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The Cerebellum Contributes to Prediction Error Coding in
Reinforcement Learning in Humans
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Recent rodent data suggest that the cerebellum—a region typically associated with processing sensory prediction errors (PEs)—also
processes PEs in reinforcement learning (RL-PEs; i.e., learning from action outcomes). We tested whether cerebellar output is
necessary for RL-PE processing in regions more traditionally associated with action-outcome processing, such as the striatum
and anterior cingulate cortex. The feedback-related negativity (FRN) was measured as a proxy of cerebral RL-PE processing in a
probabilistic feedback learning task using electroencephalography. Two complementary experiments were performed in humans.
First, patients with chronic cerebellar stroke (20 male, 6 female) and matched healthy controls (19 male, 7 female) were tested.
Second, single-pulse cerebellar transcranial magnetic stimulation (TMS) was applied in healthy participants (7 male, 17 female),
thus implementing a virtual lesion approach. Consistent with previous studies, learning of action-outcome associations was intact
with only minor changes in behavioral flexibility. Importantly, no significant RL-PE processing was observed in the FRN in patients
with cerebellar stroke and in participants receiving cerebellar TMS. Findings in both experiments show that RL-PE processing in the
forebrain depends on cerebellar output in humans, complementing and extending previous findings in rodents.
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Significance Statement

While processing of prediction errors in reinforcement learning (RL-PEs) is usually attributed to midbrain and forebrain,
recent rodent studies have recorded RL-PE signals in the cerebellum. It is not yet clear whether these cerebellar RL-PE signals
contribute to RL-PE processing in the forebrain/midbrain. In the current study, we could show that forebrain RL-PE coding is
blunted when the cerebellum is affected across two complementary lesion models (patients with cerebellar stroke, cerebellar
TMS). Our results support direct involvement of the cerebellum in RL-PE processing. We can further show that the
cerebellum is necessary for RL-PE coding in the forebrain.
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Introduction

In our fast-paced world, we need to constantly monitor our envi-
ronment and our actions and choose according to the anticipated
consequences of our actions. In such reinforcement learning
contexts, we rely on external feedback (e.g., reward/success, pun-
ishment/failure) to acquire action-outcome associations and
thereby improve our behavior. Thus, we need to learn to predict
action outcomes, for which we rely heavily on processing predic-
tion errors, ie., the difference between predicted and actual
outcomes.

Prediction errors in reinforcement learning contexts (RL-PEs)
have mainly been linked to basal ganglia, midbrain, and prefrontal
areas (Fouragnan et al., 2018). Predictive functions beyond the
motor domain have also been proposed for the cerebellum
(Ramnani, 2006; Sokolov et al., 2017). More recent studies have
shown cerebellar activation patterns consistent with RL-PEs in
both humans and rodents (Kostadinov and Hausser, 2022;
Manto et al,, 2024; Berlijn et al., 2024b). Moreover, psychiatric
disorders with cerebellar involvement, such as schizophrenia,
autism spectrum disorder, and major depression (Phillips et al,
2015), have been reliably associated with altered and/or impaired
reinforcement learning (Balsters et al., 2017; Halahakoon et al.,
2020; Katthagen et al., 2020). However, deficits cannot clearly
be attributed to cerebellar dysfunction, as multiple brain areas
are typically affected in these disorders. Causal evidence for cere-
bellar involvement in reinforcement learning in humans is scarce.
Patients with cerebellar damage showed deficits in reversal, but
not acquisition learning within reinforcement learning (Thoma
et al,, 2008; Nicholas et al., 2024). An initial study using electroen-
cephalography (EEG) showed altered outcome/feedback process-
ing in patients with cerebellar stroke without impaired acquisition
learning (Rustemeier et al., 2016).

In humans, RL-PE processing is typically studied using feed-
back learning tasks. Here, participants have to learn through trial
and error that, for example, one of several response options leads
to a higher probability of monetary reward over punishment
(Eppinger et al., 2008). EEG can be used to measure an approx-
imation of activity in one of the main drivers of RL-PE process-
ing, the anterior cingulate cortex (ACC; Fouragnan et al., 2018):
the feedback-related negativity (FRN) is a frontocentral negative
deflection in the event-related potential (ERP) that emerges
~250 ms after feedback onset (e.g., presentation of a reward or
punishment; Miltner et al., 1997; San Martin, 2012). Reflecting
the activity of dopaminergic target regions, such as the ACC
and striatum (Holroyd and Coles, 2002; Hauser et al., 2014;
Foti et al,, 2015), FRN amplitudes covary with the estimated
RL-PE at the single-trial level (Fischer and Ullsperger, 2013;
Hoy et al., 2021; Rawls and Lamm, 2021).

Despite findings of RL-PE-like signals in the cerebellum in
rodents and initial accounts of altered reinforcement learning
in humans with cerebellar damage, acquisition learning seems
to be largely unaffected in cerebellar lesion patients (Thoma et
al., 2008; Rustemeier et al., 2016). In the present study, we there-
fore studied the interplay between the cerebellum and cerebral
cortex with respect to RL-PE processing more directly by inves-
tigating the impact of cerebellar damage/disruption on cortical
RL-PE coding in the FRN and learning success. This approach
extends previous observations of RL-PE signals in the cerebellum
toward the question whether these are necessary for intact cere-
bral RL-PE processing. In two experiments, we studied patients
with chronic cerebellar stroke and used single-pulse transcranial
magnetic stimulation (TMS) in healthy adults to create a “virtual
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lesion.” Single-pulse TMS offers the advantage of examining
effects of deficits with a high temporal precision.
Reinforcement learning success was assessed using a probabilistic
feedback learning task. RL-PE processing was assessed using the
FRN on a trial-by-trial basis. If the cerebellum contributes to
reinforcement learning, RL-PE processing as reflected in the
FRN should be reduced in cerebellar stroke patients compared
with healthy controls (Experiment 1) and for cerebellar single-
pulse TMS (Experiment 2). Indeed, no significant RL-PE pro-
cessing as indexed by the FRN was found in cerebellar stroke
patients and for cerebellar TMS. Concerning behavior, only
minor abnormalities in behavioral flexibility were observed,
with reinforcement learning success generally preserved.

Materials and Methods

Experiment 1

Participants

Thirty-one adults with a chronic stroke restricted to the cerebellum were
recruited from the university hospitals Essen and Diisseldorf as well as
the Rhein-Ruhr Clinic in Essen-Kettwig, Germany. Only patients with
a postacute stroke, i.e., at least 6 months after the stroke event (with
one exception who was only 42 d poststroke), were included. Lesions
had to be confined to the cerebellum. Thirty-three adults without
stroke were recruited as controls. Inclusion criteria were no current psy-
chiatric and no current or past neurological disease, no use of medica-
tions affecting the central nervous system, and no alcohol or illicit
drug abuse. Five patients and four controls were excluded because they
did not meet these inclusion criteria. In total, data from 26 patients
(20 men and 6 women) and the 26 controls (19 men and 7 women)
who provided the best match regarding demographic parameters entered
the analyses. Three controls were excluded during matching to ensure
that nontask-related parameters (Table 1) did not result in group differ-
ences in task-related variables. Means and standard deviations on the
main demographic variables are listed in Table 1 (for details, see
Table 2 for patients and Table 3 for controls). Of note, three patients
with depression and antidepressant medication and three matched con-
trols (who also had a clinical diagnosis of depression and antidepressant
medication, roughly matched on BDI score) were included in the analy-
ses, as we could not exclude this to be part of a cerebellar cognitive affec-
tive symptom (CCAS; Schmahmann and Sherman, 1998), and to ensure
that target sample size was met.

Handedness was assessed with the Edinburgh Handedness Inventory
(EHI; Table 1; Oldfield, 1971). According to LQgpy, 19 patients and 21
controls were right-handed, 3 patients and 1 control were left-handed,
and 4 patients and 4 controls were ambidextrous. IQ estimates were
obtained using the Mehrfachwahl-Wortschatz-Test-B score (MWT-B;
multiple choice vocabulary test; Table 1; Merz et al., 1975). As depression
might affect feedback processing (Keren et al., 2018) and has a higher
incidence poststroke (Robinson and Jorge, 2016), we assessed depression
using the Beck Depression Inventory II (BDI; Beck et al., 1996).

Figure 1 shows the overlaid lesion regions for all 26 patients. Overall, 21
patients had a stroke in the posterior inferior cerebellar artery (PICA) ter-
ritory (9 left, 9 right, 3 bilateral), 3 patients had a stroke in the superior

Table 1. Demographic data for patients and controls as well as group comparisons

Variable Meontrols (D) Mpatients (SD) t df p

Age 56.4 (12.7) 56.2 (12.1) 0.04 49.86 0.964
Education (years) 135 (23) 14.1 (2.9) 0.90 47.44 0.371
LQg 709 (47.2) 56.6 (54.0) 1.01 49.11 0316
MWT-B (1Q) 118.8 (16.1) 113.4 (13.9) 1.28 4891 0.205
WML rating 0.31(0.47) 0.69 (0.79) 214 40.81 0.039
BDI-II 53(7.5) 6.3 (9.1) 0.42 48.17 0.679

Neantrols = 26, Mpatients = 26. M, mean; SD, standard deviation. Age and education are given in years. LQ, laterality
quotient; EHI, Edinburgh Handedness Inventory; MWT-B, Mehrfachwahl-Wortschatz-test B (a vocabulary-based
German intelligence test); WML, white matter lesion; BDI-II, Beck depression inventory II.
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Table 2. Patients’ and lesion characteristics
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Time since stroke

