsLR_10k 830 
surface space. We then calculated individual-specific FC matrices and took the average across the 831 
6 individuals to construct a group-averaged 10,242´10,242 FC matrix for each hemisphere. 832 
The morphometry and microstructure maps represent cortical thickness and T1w:T2w ratio, 833 
respectively, and were obtained from ref.150. The 17 chemoarchitecture maps represent 834 
autoradiographic densities in the left hemisphere of neurotransmitter receptors of acetylcholine 835 
M1, M2, and M3), dopamine (D1), GABA (GABA-A, GABA-A/BZ, and GABA-B), glutamate 836 
(AMPA, Kainate, and NMDA), noradrenaline (a1 and a2), and serotonin (5-HT1A, 5-HT2) and 837 
averaged densities of excitatory (i.e., glutamate), inhibitory (i.e., GABA), and modulatory (i.e., 838 
serotonin, acetylcholine, and noradrenaline) receptors. The receptor maps were obtained from 839 
ongoing unpublished work, with all receptor density estimates reconstructed via the pipeline 840 
described in ref.151. Note that the chemoarchitecture maps were only available for the left 841 
hemisphere; hence, we restricted the calculation of homogeneity with respect to those maps to the 842 
left hemisphere. 843 
 844 
Marmoset neocortex 845 
We analyzed resting-state fMRI FC matrices from two independent sites [the Institute of 846 
Neuroscience (ION) in China and the National Institutes of Health (NIH) in the USA]152 and 3 847 
non-FC brain maps divided into the following 3 categories: morphometry (1 map); microstructure 848 
(1 map); and cytoarchitecture (1 map). All data were mapped onto the fsaverage_38k surface 849 
space, with 37,974 and 38,094 vertices for the left and right hemispheres, respectively. 850 

The FC matrices were derived from preprocessed resting-state fMRI data acquired in 10 851 
individuals in each site (i.e., ION and NIH)152. In brief, the fMRI parameters for the ION site were: 852 
field strength of 9.4 T, isotropic voxel size of 0.5 mm, TR of 2000 ms, TE of 18 ms, right to left 853 
encoding direction, and scanning duration of 17.1 min with a total of 512 time frames. The fMRI 854 
parameters for the NIH site were: field strength of 7 T, isotropic voxel size of 0.5 mm, TR of 855 
2000 ms, TE of 22.2 ms, right to left encoding direction, and scanning duration of 17.1 min with 856 
a total of 512 time frames. All other acquisition parameters can be found in ref.152. Each 857 
individual’s data were preprocessed via the Marmoset Brain Mapping Project’s pipeline (see 858 
https://marmosetbrainmapping.org/) and mapped onto the fsaverage_38k surface space. For each 859 
of the two sites, we then calculated individual-specific FC matrices and took the average across 860 
the 10 individuals to construct a group-averaged 37,974´37,974 and 38,094´38,094 FC matrix for 861 
the left and right hemispheres, respectively. 862 