ID  Age Sex  Edu. Hnd.  Vascular territory (years) Affected cerebellar regions Additional information
005 55-59 m 16-20 r PICA-L (lacunar) 0-5 Left Crus II, left Crus |, left Vlla
011 45-499 m  16-20 r PICA-R 0-5 Right Crus II, right Vllla, right VIIb, right VIlIb, right IX, External MRI
right Crus |
012 30-34 m 16-20 r PICA-R 0-5 Right Vllla, right VIIb, right VIIIb, right IX, right Crus Il
014 65-69 m 11-15 a PICA-R 21-25 Right VIIb, right Crus 1, right Vllla, right VIlIb, right IX,
vermal Vllla, vermal Villb
018 55-59 m 11-15 a PICA-L 11-15 Left Crus |, left Crus 11, left Villa, left Vilb, left VIIb, left VI
020 70-74 m  11-15 r SCA-R 11-15 Right I-1V, right V, right Dentate
023 55-59 f 1n-15 | PICA-R 16-20 Right Crus I, right VIlIb, right IX, right Crus I, right VIIb, right
Villa
024 60-64 m 11-15 r PICA-L+R (lacunar) Right Vb, left Vilb
026 65-69 f 6-10 r PICA-R, PICA-L — Right Vllla, right Vb, right IX, right Crus II, right VIlIb, left ~ Migraine
(lacunar) Villa, left IX, left Vil
029 50-54 m 16-20 a SCA-R 11-15 Right VI, right V, right Dentate, right Crus | Recent history of AD, negative BAI
031 45-49 m  11-15 r PICA-R (lacunar) -5 right Crus 1, right Crus II, right Villa
033 50-54 f 1M1-15 r PICA-L, SCA-R 6-10 Left Crus |, left Crus I, left VIIb, right Crus I, left Vllla, vermal ~ MDD, intake of antidepressants
(lacunar) Crus Il
035 60-64 m 16-20 a PICA-L 16-20 Left Vllla, left VIb, left VIllb, left Crus II, left X, left Crus |~ MDD, antidepressants
037 55-59 f 16-20 r PICA-L 0-5 Left IX, left Vlllb, left VIIb, left Villa, left Crus I, left Dentate  External MRI
038 55-59 1-15 r PICA-L, PICA-R 6-10 Left Crus II, left VIIb, left Villa, left IX, left Crus |, left Villb
(lacunar)
039 60-64 m 16-20 | PICA-R (lacunar) n/a’ Right Crus | External MRI
040 60-64 m 16-20 r PICA-L 0-5 Left Crus I, left VIIb, left Villa, left VIIb, left Crus |, left IX  Not a native German speaker
042 50-54 m 11-15 r PICA-R 6-10 Right Crus II, right VlIb, right Crus I, right Vllla
046 18-24 m 11-15 r PICA-R 0-5 Right VIIb, right Villa, right Villb External MRI
047 65-69 m  16-20 r PICA-R 0-5 Right Crus II, right Crus |, right Vlb, right Vllla, right Vllib,
right IX
048 6569 m  16-20 | PICA-L 6-10 Left Crus I, left VIIb, left Villa, left VIllb, left Crus |, left X, left
dentate
055 70-74 m 6-10 r PICA-L 6-10 Left Crus II, left Crus |
05 65-69 m  11-15 r SCA-L 6-10 Left V, left VI, left I-IV, left dentate
058 45-49 f n-15 r PICA-L (lacunar) 0-5 Left VliIb, left IX MDD, childhood diagnosis of ADD,
antidepressants
060 50-54 m 11-15 r SCA-L, PICA-R 16-20 Left V, left VI, right Crus II, left I-IV, right Vlib, left Dentate
061 55-59 m  16-20 r PICA-L 0-5 Left Crus II, left Crus |, left Vb, left Villa, left VIllb, left IX

h Handed
F

Age is given in years. m, male; f, female; edu., years of education; hnd., | according to Edinburgl

Inventory; |, left; r, right; a, ambidextrous; PICA, posterior inferior cerebellar artery; SCA, superior inferior artery;

SARA, scale for the assessment and rating of ataxia (maximum score = 40); MDD, major depressive disorder; AD, anxiety disorder; ADD, attention deficit disorder; BAI, Beck anxiety inventory (Beck et al., 1988). For affected regions, only
those that made out >1% of total lesion volume were included. Regions are sorted according to percentage of total lesion volume. Age, education, and time since stroke are given in ranges to comply with data protection requirements.

alime since stroke was unknown in this case, as the lacunar stroke was an incidental finding.

cerebellar artery (SCA) territory (1 left, 2 right), and 2 patients had a stroke
in both the PICA and SCA territory (1 in the left PICA and right SCA ter-
ritory, 1 in the right PICA and left SCA territory). Lesions were thus uni-
lateral in all but five patients (Table 2). Images of individual lesions are
provided in Extended Data Figure 1-1. Mean time between cerebellar
infarct and participation in the experiment was 8.4 years (SD =6.0 years,
range from 1.5 months to 22 years; unknown in one case).

Both patients and controls were assessed for clinical neurological
symptoms. While patients showed overall higher scores on the scale
for the assessment and rating of ataxia (SARA; Schmitz-Hiibsch et al.,
2006) than controls (f4701)=2.74, p=0.009), no participants showed
deficits in oculomotor function in the neurological examination (which
might have affected task performance).

All participants gave written informed consent prior to participation.
They received monetary compensation for participation and were reim-
bursed for travel costs. The experiment was preregistered on the Open
Science Framework (OSF; https://osf.io/rd3xb), conducted in accordance
with the ethical principles for medical research involving human subjects
outlined in the Declaration of Helsinki, and approved by the Ethics
Committees at the Faculty of Medicine of Heinrich-Heine-University
Diisseldorf and at the University Hospital Essen.

Procedure
The experiment usually took place on 2 consecutive days. The temporal
gap between sessions was longer for three patients (56, 29, and 43 d) and

two controls (9 and 2 d) due to participants’ time constraints or sched-
uling issues. The experimental task with EEG was conducted on both
days with different versions (short and long feedback delay version,
respectively; see below for details). On the first day, we initially obtained
informed consent and participants filled in a demographic questionnaire,
the EHI, the BDI-II, and the MWT-B. Following EEG preparations, par-
ticipants were informed about EEG artifacts and how to avoid them.
Subsequently, participants completed one of two feedback delay ver-
sions of a probabilistic feedback learning task as described by Eppinger
et al. (2008; see Fig. 2A for the experimental procedure), which was con-
ducted using Presentation software (version 20.0, Neurobehavioral
Systems). Order of the versions was counterbalanced among partici-
pants. Figure 2B illustrates the sequence and time course of stimulus pre-
sentation in one trial. The task consisted of 8 blocks of 40 trials, thus 320
trials in total. Five practice trials with different stimuli were provided.
Each trial began with a fixation cross presented for 500-1,500 ms.
Next, one of four abstract stimuli (Chinese characters and radicals)
was presented for 1,500 ms. Participants had to respond by pressing
the left or right button on a response box (Cedrus RB-740, Cedrus
Corporation) within a response time window of 3,000 ms. Choices
were highlighted on the screen for 200 ms, followed by a black screen
for 500 ms in the short delay condition and 6,500 ms in the long delay
condition. Different delay durations were used as previous studies had
shown differential involvement of cerebral brain areas depending on
feedback delay (Foerde and Shohamy, 2011). While immediate delay
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Table 3. Characteristics of controls for Experiment 1 (patient study)

Handedness Years of

D Age Sex  (EHI) education Additional information

001 55-59 f Right 11-15

002 75-79 m  Right 16-20 Excluded (matching)

004 60-64 m  Right 1-15 Excluded (developmental venous
anomaly)

006 70-74 m Right 11-15

007 55-59 f Right 1-15

008 55-59 m  Right 6-10 MD, intake of antidepressants

009 70-74 m Right 11-15

010 50-54 f Right 1-15

013 55-59 m Right 16-20

017 70-74 f Right 11-15

019 60-64 m Right 1-15

021 50-54 m  Right 16-20

022 55-59 f Right 16-20 MD, intake of antidepressants

025 55-59 m  Right 1-15 Excluded (moderate brain
volume loss)

027 70-74 m  Right 16-20

028 45-49 f Right 1-15 MD, intake of antidepressants

030 45-49 m  Right 11-15

032 55-59 m Right 16-20 Excluded (matching)

034 55-59 m Right 11-15

036 25-29 m  Right 6-10 Excluded (intake of
antidepressants)

043 18-24 m  Right 1-15

044 55-59 m Left 11-15

045 65-69 m  Ambidextrous 11-15

049 70-74 m  Right 1-15 Not a native German speaker

050 50-54 f Right 6-10

051 50-54 m Right 1-15 MD, intake of antidepressants,
excluded (matching)

052 18-24 m  Ambidextrous 6-10

054 55-59 m  Ambidextrous  11-15

057 70-74 m  Right 1-15 Excluded (extensive white
matter lesions)

059 55-59 m  Ambidextrous  16-20

062 50-54 m Right 11-15

063 55-59 m Right 11-15

064 65-69 m Right 11-15

Age is given in years. m, male; f, female; EHI, Edinburgh Handedness Inventory; SARA, Scale for the Assessment
and Rating of Ataxia; MD, major depression. Age and education are given in ranges to comply with data protection
requirements.

activated areas typically associated with reward processing, such as
the striatum, activations for delayed feedback shifted toward the
hippocampus (Foerde and Shohamy, 2011). This shift was also apparent
in FRN, with a decreased FRN amplitude with longer feedback
delays (Peterburs et al, 2016). This shift in activation could affect
potential deficits in cerebellar patients due to differences in connectivity
of these brain regions with the cerebellum. Finally, feedback was
displayed for 1,000 ms. Feedback consisted of either the display of
“+20 ct” in green font as positive feedback or “—10 ct” in red font as
negative feedback.

Two of the four stimuli were linked to random feedback (50% posi-
tive and 50% negative regardless of response), while the other two were
linked to contingent feedback. Here, correct responses were followed by
positive feedback 90% of the time and by negative feedback 10% of the
time (and vice versa for incorrect responses). Correctness was balanced
for the two response buttons, so that for one of these stimuli, the chance
of positive feedback was higher for the left button, while for the other sti-
mulus, the chance of positive feedback was higher for the right button. In
case a participant exceeded the learning criterion of 65% correct answers
by the second of eight blocks, a new stimulus set was provided to increase
the number of prelearning trials. This was the case for eight patients and
eight controls in one feedback delay condition/session (of which 1 and 5,
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respectively, were second sessions) and for six patients and eight controls
in both conditions. In case a participant did not exceed the learning cri-
terion until the eighth and last block, a ninth block was added to increase
the number of postlearning trials. This was the case for three patients and
two controls in one of the two conditions.

Following this task on Day 1, participants underwent cranial MRI
and a clinical neurological examination.

On the second day, following EEG preparations, the remaining other
version (short or long feedback delay version) of the probabilistic feed-
back task was completed. Versions were counterbalanced between ses-
sions. Two different stimulus sets were used per session, and order was
counterbalanced. Responses (choice, choice accuracy) and response
times were recorded during the experiment.

EEG recording and preprocessing

EEG was recorded from 28 active Ag/AgCl electrodes (F7, F3, Fz, F4, F8,
FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz,
P4, P8, POY, O1, Oz, 02, PO10) positioned on a BrainCap (Brain
Products) according to the 10-20 system. FCz was used as an on-line ref-
erence, and AFz was used as ground electrode. Fp1 was used as vertical
electrooculogram (vEOG) and an electrode was placed next to the outer
canthus of the left eye as horizontal electrooculogram (hEOG).
Impedances were kept below 25kQ. Data were amplified with a
BrainAmp DC amplifier and recorded at 1,000 Hz using BrainVision
Recorder 1.21 (Brain Products). Data preprocessing was performed using
BrainVision Analyzer 2 software (version 2.2, Brain Products) and
MATLAB (MathWorks).

First, data were rereferenced to the mastoid electrodes and FCz was
reestablished. Next, a DC detrend was applied and data were filtered
using zero phase shift Butterworth filters with a low cutoff of 1 Hz
and high cutoff of 30 Hz, as well as a notch filter at 50 Hz to remove
powerline artifacts. Subsequently, we removed vertical and horizontal
eye movement artifacts using a semiautomatic Ocular Correction
ICA as implemented in BrainVision Analyzer 2. vVEOG was used for
blinks and vertical activity, and hEOG for horizontal activity. The
first 177.2 s were used for ICA. We then segmented data from the start
marker of the experiment to end of experiment, and segmented them
around the feedback markers, starting 200 ms before and ending
600 ms after each marker. Only feedback markers for learnable stimuli
were segmented. Baseline correction was performed based on the
200 ms preceding feedback onset, followed by automated artifact rejec-
tion. Segments with a voltage step exceeding 50 uV/ms, an amplitude
above 100 uV or below —100 uV, or activity not exceeding 0.1 uV
were excluded. Single-trial data were then exported via generic data
export. On average, 1.1% of segments (SD=2.5%) were rejected.
Additionally, data for learnable stimuli were averaged and exported
according to feedback valence (positive, negative) and feedback delay
(short, long).

The EEG system had to be switched from an actiCAP system to a
newer actiCAP snap system after the first 27 participants due to a defect
in impedance measurement.

In MATLAB, peak detection was performed on the averaged data
separately for each condition [feedback valence (positive, negative) x
feedback delay (short, long)]. The FRN was defined as the local maximal
negative peak within the time window between 200 and 350 ms at
electrode site FCz (Sambrook and Goslin, 2015). If no local maximum/
minimum could be detected, the corresponding single-trial segments
were excluded. For the single-trial data, the mean amplitude in a
time window of 40 ms around the respective FRN latency determined
by the peak detection on the averaged data was extracted (Meadows et
al.,, 2016).

Prediction error estimation

Prediction errors on each trial were estimated based on choices partici-
pants made and feedback they received using a reinforcement learning
model (Sutton and Barto, 2018) consistent with previous studies
(Ichikawa et al., 2010; Fischer and Ullsperger, 2013; McDougle et al.,
2019) which has been shown to be highly correlated with the gold stan-
dard (i.e., subjective ratings; Ichikawa et al., 2010). We modeled action
values Q and PEs & based on the actually received feedback R and
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Crus Il

Overlap plot of all lesions in the patient group (n = 26) superimposed on () a cerebellar flatmap (Diedrichsen and Zotow, 2015) and in 2D (B) sagittal, (€) coronal, and (D) axial

views. Lesions on the right side were mirrored to the left side. Color code shown on the top right denotes total lesion overlap (from purple =0 to red = 12). Individual lesions are depicted in

Extended Data Figure 1-1.

A. Experimental setup

Figure 2.

B. Time course and sequence of stimulus presentation

500-1000 ms 1500 ms 1500 ms 200 ms 500 or 6500
fixation cross  stimulus with only choice  choice display
choice feedback 1000 i
|
deley feedback

Experimental procedure of Experiment 1 (patient study). A, Experimental setup. EEG was recorded while participants performed the probabilistic feedback task. B, Time course and

sequence of stimulus presentation in one trial of the feedback learning task. After a fixation cross was presented for 500—1,000 ms, one of four stimuli was presented, toward which participants
were required to respond by pressing the left or right button on a response pad within 3,000 ms. The stimulus was only shown for the first 1,500 ms. After the response, the respective choice was
highlighted on screen for 200 ms, followed by either 500 or 6,500 ms of blank screen (depending on feedback delay version). Positive (“+20 ct”) or negative feedback (“—10 ct”) was then
presented on screen for 1,000 ms. Participants needed to learn by trial and error whether one of the choices was related to higher chance of positive/negative feedback depending on stimulus.
Feedback for two of the stimuli had a 90% contingency, while for the other two it had a 50% (random) contingency. A total of 320 trials were used in the task.

participants’ chosen response a, using a Rescorla-Wagner model
(Rescorla and Wagner, 1972; Wagner and Rescorla, 1972):

Q41 = Qi + ax 8y,

Sr = Ra,t - Qa,t~

To model response probabilities, we used a softmax function (Sutton
and Barto, 2018), which estimates the probability p of the chosen action
with the estimated action values Q per action a and time point ¢ (in this
case, the trial):

oB* Qs
Pare = "pig B Quye
e ot | e ay .t

The function fmincon provided by MATLAB was used to fit this model to
the data via minimizing the negative sum of log-likelihoods minus a
gamma distribution of  with a shape parameter of 2 and scale parameter
of 3 (as to penalize high f; McDougle et al., 2019). We estimated a learn-
ing rate « as well as an inverse temperature 8 for exploration behavior,
separately for each stimulus and reward and punishment. We allowed
a to assume any value between 0 and 1 and f3 to assume any value between
0 and 50.

Experimental design and statistical analysis
This study was preregistered to OSF (https:/osf.io/rd3xb). Necessary
sample size was determined via power analysis to be N=483, i.e., 24 per

group, as detailed in the preregistration. Required sample size was thus
matched (n =26 per group). Raw data and code used for preprocessing
and analysis are available from https://ost.io/cqf97.

Analysis focused on differences in the FRN between controls and
patients (on group level), especially in relation to coding of RL-PEs. As
the signed RL-PE overlaps with feedback valence, we split the signed
RL-PE into the unsigned RL-PE (on a scale from 0/low to 1/high) and
feedback valence (positive, negative), which were used as separate predic-
tors in the analysis. We further examined learning success as reflected in
choice accuracy and choice switching as an index of behavioral flexibility.
The analysis was restricted to stimuli with a 90% contingency, as partic-
ipants were not able to learn in the 50% contingency condition.

Data were analyzed in R (version 4.2.3; R Core Team, 2023) using
RStudio (version 2023.3.0.386, Posit Team, 2023). Concerning choice
accuracy, the preregistered ANOVA was performed. For the FRN, since
only 14 patients and 12 controls exceeded the learning criterion of >65%
correct responses within at least one block of the task in either version,
the preregistered ANOVA analysis with learning phase (pre-/postlearn-
ing) as a factor was not feasible. With the factor learning phase, we had
aimed to investigate to what extent feedback processing changed over the
course of the task as participants learned which responses resulted in a
higher chance of reward/punishment. Instead, we decided to pursue a
single-trial-based analysis approach using LME models including the
trial-by-trial unsigned RL-PE. Analyses based on single trials have
increasingly been used in recent studies as they offer the possibility to
use variables that vary from trial to trial as factors in the statistical
analysis (Volpert-Esmond et al., 2021). LME analyses based on single-
trial data have also been shown to deliver less biased results compared
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with ANOVAs based on averaged data (Heise et al., 2022). The Ime4
library (version 1.1-32; Bates et al., 2015) was used for LME modeling,
and the Imertest library (version 3.1-3; Kuznetsova et al., 2017) was
used to evaluate statistical significance. Significance was evaluated
using restricted maximum likelihood with p values computed using
Satterthwaite approximation, following the findings by Luke (Luke,
2017). While we initially tested a maximal fit for random effects, in
case of singular fit, we reduced the originally maximal random effects
structure up to the random intercept and highest-order interaction as
random slope per participant (Brauer and Curtin, 2018). For all LME
analyses, outliers were identified via Cook’s distance (Cook, 1977) using
the influence. ME package (version 0.9-9; Nieuwenhuis et al., 2012) and
an outlier criterion of 4/(n-p-1), where n is the number of subjects and
p is the number of fixed effects. Significant interactions were followed
up using simple slope analyses via the interactions library (version
1.1.5; Long, 2019). p values were Bonferroni-corrected according to the
number of simple slopes in the respective analysis.

Choice accuracy. We conducted a mixed ANOVA with the factors
group (patients, controls), feedback delay (short, long), and block (1-8).
Significant effects were followed up with Bonferroni-corrected f tests using
the emmeans_test function (Lenth, 2025). No participant exceeded the out-
lier criterion of M+ 2.5 SD per feedback delay/study session.