The morphometry and microstructure maps represent cortical thickness and T1w:T2w ratio, 863 
respectively, and were obtained from ref.103. The cytoarchitecture map represents cell density 864 
profiles in the left hemisphere derived from Nissl-stains and was obtained from ref.153. Note that 865 
the cytoarchitecture map was only available for the left hemisphere; hence, we restricted the 866 
calculation of homogeneity with respect to that map to the left hemisphere. 867 
 868 
Mouse neocortex 869 
We analyzed resting-state FC matrices derived from fMRI154 and Ca2+ imaging155 and 87 non-FC 870 
maps divided into the following 3 categories: microstructure (1 map); cytoarchitecture (1 map); 871 
and gene expression (85 maps). All data were mapped onto the Allen Mouse Brain CCFv3 872 
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volumetric space with 200 µm isotropic voxel resolution (except for the Ca2+ data, which were in 873 
2D space; see below or Supplementary Information S4). 874 
The fMRI FC matrix was derived from preprocessed resting-state fMRI data acquired in 193 875 
individuals154. The data were pooled from 17 independent datasets across multiple centers. In brief, 876 
the fMRI parameters were: field strengths ranging from 4.7 to 11.7 T, isotropic voxel size of 200 877 
µm, TRs ranging from 1000 to 2000 ms, TEs ranging from 10 to 25 ms, and number of time frames 878 
ranging from 150 to 1000. All other acquisition parameters can be found in ref.154. All data were 879 
preprocessed via a unified pipeline (see ref.154 for further details of the preprocessing) and mapped 880 
onto the CCFv3 volumetric space. We then calculated individual-specific FC matrices and took 881 
the average across the 193 individuals to construct a group-averaged voxel-level FC matrix for 882 
each hemisphere. 883 
The Ca2+ FC matrix was derived from preprocessed resting-state cortex-wide fluorescence Ca2+ 884 
data acquired in 9 individuals155. In brief, the Ca2+ data were recorded using an in-house 885 
fiberscope155 and an sCMOS camera (512´512 pixels). The acquisition interleaved cyan (470/24, 886 
Ca2+-sensitive) and violet (395/25, Ca2+-insensitive) wavelengths using a Lumencor (LLE 7Ch 887 
Controller) light source at 20 Hz. The violet wavelength was for measuring background noise, 888 
which was regressed from the cyan data to obtain the final data at 10 Hz temporal resolution. The 889 
resulting images have a 25´25 µm resolution. The exposure time of each wavelength (violet and 890 
cyan) was 40 ms to avoid artifacts caused by the rolling shutter. All other acquisition parameters 891 
and preprocessing can be found in ref.155. Since the Ca2+ data were in 2D space, we projected the 892 
Allen Mouse Brain Atlas (i.e., ABA80 in Fig. 3A) and the corresponding geometric parcellation 893 
in 3D volume space to the 2D imaging plane of the Ca2+ data. See Supplementary Information S4 894 
for further details about the imaging data, preprocessing, and volume-to-2D plane projection of 895 
the parcellations. We then calculated individual-specific FC matrices for each hemisphere. We 896 
used the pixel-level FC matrices and 2D plane-projected parcellations to calculate regional 897 
homogeneity for each individual, which we then averaged for the final analysis. 898 
The microstructure map represents T1w:T2w ratio and was obtained from refs156,157. The 899 
cytoarchitecture map represents cell density profiles derived from Nissl-stains and was obtained 900 
from ref.158. The 85 gene expression maps represent gene-expression profiles and were obtained 901 
from ref.159. Although there are >4000 gene-expression maps available from the above dataset, we 902 
restricted our analysis to 85 brain-related genes expressed in the brain chosen based on the criteria 903 
developed in ref.157. See Supplementary Table 5 for the list of genes we analyzed.  904 
 905 
Human non-neocortical structures 906 
We analyzed the same three independent resting-state fMRI datasets used for the human neocortex 907 
(i.e., HCP, GSP, and Monash). We analyzed the data in their original volumetric space smoothed 908 
with a full width at half maximum (FWHM) of 6 mm and then constructed a group-averaged voxel-909 
level FC matrix for each hemisphere of each non-neocortical structure. 910 
 911 

Null FC matrices 912 
In Fig. 1E, we used the eigenstrapping method to randomize fMRI data and generate null FC 913 
matrices78 (see Supplementary Information S2.1 for details). We first generated 1000 randomly 914 
rotated surrogate geometric eigenmodes of the human neocortical surface, separately for the left 915 
and right hemispheres (Supplementary Fig. 3A). We applied the surrogate eigenmodes to 916 
reconstruct each time volume of each individual’s fMRI (Supplementary Fig. 3B), effectively 917 
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creating 1000 surrogates of the vertex by time fMRI data. Note that the same set of rotated 918 
eigenmodes was used across individuals. For each surrogate, we calculated individual-specific FC 919 
matrices and took the average across the individuals to construct 1000 null group-averaged FC 920 
matrices for each hemisphere. This approach generates a randomized map that retains the exact 921 
spatial and temporal autocorrelation of the original data without relying on heuristics employed in 922 
other popular methods, such as the Spin test79,160,161, that could affect proper statistical inference 923 
on brain data78,162,163. We nonetheless replicate our null findings using the Spin test for 924 
completeness (see Supplementary Information S2.2 and Supplementary Figure 4). 925 
 926 

Reaction-diffusion model 927 
Reaction-diffusion models are used ubiquitously to study various forms of biological pattern 928 
formation164. The generalized model of two coupled molecules, 𝑢 and 𝑣, spatiotemporally 929 
diffusing and reacting in a system is commonly defined in terms of the following equations60,61:  930 