Choice switching. As an additional behavioral measure, we analyzed
whether choice switching following feedback was influenced by the cat-
egorical fixed effects feedback valence (—0.5: negative, 0.5: positive),
response type (—0.5: false, 0.5: correct), group (—0.5: control, 0.5:
patient), feedback delay (—0.5: short, 0.5: long), and the continuous
effect block which was scaled via the built-in scale function. Choice
switching for a given trial was defined as whether the choice for the cur-
rent stimulus was switched (choice switching=1) or sustained (choice
switching=0) in the next trial that the same stimulus was presented
in. The variable was scaled via the built-in scale function. We also
included all interactions of these factors as fixed effects. No participants
exceeded our Cook’s distance criterion. The model equation was as fol-
lows:

choice switching ~ 1+ feedback valence % response type * group
* feedback delay * block + (1 + feedback valence:
response type:feedback delay:block|subject)

FRN. For FRN amplitudes, we again employed an LME model with
the fixed effects feedback valence (negative: —0.5, positive: 0.5), group
(—0.5: control, 0.5: patient), feedback delay (—0.5: short, 0.5: long), and
the continuous fixed effect unsigned RL-PE which was the absolute of
the signed RL-PE minus 0.5 (thus with minimal values of —0.5 and max-
imal values of 0.5). We also included all interactions of these factors as
fixed effects. Here, we deviated from the preregistration (which only
included the signed RL-PE), because analyzing the signed RL-PE in an
LME model is confounded by valence effects and disregards possible
U-shaped relations which are identifiable by separating feedback valence
and unsigned RL-PE (i.e., RL-PE magnitude). Initial convergence issues
were solved via changing the optimizer to bobyqa. Four controls were
excluded due to exceeding the Cook’s distance criterion. The model
equation was as follows:

FRN ~ 1 4 unsigned PE x feedback valence x group s feedback delay
+ (1 4 unsigned PE:feedback valence:feedback delay +
unsigned PE:feedback valence + unsigned PE:feedback delay
+ feedback valence:feedback delay|subject)

Structural MRI and lesion symptom mapping

For 21 patients and all controls, a 3D T1-weighted magnetization-
prepared rapid acquisition gradient-echo (MPRAGE) sequence was
acquired [176 slices, repetition time (TR), 2,530 ms; echo time (TE),
2.27 ms; inversion time (TI), 1,100 ms; flip angle (FA), 7° voxel size,
1x1x1mm; acceleration factor, 2 (GRAPPA); field of view, 256 x
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256 mm; acquisition time (TA), 6:03 min:s]. A MAGNETOM Vida 3T
system (Siemens Healthcare) with a 64-channel coil was used. For the
remaining five patients, an MR scan was not possible due to implants
(n=4) or claustrophobia (n=1), and instead, existing diagnostic
structural MR images were used.

We first confirmed that lesions were isolated to the cerebellum, which
was also reconfirmed by an experienced neuroradiologist (SGO).
T2-weighted images were also assessed for white matter lesions (see below).

Non-normalized 3D T1 images were first manually aligned to the
AC-PC line. Cerebellar, postischemic lesions were then manually traced
and saved as regions of interest using MRIcron (https:/www.nitrc.org/
projects/mricron). Next, the cerebellum was isolated, and datasets were
segmented using the suit_isolate_seg function provided by SUIT toolbox
(https:/www.diedrichsenlab.org/imaging/suit.htm). Isolation masks
were manually corrected. Datasets were then normalized with the func-
tion suit_isolate_mask, using the lesion mask as optional input, thus
ignoring the respective area(s). Finally, lesion ROIs were transformed
via suit_reslice into the spatially unbiased atlas template of the cerebel-
lum (SUIT; Diedrichsen, 2006).

For statistical analysis of whether deficits corresponded to specific
lesion locations, voxel-based lesion symptom mapping (vbLSM) was
conducted using NPM as implemented with MRIcron (Stoodley et al.,
2016; Timmann et al,, 2022). For this purpose, all lesion ROIs on the
right side were mirrored to the left side (in the five patients with bilateral
lesions, the side with the larger lesion was considered). For one subject
(sub-060) with bilateral lesions, the lesion of higher interest for our cog-
nitive task in posterolateral regions (Crus II, lobule VIIb) was mirrored
to the left side instead of the larger lesion in anterior cerebellar motor
regions. vbLSM compares for each voxel, whether patients with this voxel
affected differ from patients with this voxel unaffected within a variable
of interest. A Brunner-Munzel test was employed (Brunner and Munzel,
2000) with a statistical threshold of p < 0.05. Only variables with statisti-
cal differences between patients and controls were considered, which in
our case was the interaction effect between RL-PE, feedback valence,
and group onto FRN amplitude. We collapsed this effect into one vari-
able per participant by taking the difference between the mean FRN
amplitude for high RL-PE (>—0.5) and low RL-PE (<0.5) for negative
feedback (because FRN amplitudes differed between high and low
RL-PE only for negative feedback valence in controls). Signs were
reversed for the analysis, as lower values are related to more dysfunction
in vbLSM (while in our case positive values were associated with more
dysfunction). Clusters of voxels with significant effects were extracted
using MRIcroGL (Brett et al., 2001), considering clusters larger than
32 mm’. Affected lobules and nuclei were defined based on the probabi-
listic atlases of the human cerebellum by Diedrichsen et al. (2009, 2011).

White matter lesion assessment

3D dark fluid T2-weighted spin-echo sequences [SPACE; 160 slices; TR,
7,000 ms; TE, 428 ms; T1, 2,050 ms; voxel size, 1 x 1 x 1 mm; acceleration
factor, 2 (GRAPPA), field of view, 256 x 256 mm; TA, 5:24 min:s] were
acquired and examined for white matter lesions. They were rated following
Wahlund et al. (2001; Table 1). Even though we excluded patients with
particularly pronounced and widespread white matter lesions, we still
found higher white matter lesion ratings for cerebellar stroke patients
than controls. White matter lesions have previously been shown to contrib-
ute to deficits in cognition (Filley and Fields, 2016), although findings spe-
cifically concerning reinforcement learning appear as yet lacking. To
exclude effects of WMLs in our data, we checked our cognitive scores
(CCAS) and did not find any general cognitive deficits in patients com-
pared with controls (f4989)=1.03, p=0.310). Our finding concerning
RL-PE processing in stroke patients additionally coincides with our
findings for cerebellar TMS in Experiment 2, where cerebellar and control
stimulation was applied within-subject, excluding between-subject
factors like white matter lesions as a cause. It thus seems likely that the
deficits in RL-PE processing in our patients are caused by the cerebellar
stroke itself.

Quantitative susceptibility mapping
In an additional analysis, we examined whether lesions within the den-
tate nucleus had a special impact on RL-PE processing, as the dentate
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nucleus constitutes the main output of the cerebellum, with more than
half of its projection relating to non-motor functions (Palesi et al.,
2021). To identify the dentate nucleus based on its high iron levels
(Deistung et al., 2016), quantitative susceptibility mapping (QSM)
was conducted based on data collected using a multi-echo gradient-echo
scan [176 axial slices; TR, 27 ms; TE;_4, 3.66 ms/9.74 ms/15.83 ms/21.91 ms;
FA, 15° voxel size, 0.9 x 0.9 x 0.9 mm; acceleration factor, 2 (GRAPPA);
field of view, 230 mm X230 mm; TA, 8:15 min:s] as described in
Deistung et al. (2022). Outlines of the dentate nucleus as well as dentate
nucleus lesion (if present) were manually drawn in ITK-SNAP
(Yushkevich et al., 2006). We identified six patients who had a lesion
in the dentate nucleus, with two of those previously classified as impaired
concerning the differentiation between negative low and high RL-PE
in FRN. We coregistered both dentate nucleus regions of interest and
lesions to the T1 images and then normalized and resliced them into
SUIT space. Functions included within the SUIT toolbox were used,
i.e., suit_normalize_dentate for normalization and suit_reslice_dartel
for reslicing. However, as overlaps between lesions were too few and
did not allow meaningful statistical analysis, we abstained from an addi-
tional analysis and instead provide images of the individual dentate
lesions in Figure 3.

Experiment 2

Participants

Twenty-nine healthy adults were recruited for participation. Four partici-
pants completed only one of two sessions and were thus excluded; one
participant was excluded due to stimulation at a false output strength in
one of the sessions. Thus, data from 24 participants (7 men, 17 women)
with a mean age of 23.3 years (SD =2.9 years, range from 19 to 30 years)
were analyzed. Handedness was assessed with the EHI (Oldfield, 1971),
with a mean LQ score of 62.3 (SD=53.3, range from —85.7 to 100.0).
According to LQgyqy, 20 participants were right-handed, 2 left-handed,
and 2 ambidextrous. All participants reported no neurological or psychi-
atric diseases and no metal implants in or near their head. Further
exclusion criteria were pregnancy, alcohol or illicit substance abuse, and
intake of psychotropic medication. IQ estimates were obtained using the
MWT-B (Merz et al., 1975), yielding a mean IQ of 103.5 (SD=15.4).
Participants received monetary compensation for participation in
two sessions.

All participants gave written informed consent prior to participation.
The experiment was conducted in accordance with the ethical principles
for medical research involving human subjects outlined in the
Declaration of Helsinki and approved by the Ethics Committee at the
Faculty of Medicine of Heinrich-Heine-University Diisseldorf.

Procedure

The experiment took place on 2 separate days with at least 48 h in
between to decrease repetition effects (M=101.6d, SD=152.1d,
range from 2 to 448 d). Note that due to a technical defect of
the TMS system and a consequent pause of experiments, the
time between sessions was exceptionally long for five individuals
included in the analysis (362-448 d). Without these participants,
the average time between sessions was 26.6 d (SD=28.0 d, range
from 2 to 98 d).

While one session of Experiment 2 comprised the experimental
task with vertex (control) stimulation, the other session comprised the
cerebellar stimulation. Order for stimulation site was counterbalanced.

After participants arrived in the lab, informed consent was
obtained and they filled in a demographic questionnaire, the EHI,
and the MWT-B. Following EEG and EMG preparations and the sub-
sequent motor threshold estimation, we placed the double cone TMS
coil on their head with a custom mounting and further secured it
with an elastic band (see below for a detailed description; Fig. 4A).
Before and after the experimental task, an additional Flanker task
was performed for which results are reported elsewhere (Berlijn
et al., 2024a).

Participants completed a probabilistic feedback learning task that
closely followed procedures as described for Experiment 1. Figure 4B
illustrates the sequence and time course of stimulus presentation in
each trial. The task consisted of six blocks of 56 trials, thus 336 trials
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Figure 3. Individual, unmirrored dentate nucleus lesions for Experiment 1 (patient study),
normalized to SUIT space, are presented in sagittal (left column), coronal (middle
column), and axial view (right column) for patients with dentate lesions (sub-004, sub-005,
sub-019, sub-022, sub-026, and sub-036). Lesion are marked in red.

in total. Again, five practice trials with different stimuli were provided.
Due to the younger sample, stimulus presentation was reduced to
500 ms and the response time window was shortened to 1,000 ms.
Only short feedback delays (i.e., 500 ms) were used. Two stimuli were
again linked to random feedback while the other two stimuli were linked
to contingent feedback. For the contingent stimuli, correct responses
were followed by positive feedback in 80% of the cases and by negative
feedback in 20% of the cases (vice versa for incorrect responses). In
both contingency conditions, TMS was delivered 100 ms poststimulus
for one stimulus and 100 ms prefeedback for the other. In case a partic-
ipant had learnt so fast that they exceeded the learning criterion of 75%
correct answers by the second of six blocks, a new stimulus set was pro-
vided to increase the number of prelearning trials. This was the case for
seven participants in one condition (of which four were second sessions)
and for one participant in both conditions. In case a participant did not
exceed the learning criterion until the sixth and last block, a seventh
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B. Time course and sequence of
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Experimental procedure of Experiment 2 (TMS study). A, Experimental setup. A double cone coil was placed on either the left cerebellum (1 cm down and 3 cm to the left of the

inion) or vertex depending on session. Simultaneously, EEG and EMG were recorded. B, Time course and sequence of stimulus presentation and timing of TMS pulses in one trial in the exper-
imental task. After a fixation cross was presented for 500—1,000 ms, one of four stimuli was presented, toward which participants could respond by pressing the left or right button on a response
pad within 1,000 ms. The stimulus was only shown for the first 500 ms. After response, the respective choice was highlighted on screen for 200 ms, followed by 500 ms of blank screen. Positive
(“+20 ct”) or negative feedback (“—10 ct”) was then presented on screen for 1,000 ms. Participants needed to learn by trial and error whether one of the choices was related to a higher chance
of positive/negative feedback depending on stimulus. Feedback for two of the stimuli had an 80% contingency, while for the other two, it had a 50% contingency. TMS stimulation was applied
either 100 ms poststimulus presentation or 100 ms prefeedback stimulation. A total of 336 trials were used in the task.

block was added to increase the number of postlearning trials. This was
the case for three participants in one condition and for one participant in
both conditions.

TMS application and EMG recording

The complete experimental setup is depicted in Figure 4A. Stimulation
was applied at 120% of motor threshold (MT) as measured in the
first session. MT was measured again on the second session.
While there was a trend for a lower motor threshold on the second
(M =36.8%, SD=7.4%) compared with the first session (M =37.8%,
SD =7.4%; t;)=1.72, p=0.100), there was no significant difference
in MT between cerebellar and vertex stimulation session (¢;2)=0.44,
p =0.663).

MT was determined as the lowest intensity that still triggered
a motor-evoked potential in at least 5 of 10 stimulations. MEPs
were recorded by AgCl surface electrodes (Ambu) from the left
M. abductor pollicis brevis in resting condition. The signal was amplified
with a Digitimer D360 (Digitimer). The frequency band of the filter was
set to 100-5,000 Hz and digitized at a sampling rate of 5 kHz (Signal
version 6.02, Cambridge Electronic Design). We monitored for MEPs
during the experimental task as to avoid stimulating too close to
the brainstem.

TMS was applied via a Magstim Double Cone Coil using a Magstim
BiStim? unit (Magstim). To enable a fast-paced task flow, we alternated
stimulation between two Bistim units. Stimulation was applied either
to the left lateral cerebellum (1 cm below and 3 cm to the left of the
inion; confer Hardwick et al, 2014) or vertex (at electrode position
Cz, Jung et al, 2016), both with inferior voltage flow. The coil was
wrapped in plastic wrap to reduce electrode motion artifacts caused by
direct contact between TMS and EEG. Participants were given earplugs
to reduce auditory artifacts. After the coil was positioned, we fixed it
with a custom stand and to the participant’s head via a fabric elastic
band over the participant’s forehead (cerebellar TMS) or chin (vertex
TMS). Coil position was constantly monitored and adjusted during the
breaks if necessary.

Vertex was chosen as a control site, as it is common choice of
control site (Gatti et al., 2023). We did not use sham cerebellar TMS
as it provides participants with a very different experience in terms
of vibrations, coil clicks, and magnetic field build-up (Duecker and
Sack, 2015).

Single-pulse TMS was chosen over rTMS due to its advantage of
examining effects of deficits with a high temporal resolution. Instead
of examining processing and task performance with a relatively
steady deficit across all processing stages, like with rTMS, single-pulse
TMS can be applied at different time points within the trial. This
offers the advantage of differentiating effects stemming from deficits
at different processing stages.

Side effects questionnaire

As participants spontaneously reported side effects after the
experiment, we introduced a postexperimental side effect questionnaire
halfway through the study in which participants were asked to rate
symptoms (headaches, neck pain, toothaches, inattentiveness, discom-
fort, phosphenes, others) associated with TMS on a scale from 1 to 5
(see Fig. 5 for a plot of the side effect ratings). Ten participants completed
this questionnaire in both of their sessions and five participants
completed it in one session. There were no significant differences
between vertex and cerebellar TMS (all p >0.343) in terms of reported
side effects.

EEG recording and preprocessing

All EEG equipment used was explicitly suitable for concurrent TMS.
EEG was recorded from 30 passive Ag/AgCl Multitrode electrodes
(Fpl, Fp2, F7, F3, Fz, F4, F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8,
CP5, CP1, CPz, CP2, CP6, P7, P3, Pz, P4, P8, O1, Oz, 02, Iz) positioned
on a BrainCap (Brain Products) according to the 10-20 system. FCz was
used as an on-line reference, and AFz was used as ground electrode.
Impedances were kept below 5kQ. Data were amplified with a
BrainAmp MR amplifier and recorded at 1,000 Hz using BrainVision
Recorder 1.21 (Brain Products).
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Figure 5. Side effects reported in the postexperimental questionnaire in Experiment 2

(TMS study). Means and standard errors are shown in red, individual ratings are shown in
black.

Preprocessing was conducted using the ARTIST algorithm by Wu et
al. (2018; see Bertazzoli et al., 2021 for a comparison of TMS-EEG pre-
processing methods) and Brain Vision Analyzer. Nevertheless, a remain-
der of the TMS pulse artifact was still seen in the ERP.

Data were initially checked for missing TMS pulses (TMS marker
was sent but pulse was not) both by visual inspection and via an
explorative artifact detection: first, trials were segmented around the
TMS marker (starting 100 ms before and ending 100 ms after it).
Since TMS pulses cause large spikes in the raw data, an automatic arti-
fact detection was employed on the ERP data to identify whether a
pulse was sent. Segments with an amplitude >400 or less than
—400 pV at electrode Fz were considered to contain a TMS artifact.
For all except one participant, all segments contained this artifact,
meaning that for each TMS marker in the ERP, a TMS pulse was trig-
gered. Segments in which the above criterion was not met were visually
confirmed to contain no TMS pulse artifact and were subsequently
excluded from analysis. Marker timings for delayed markers (due to
port conflicts) were adjusted in the marker files. This was the case
for one marker in 10 participants and two markers in one participant.
In two participants, one of these markers indicated a TMS pulse, thus
also indicating delay of the corresponding TMS trigger. We excluded
the corresponding segments as the TMS pulse had thus not been
sent at the correct time.

For preprocessing, we used the ARTIST algorithm by Wu et al.
(2018), which is based on EEGLAB (v2022.1; Delorme and Makeig,
2004). This algorithm is designed to decrease artifacts in the EEG signal
caused by TMS pulses. In a first step, the ARTIST algorithm corrected for
direct current drift, removed the TMS pulse artifact by interpolating the
EEG signal around the TMS marker (here: 15 ms prior to until 5 ms after
the TMS marker), and removed the decay artifact via ICA. Data were
then notch-filtered (50 Hz) and bandpass filtered (high-pass filter:
1 Hz; low-pass filter: 30 Hz). Next, data were segmented into epochs
beginning 1,500 ms before and ending 2,200 ms after the TMS markers.
Following this, segments containing movement artifacts were rejected
(M =2.8% of segments, SD =2.6%) and bad channels were interpolated
(M =0.96 channels, SD = 1.15 channels). In a final step, bad independent
components were removed via a second ICA, after which the signal was
rereferenced to an average reference. Deviating from the ARTIST algo-
rithm, we restored electrode FCz after this, because FCz was essential
for our data analysis. For baseline correction, the time window between
300 and 100 ms preceding the TMS pulse was used to avoid confounding
the baseline correction with the TMS pulse deflection. We always
excluded electrode Iz before any preprocessing because it was particu-
larly noisy in pilot testing. Data were then saved in the BrainVision
exchange format.

J. Neurosci., May 7, 2025 - 45(19):1972242025 - 9

The segment size needed to be rather large, because initial segments
were created around the TMS pulse, while in a later step the ERPs needed
to be time locked to feedback onset. Therefore, some markers existed in
more than one segment (when they were overlapping). To correct this,
marker files were edited with a custom MATLAB script, deleting all
excess markers. In this step, segments with more than one response
were also excluded.