 931 
𝜕𝑢(𝐫, 𝑡)	
𝜕𝑡

= 𝑓(𝑢(𝐫, 𝑡), 𝑣(𝐫, 𝑡)) + 𝐷=∇"𝑢(𝐫, 𝑡)	, (5) 932 

𝜕𝑣(𝐫, 𝑡)	
𝜕𝑡

= 𝑔(𝑢(𝐫, 𝑡), 𝑣(𝐫, 𝑡)) + 𝐷>∇"𝑣(𝐫, 𝑡)	, (6) 933 

 934 
where 𝑢(𝐫, 𝑡) and 𝑣(𝐫, 𝑡) denote the local concentration of molecules 𝑢 and 𝑣, respectively, at 935 
spatial location 𝐫 at time 𝑡. For brevity, we will drop the (𝐫, 𝑡) in subsequent equations, but 𝑢 and 936 
𝑣 are treated as functions in space and time, unless otherwise stated. The terms 𝑓(𝑢, 𝑣) and 𝑔(𝑢, 𝑣) 937 
model the reactions of the molecules (e.g., production and elimination of concentrations), while 938 
the terms 𝐷=∇"𝑢 and 𝐷>∇"𝑣 model the diffusion of the molecules with 𝐷= and 𝐷> being positive 939 
diffusion constants. Assuming the molecules have uniform concentrations at equilibrium, solutions 940 
that depart from the equilibrium can be obtained as follows (see Supplementary Information S1.1 941 
for the derivation): 942 
 943 

𝜕𝑢
𝜕𝑡

= 𝑎𝑢 − 𝑏𝑣 + 𝐷=∇"𝑢, (7) 944 
𝜕𝑣
𝜕𝑡

= 𝑐𝑢 − 𝑑𝑣 + 𝐷>∇"𝑣. (8) 945 

 946 
By setting the constants 𝑎, 𝑏, 𝑐, and 𝑑 as positive numbers, the form of Eqs (7) and (8) assigns 947 
molecule 𝑢 as the activator and molecule 𝑣 as the inhibitor. Turing has shown that certain regimes 948 
of the model’s parameters (e.g., inhibitor diffuses much faster than the activator) can destabilize 949 
the uniform stationary states of the molecules’ concentrations, leading to the spontaneous 950 
emergence of a spatially non-constant solution at equilibrium that defines a spatial pattern, called 951 
a Turing instability41, that can mimic various patterns found in nature (e.g., leopard spots, zebra 952 
stripes; see refs61,165 for a collection of related articles). One can show that it is the relation between 953 
the model constants, and not their specific values, that give rise to spatial Turing instabilities (see 954 
Supplementary Information S1.2 for the derivation). Specifically, instabilities will occur as long 955 
as the model constants satisfy all of the following conditions: 𝐷= < 𝐷>; 𝑎 < 𝑑; 𝑎𝑑 < 𝑏𝑐; and ?

@#
<956 

A
@$

. 957 
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In Fig. 6, we simulated the model in Eqs (7) and (8) on the left hemisphere of the human neocortex, 958 
seeding molecules 𝑢 and 𝑣 at distinct areas defined by the HCP-MMP1 atlas (i.e., Glasser360 in 959 
Fig. 1C)2. The example steady-state solution in Fig. 6B (top row) with Turing instability was 960 
obtained using the parameters: 𝑎 = 2; 𝑏 = 4; 𝑐 = 2; 𝑑 = 3; 𝐷= = 50; and 𝐷> = 100. 961 
We reiterate that the spatial pattern of the instability shown in Fig. 6B is invariant to the specific 962 
values of these parameters as long as the model parameter combinations meet the conditions 963 
defined above for the instability to emerge. Moreover, our hierarchical algorithm need not 964 
necessarily result from a reaction-diffusion process, given prior work demonstrating that a 965 
bipartition could be obtained using a single diffusion gradient (as in Wolpert’s French Flag 966 
Problem99,10). This invariance to model parameters and dynamics supports the robustness of the 967 
underlying process of recursive bipartition based on geometry and suggests that multiple 968 
mechanisms may achieve the same end. We used an activator-inhibitor reaction-diffusion process 969 
here given evidence that some areal patterning molecules are mutually antagonistic (e.g., see 970 
refs85,166,167), but acknowledge that this is not the only process that may achieve the end results we 971 
describe. Indeed, experimental studies have shown that morphogen gradients can delineate 972 
regional tissue boundaries using a variety of physiological processes52 and that the actual processes 973 
driving the regional patterning of the brain are likely complex, involving time-dependent 974 
interactions between multiple molecular signals48,51,168. We used a basic reaction-diffusion model 975 
here to demonstrate a simple mechanism through which geometric constraints via eigenmodes58,59 976 
can plausibly give rise to the multiscale regional architecture implied by our parcellation 977 
algorithm, and we welcome further work that improves on the physiological plausibility of this 978 
mechanism.  979 

 980 
Data availability 981 

All source data to generate the results of the study and species-specific geometric parcellations of 982 
varying resolutions will be made openly available at 983 
https://github.com/NSBLab/geometric_parcellation upon publication.  984 
 985 

Code availability 986 
All computer codes to generate the parcellations, analyze results, and reproduce the figures of the 987 
study will be made openly available at https://github.com/NSBLab/geometric_parcellation upon 988 
publication. 989 
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