Data were then further preprocessed in BrainVision Analyzer 2.2.
Due to only 10 participants exceeding the learning criterion of 75% cor-
rect responses in both conditions, the planned data analysis using
ANOVA was not feasible. As a result, we pursued a single-trial analysis
approach in parallel to data analysis for Experiment 1 and thus deviated
from the preregistered procedures. We segmented data around feed-
back onset, starting 200 ms before and ending 500 ms after feedback
markers. Next, we performed an additional baseline correction using
the time window from 200 to 0 ms before feedback onset (thus includ-
ing parts of the remaining pulse artifact for those pulses that were
applied 100 ms before the feedback). We then exported single-trial
ERPs with a generic data export, on average resulting in 329.3 segments
(SD =18.8 segments) per participant. Data were then exported via a
generic data export for further processing in MATLAB. We addition-
ally averaged data according to conditions (stimulation site, TMS tim-
ing, feedback valence) to extract FRN peak latencies. Only trials with
contingent feedback were included. Peak detection was performed in
parallel to Experiment 1.

Prediction error estimation

Prediction errors were again modeled as described in Experiment 1. Before
merging the behavioral, RL-PE, and EEG data, we excluded all trials in the
behavioral and RL-PE data that were not included in the preprocessed EEG
data. These were either trials that did not enter the segmentation in
ARTIST because the TMS marker/trigger had not been sent (e.g., when
participants did not respond in time and thus no feedback-locked TMS
trigger was sent) or trials/segments that ARTIST excluded during artifact
rejection. Behavioral, RL-PE, and EEG data were then merged.

Experimental design and statistical analysis

The study was preregistered to OSF (https://ost.io/a24rg). We had aimed
for a sample size of 20-25 participants (see preregistration for more
details). The targeted sample size was thus matched (#=24). Raw data
and code used for preprocessing and analysis are available from
https://osf.io/9n7yp.

Data were again analyzed in R (version 4.2.3; R Core Team, 2023) using
RStudio (version 2023.3.0.386; Posit Team, 2023). Concerning choice
accuracy, the preregistered ANOVA analysis as well as an additional linear
mixed effects (LME) analysis were performed (see below). Since only 10
participants exceeded the learning criterion of >75% correct responses in
at least one block for both stimulation sites, the preregistered ANOVA
with learning (pre-/postlearning) as a factor was not possible for the
FRN analysis. We again decided to pursue a single-trial-based analysis
approach using LME models including the unsigned RL-PE instead.

Analyses were conducted to match procedures in Experiment 1, only
deviating within the Cook’s distance criterion for the choice switching
LME analysis where the original criterion was not applicable, so that
we instead used the criterion of 4/n (Nieuwenhuis et al., 2012).

Choice accuracy. We conducted a repeated-measures ANOVA
with the within-subjects factors stimulation site (cerebellum, vertex),
TMS timing (poststimulus, prefeedback), and block (1-6), as preregis-
tered. Significant effects were followed up with Bonferroni-corrected ¢
tests using the function emmeans_test. No participant exceeded the out-
lier criterion of M +2.5 SD per stimulation site/study session.

Choice switching. We analyzed whether choice switching was
influenced by the categorical fixed effects feedback valence (—0.5: nega-
tive, 0.5: positive), response type (—0.5: false, 0.5: correct), stimulation
site (—0.5: vertex, 0.5: cerebellum), TMS timing (—0.5: poststimulus,
0.5: prefeedback), and the continuous effect block which was scaled
via the built-in scale function. We also included all interactions of
these factors as fixed effects. Three participants had to be excluded


https://osf.io/a24rg
https://osf.io/a24rg
https://osf.io/9n7yp
https://osf.io/9n7yp

10 - J. Neurosci., May 7, 2025 « 45(19):21972242025

because they exceeded the Cook’s distance criterion. The model equation
was as follows:

choice switching ~ 1 + feedback valence * response type * stimulation site
* TMS timing * block + (1 4 feedback valence:
response type:stimulation site:TMS timing:block|subject).

FRN. For FRN amplitudes, we again employed LME models with
the fixed effects feedback valence (negative: —0.5, positive: 0.5), stimula-
tion site (—0.5: vertex, 0.5: cerebellum), TMS timing (—0.5: poststimulus,
0.5: prefeedback), and the continuous fixed effect unsigned RL-PE which
was the absolute of the signed RL-PE minus 0.5 (thus with minimal val-
ues of —0.5 and maximal values of 0.5). We also included all interactions
of these factors as fixed effects. While we were initially also able to keep
random slopes up to third-level interactions, solving convergence issues
via changing the optimizer to bobyqa, due to singular fit after the subse-
quent exclusion of one Cook’s distance outlier, we had to revert to a ran-
dom effects structure with only the fourth-level interactions and random
intercept. Two outliers identified by Cook’s distance were excluded. The
model equation was as follows:

FRN ~ 1 4 unsigned PE * feedback valence « TMS condition s TMS timing
* learnability + (1 + unsigned PE:feedback valence:TMS condition:
TMS timing:learnability|subject).

Results

Experiment 1: RL-PE processing in cerebellar stroke patients
In Experiment 1, we studied patients with chronic cerebellar
stroke (n=26) and a matched healthy control group (n=26) to
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investigate reinforcement learning success and RL-PE process-
ing, quantified by ACC-driven FRN amplitude. Participants per-
formed a probabilistic feedback learning task (Fig. 24,B) in which
they had to optimize their behavior via trial and error to obtain a
monetary reward (“+20 ct” per trial) and avoid a monetary pun-
ishment (“—10 ct”). Responses were made by pressing one of two
buttons on a response pad. Two out of four stimuli were associ-
ated with a 90% reward contingency (i.e., pressing the “correct”
button resulted in a reward in 90% of the time and a punishment
10% of the time; vice versa for the “incorrect” button), while the
other two stimuli were associated with random feedback. As
learning was only possible for the 90% contingency stimuli, the
analysis was restricted to these (see Materials and Methods for
a more detailed description of the task). Two different feedback
delays were used (short, 500 ms; long, 6,500 ms), as previous
work has shown differences in FRN depending on feedback tim-
ing (Peterburs et al., 2016).

During task performance, EEG was recorded to analyze the
FRN (Fig. 24). To see whether potential deficits were associated
with specific lesion locations, lesion symptom mapping was con-
ducted based on T1-weighted MR images in patients.

Choice accuracy

Mean choice accuracy by group (patients, controls), feedback delay
(short delay, long delay), and block (1-8) is shown in Figure 6A.
The effect of these factors on choice accuracy was analyzed within
an ANOVA. We expected no differences in accuracy between
groups and only a general learning effect. This expectation was
based on a previous study which did not find deficient learning
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Figure 6.

Accuracy for Experiments 1 (patient study) and 2 (TMS study). A, Left, Choice accuracy in the probabilistic feedback task in Experiment 1 (patient study) according to group (patients,

controls), feedback delay (short delay, long delay), and block (1-8). Red lines denote patients and blue lines controls. Opaque lines denote group means. Error bars indicate standard errors.
Translucent lines denote individual mean accuracy. Right, Choice accuracy according to block. Opaque lines denote means across groups and feedback delays. Error bars indicate standard errors.
Translucent dots denote individual mean accuracy. B, Left, Choice accuracy in the probabilistic feedback task in Experiment 2 (TMS study) according to stimulation site (cerebellum, vertex), TMS
timing (poststimulus, prefeedback), and block (1-6). Red lines denote vertex TMS and blue lines cerebellar TMS. Opaque lines denote means per stimulation site. Error bars indicate standard
errors. Translucent lines denote individual mean accuracy per stimulation site. Right, Choice accuracy according to block. Opaque lines denote means across TMS timings and stimulations sites.
Error bars indicate standard errors. Translucent dots denote individual mean accuracy. *p < 0.05. **p < 0.01. ***p < 0.001.
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in patients with cerebellar stroke (Rustemeier et al., 2016), which is
likely due to compensatory mechanisms in this patient group
(Peterburs et al, 2012). Overall, we found a significant main
effect of block, i.e., alearning effect, but none of the effects involving
the factor group (patients vs controls) reached significance.

Statistical analysis showed a main effect of block
(F3.15,15426) = 15.65, p<0.001), indicating that subjects had
learned to optimize their behavior over the course of the task.
Post hoc ¢ tests revealed that choice accuracy was significantly
higher in block 4 (fs,3)=3.97, p=0.002), block 5 (ts,3y=3.91,
p<0.001), block 6 (f(s23) = 4.61, p<0.001), block 7 (f(s23) = 5.72,
p<0.001), and block 8 (#g23)=5.26, p<0.001) compared with
that in block 1. Additionally, choice accuracy was higher in block
7 compared with that in block 2 (#g23)=3.18, p=0.042) and
block 3 (f(s23)=3.42, p=0.018). All other pairwise comparisons
were nonsignificant (all p > 0.087). No other effects reached sign-
ificance (all p>0.179; see Table 4 for the complete inferential
statistics).

Choice switching

The effects of response type, feedback valence, block, group, and
feedback delay on choice switching were analyzed using LME
analysis. We found the expected effects of increased choice
switching after negative feedback, false responses, short feedback
delays, as well as early in the experiment. Importantly, while in
controls, choice switching was increased for negative compared
with positive feedback for both short and long feedback delays,
in patients, this effect was present only for short but not for
long feedback delay (Fig. 7A).

Statistical analysis showed that choice switching was
increased after incorrect compared with correct responses
(B=—0.23, SE=0.03, t15945.01) = 8.65, p<0.001). The effect of
response type was further modulated by block (8=-0.10,
SE=0.03, #15919.59)=3.78, p<0.001), such that the differentia-
tion between correct and false responses was stronger late in
the task (8=—-0.33, SE=0.04, t=7.79, p <0.001) but already pre-
sent early in the task (8=—-0.14, SE=0.04, t=3.77, p <0.001).

Choice switching was also increased after negative compared
with positive feedback (B8=-0.20, SE=0.03, t5920.60) = 7.60,
p<0.001). This effect was further modulated by feedback delay
and group ($=032, SE=0.10, f\ss269s =310, p=0.002;
Fig. 7A). For controls, negative compared with positive feedback
resulted in increased choice switching for both short (8 =—0.16,
SE=0.05, t=3.27, p=0.004) and long feedback delay (f =—0.23,
SE=0.05, t=4.58, p<0.001). For patients, negative compared
with positive feedback resulted in increased choice switching
for short (=-0.34, SE=0.05, t=6.97, p<0.001) but not for
long feedback delay (8 =—0.11, SE=0.05, t=2.13, p=0.134).

Choice switching was also reduced for the long compared with
the short feedback delay (f=-0.08, SE=0.03, f5gs070)=3.21,

Table 4. Inferential statistics for the ANOVA investigating the influence of group,
feedback delay, and block on accuracy in Experiment 1 (patient study)

Effect df, dfy F p
Group 1.00 49.00 0.28 0.600
Feedback delay 1.00 49.00 0.50 0.484
Block 3.5 154.26 15.65 <0.001
Group x feedback delay 1.00 49.00 0.96 0.331
Group X block 3.15 154.26 1.64 0.179
Feedback delay x block 418 204.87 0.24 0.923
Group X feedback delay x block 418 204.87 1.24 0.295
n=52
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Figure 7.  Choice switching results for Experiments 1 (patient study) and 2 (TMS study).

A, Slope estimates for choice switching predicted by feedback valence and modulated by
feedback delay and group in Experiment 1 (patient study). pos., positive feedback valence;
neg., negative feedback valence. Red lines denote patients and blue lines controls. Colored
bands indicate 95% confidence intervals. *p < 0.05. **p < 0.01. ***p < 0.001. B, Mean
choice switching according to stimulation site in Experiment 2 (TMS study). Means per stim-
ulation site are displayed in cyan while individual means per stimulation site are displayed in
black. Error bars indicate standard errors.

p=0.001) and across blocks (f=-0.08, SE=0.01,
t(15,896.82) = 5.82, p<0.001). Complete inferential statistics can
be found in Table 5.

FRN

The effects of (signed) RL-PE (reflected by the factors unsigned
RL-PE and feedback valence), group, and feedback delay on
FRN amplitude were analyzed using LME analysis. We expected
the FRN to be increased for high compared with low unsigned
RL-PEs for negative feedback and decreased for high compared
with low unsigned RL-PEs for positive feedback and expected
this effect to be reduced in the patient group. Grand averages of
the feedback-locked ERP at FCz show that the FRN amplitude
was increased (i.e., more negative) for high compared with low
RL-PEs for negative feedback for controls but not for patients
(Fig. 8A). This effect could also be confirmed in statistical analysis.
For grand average feedback-locked ERPs for all conditions, see
Figure 9A.

Statistical analysis showed that the FRN was enhanced for
negative compared with positive feedback (=048, SE=0.11,
ta1,53550)=4.15, p<0.001) and for high compared with low
RL-PEs (f=-0.39, SE=0.18, p=0.031).
Importantly, within an interaction between RL-PE, feedback
valence, and group (8=3.28, SE=1.34, f(370s)=2.44, p=0.020),
the FRN reflected the RL-PE for controls only in negative
(B=—-2.10, SE=0.44, t=4.78, p <0.001), but not positive feedback
contexts ($=0.73, SE=0.39, t = 1.88, p = 0.242; see Fig. 8B for sim-
ple slope plots). For patients, the RL-PE was not reflected for either
feedback valence, both p>0.999.

t(769.27) = 2.16,
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Table 5. Inferential statistics for the LME analysis examining the effect of feedback
valence, response type, feedback delay, group, and block onto choice switching in
Experiment 1 (patient study)

Fixed effects
Est/B SE df t p

(Intercept) 008  0.04 5856 196  0.055

Feedback valence —0.20 0.03 1592060 —7.60 <0.001

Response type —0.23 0.03 1594801 —8.65 <0.001

Feedback delay —0.08 003 1588070 —3.21  0.001

Group 0.00 008 5856 —0.02 0.988

Block —0.08 0.01 1589.82 —582 <0.001

Feedback valence X response type —0.07 005 1589570 —1.26  0.208

Feedback valence x feedback delay 009 005 1582698 177 0.076

Response type X feedback delay —010 005 1592676 —1.92  0.054

Feedback valence X group —005 005 1592060 —087 0387

Response type X group —0.08 005 15948.01 —1.45 0.148

Feedback delay x group 003 005 1588070 061 0544

Feedback valence X block 002 003 1552896 061  0.542

Response type X block —0.10 003 1591959 —3.78 <0.001

Feedback delay x block 005  0.03 1588545 190  0.057

Group X block 004 003 158%.82 167  0.095

Feedback valence x response type X —0.05 010 1591073 —046  0.648
feedback delay

Feedback valence x response type X 0.09 010 1589570 085  039%
group

Feedback valence x feedback delay x 032 010 1582698 310  0.002
group

Response type x feedback delay x —0.11 0710 1592676 —1.01 0312
group

Feedback valence x response type X 0.05 0.05 1591481 1.03 0305
block

Feedback valence x feedback delayx ~ —0.03  0.05 12,591.80 —0.62  0.535
block

Response type x feedback delay x —002 005 1592219 -043  0.670
block

Feedback valence x group X block —0.03 005 1552896 —0.61 0540

Response type X group X block —0.06 005 1591959 —-112 0262

Feedback delay x group X block 005  0.05 1588545 .02 0309

Feedback valence x response type X —=0.13 021 1591073 —0.64 0522
feedback delay x group

Feedback valence X response type X —012 011 32287 —-1.09  0.276
feedback delay x block

Feedback valence X response type X —0.15 0.0 1591481 —144  0.149
group X block

Feedback valence x feedback delayx ~ —0.16 ~ 0.10 12,591.80 —149  0.136

group X block

Response type X feedback delay x 014 0.0
group X block

Feedback valence x response type X
feedback delay x group X block

15,922.19 131 0.190

-012 022 32287 —054  0.587

Random effects

Variance SD  Corr

Subject (intercept) 007 026

Subject (feedback valence X response 005 023 -062
type X feedback delay x block)
Residual 086 093
Model fit
Marginal Conditional
[ 0.05 0.12

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: choice switch ~ 1+
feedback valence * response type * feedback delay * group * block + (1 + feedback valence:response type:feedback
delay:block | subject). Mgpjeas = 52, Mopsenvtions = 16,001.
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Within an interaction between feedback valence and feedback
delay (B=—-1.09, SE=027, t7352=4.04, p<0.001), the FRN
was enhanced for negative compared with positive feedback
only for short (8=0.89, SE=0.16, t=5.66, p<0.001) but not
long feedback delay (5 =—0.06, SE=0.16, t=0.37, p>0.999).

It was also increased within a feedback delay main effect
for long over short feedback delay (f=-0.94, SE=0.13,
t2,765.36) = 7-24, p <0.001). This effect was further modulated by
group within an interaction (=0.59, SE=0.26, t2,76536) = 2.27,
p=0.024). The FRN amplitude was more strongly increased for
long feedback delays for controls (8=-1.51, SE=0.19, t=7.93,
P <0.001) than patients ($=—0.68, SE=0.16, t=4.15, p<0.001).

Complete inferential statistics can be found in Table 6.

Lesion symptom mapping

Lesions were mainly located in posterolateral regions, with high-
est overlap in lobules Crus II, 1, VIIb, VIIIa, and VIIIb (Fig. 1). Six
patients had a lesion extending into the dentate nucleus. Images
of individual lesions are displayed in Extended Data Figure 1-1.
For analysis, all lesions were mirrored to the left side (in case
of bilateral lesions, the side with the larger lesion was mirrored
to the left side if necessary).

To investigate whether the FRN changes were linked to
specific cerebellar lesion locations, voxel-based lesion symptom
mapping (vbLSM) was performed. While controls mostly
showed the expected coding of RL-PEs in the FRN in the antic-
ipated direction (i.e., increased/more negative FRN amplitude for
high over low RL-PEs), only few patients showed this pattern,
and some patients even showed the opposite (i.e., decreased/
more positive FRN for high over low RL-PE; Fig. 8C). We used
the difference FRN for negative feedback as a parameter for the
vbLSM (FRN for high RL-PEs [>0.5] - FRN for low RL-PEs
[<0.5]). We expected aberrant processing to be associated with
damage to posterolateral regions, especially Crus I and IL
Indeed, a more aberrant difference FRN was associated with
more four posterior lesion clusters: in Crus II extending toward
lobule VIIb (peak z=3.0, peak coordinates: x=—26 mm,
y=-=78 mm, z=-51 mm, 535 mm?), medial Crus II (peak
z=2.6, peak coordinates: x=—5 mm, y=-79 mm, z=—35 mm,
37 mm?®), Crus I (peak z=2.5, peak coordinates: x=—27 mm,
y=—86 mm, z=-34 mm, 149 mm°), and medial lobule VIIb/
vermal VIIla (peak z=2.3, peak coordinates: x=—6 mm,
y=—68 mm, z=—45 mm, 550 mm’; Fig. 10).

In an additional step, we examined lesions in the dentate
nucleus (see Materials and Methods). There were only six
patients with lesions in the dentate nucleus (of which two
had been classified as impaired) with only minimal overlap.
Meaningful analyses could thus not be performed. Plots of
individual dentate nucleus lesions are shown in Figure 3.

Experiment 2: RL-PE processing in healthy young adults
receiving cerebellar TMS

In Experiment 2, we investigated reinforcement learning and
RL-PE processing in young healthy adults (n =24) for cerebellar
and control (vertex) single-pulse TMS using the same probabilis-
tic feedback learning task as in Experiment 1 (Fig. 4A). Pulses
were applied once per trial and either at the response stage
(100 ms poststimulus onset) or at the feedback stage (100 ms
prefeedback; Fig. 4B). Single-pulse TMS has the advantage of
transient effects on behavior and neural processing (Gatti et al,,
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A. Grand average feedback-locked ERPs at FCz
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Figure 8.

ERP results for Experiment 1 (patient study). A, Grand average feedback-locked ERPs at F(z according to unsigned RL-PE (low, high), feedback valence (positive, negative), and group

(patients, controls). Red lines denote high unsigned RL-PE (>0.5) and blue lines low unsigned RL-PE (<0.5). Colored bands indicate standard errors. B, Slope estimates for FRN amplitude
predicted by unsigned RL-PE and modulated by feedback valence and group. Red lines denote positive feedback valence and blue lines negative feedback valence. Colored bands indicate 95%
confidence intervals. *p < 0.05. **p < 0.01. ***p < 0.001. ¢, Mean difference FRN (mean negative high RL-PE — mean negative low RL-PE) separately for groups (controls, patients). Group
means are displayed in cyan while individual means are displayed in black. Error bars indicate standard errors. Patients with a difference FRN above 1 pV (i.e., decreased/more positive difference

FRN) are marked in red who are used as impaired group in lesion symptom mapping.

2023) within-subject, excluding the possibility of long-term com-
pensation that may be present in chronic stroke patients
(Peterburs et al., 2012).

Choice accuracy

Mean choice accuracy as a function of stimulation site (cerebel-
lum, vertex), TMS timing (poststimulus, prefeedback), and
block (1-8) is shown in Figure 6B. The effects of these factors
on choice accuracy were analyzed using an ANOVA. We
expected a main effect of block, and participants to perform
worse when receiving cerebellar compared with vertex TMS,
as no long-term compensatory mechanisms should be available
due to the instantaneous effect of the TMS. Overall, we found
a main effect of block, i.e., a learning effect, while no effects
involving the stimulation site factor (cerebellum/vertex) reached
significance.

Statistical analysis showed a significant main effect of block
(F3.18,73.05=6.21, p<0.001) with higher choice accuracy in
block 4 (t(s70) = 3.49, p=0.008), block 5 (t(s70) = 3.33, p=0.014),
and block 6 (f(s70)=3.77, p=0.003) compared with block 1. All
other effects were nonsignificant (all p > 0.461; see Table 7 for
complete inferential statistics).

Choice switching

The effects of response type, feedback valence, block, stimulation
site, and TMS timing on choice switching were analyzed using
LME analysis. We found the expected effects of increased choice
switching after negative feedback and false responses.
Importantly, choice switching was generally reduced for cerebel-
lar compared with vertex stimulation (Fig. 7B).

The main effect of stimulation site reached significance
(B=-0.11, SE=0.03, t(647516 =3.67, p<0.001), with decreased
choice switching for cerebellar compared with vertex TMS (Fig. 7B).

Further, the main effect of response type was significant
(B=-0.39, SE=0.03, f(s502.49)=12.64, p<0.001), with more
choice switching after incorrect compared with correct choices.
This effect was further modulated by block (S=-0.15,
SE=0.03, t(499.06)=5.02, p<0.001). Follow-up simple slope
analyses showed that while choice switching was significantly
increased both early (8=-0.22, SE=0.04, t=5.22, p<0.001)
and late in the task (f=—0.54, SE=0.05, t=11.44, p<0.001),
the effect was stronger late in the task.

Statistical analysis also showed a main effect of feedback valence
(B=-0.23, SE=0.03, t(548074)=7.74, p <0.001), with more choice
switching after negative compared with positive feedback.
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B. Grand average feedback-locked ERPs at
FCz for all conditions (Experiment 2)
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Grand average feedback-locked ERPs for all conditions and three RL-PE levels. 4, Grand average feedback-locked ERPs for Experiment 1 (patient study) at F(z according to unsigned

RL-PE (low, medium, high), feedback valence (positive, negative), feedback delay (short delay, long delay), and group (patients, controls). Red lines denote low, blue lines denote medium, and
green lines denote high unsigned RL-PE. Colored bands indicate standard errors. B, Grand average feedback-locked ERPs for Experiment 2 (TMS study) at F(z according to unsigned RL-PE (low,
medium, high), feedback valence (positive, negative), TMS timing (poststimulus, prefeedback), and stimulation site (vertex, cerebellum). Red lines denote low, blue lines denote medium, and

green lines denote high unsigned RL-PE. Colored bands indicate standard errors.

No other effects involving response type or feedback valence
with stimulation site or each other emerged (all p>0.246).
Complete inferential statistics can be found in Table 8.

FRN

The effects of (signed) RL-PE (reflected in unsigned RL-PE
and feedback valence), stimulation site, and TMS timing on
FRN amplitude were analyzed using LME analysis. We
expected the FRN to be increased for higher unsigned
RL-PEs for negative feedback and decreased for higher
unsigned RL-PEs for positive feedback, and we expected this
effect to be reduced when stimulating the cerebellum com-
pared with the vertex. Grand averages for the feedback-locked
ERP at FCz are shown in Figure 11A. For grand average
feedback-locked ERPs for all conditions, see Figure 9B. FRN
amplitudes were reduced for high compared with low

RL-PEs for negative feedback only for control stimulation
but not for cerebellar stimulation.

Statistical analysis showed that FRN was enhanced for nega-
tive compared with positive feedback (f=1.08, SE=0.14,
tz116.94) = 7.90, p<0.001). Feedback valence further interacted
significantly with the unsigned RL-PE, (f=-1.11, SE=0.49,
t(6,506.98) =2.28, p=0.023). Follow-up simple slope analyses
revealed that while the unsigned RL-PE modulated the FRN
for negative feedback, with a reduced FRN with increasing
RL-PE at trend level ($=0.70, SE=0.32, t=2.18, p=0.058),
this was not the case for positive feedback (=-0.12, SE=0.29,
t=0.42, p>0.999). This interaction was further modulated by
stimulation site (8=2.82, SE=0.93, f(5523.19)=3.05, p=0.002;
Fig. 11B). For vertex TMS, FRN was reduced with increasing
unsigned RL-PE for negative feedback (f=1.57, SE=0.43,
t=3.69, p<0.001) but not positive feedback (B=-0.56,
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Table 6. Inferential statistics for the LME analysis examining the effect of unsigned
RL-PE, feedback valence, feedback delay, and group onto FRN amplitude in
Experiment 1 (patient study)

Fixed effects
Est/p  SE df t p
(Intercept) 029 034 4600 087 0389
Unsigned PE —0.39 018  769.27 —2.16 0.031
Feedback valence 0.48 011 1,535.59 415  <0.001
Feedback delay —094 013 276536 —7.24 <0.001
Group —0.48 0.67 46.00 —0.72 0.477
Unsigned PE x feedback valence 079 067 37.08 118 0.246
Unsigned PE x feedback delay 0.56 047 41.99 119 0239
Feedback valence x feedback delay —1.09 0.27 7382 —4.04 <0.001
Unsigned PE x group 0.67 037  769.27 183 0.068
Feedback valence X group 026 023 153559 113 0.258
Feedback delay x group 0.59 0.26  2,765.36 227 0.024
Unsigned PE x feedback valence x —2.02 173 3629 =117 0.250
feedback delay
Unsigned PE x feedback valence x —3.28 1.34 37.08 —244  0.020
group
Unsigned PE x feedback delay x group  —0.99  0.9%4 4199 -1.06  0.295

Feedback valence x feedback delay x 0.09 0.54 73.82 0.16  0.872

group
Unsigned PE x feedback valence x —403 345 3629 =117 0.251
feedback delay x group
Random effects
Variance  SD Corr
Subject (intercept) 5.20 2.28
Subject (unsigned PE x 11.10 333 —0.07
feedback valence)
Subject (unsigned PE x 4.16 204 042 0.65
feedback delay)
Subject (feedback valence x 0.96 098 —0.07 —0.96 —0.70
feedback delay)
Subject (unsigned PE x 104.57 1023 —008 —-052 —0.16 070
feedback valence x
feedback delay)
Residual 37.25 6.10
Model fit
Marginal Conditional
R 0.01 0.16

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: FRN ~ 1+
unsigned PE * feedback valence * feedback delay * group + (1 + unsigned PE:feedback valence:feedback
delay + unsigned PE:feedback valence + unsigned PE:feedback delay + feedback valence:feedback delay|
subject). Myupjects = 48, Mopservations = 15,034.
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Figure 10.
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SE=0.39, t=1.45, p=0.594). When stimulating the cerebellum,
the FRN was not significantly modulated by the unsigned
RL-PE (both p > 0.999).

No other effects involving feedback valence or the
unsigned RL-PE with stimulation site or each other emerged
(all p>0.207). Complete inferential statistics can be found in
Table 9.

Control analysis

To explore whether feedback processing was generally disrupted or
whether this was more specific to the processing of RL-PEs, we
performed a control analysis investigating whether patients with
cerebellar stroke (Experiment 1) and healthy controls receiving
cerebellar TMS (Experiment 2) showed preserved valence coding
in the FRN, as valence effects for short feedback delays are a
well-reported finding (Sambrook and Goslin, 2015; Hinneberg
and Hegele, 2022). This was investigated within the same LME
model reported above, resolving the (nonsignificant) interactions
between outcome valence, feedback delay, and group for
Experiment 1 and outcome valence, TMS timing, and stimulation
site for Experiment 2.

Indeed, result patterns were consistent with intact valence cod-
ing in FRN under short feedback delays for patients with cerebellar
stroke and healthy participants receiving cerebellar TMS. In
Experiment 1, the FRN was indeed more negative for negative
relative to positive feedback in both controls (3=0.81, SE=0.23,
t=3.54, p=0.002) and patients (f=1.01, SE=0.21, t=4.79,
p<0.001) in the short delay condition but not in the long delay
condition (both p>0.103; Fig. 12A). In Experiment 2, where
only short delays were used, the FRN was consistently more
negative for negative over positive valence for both stimulation
sites and TMS timings (poststimulus vertex: f=1.12, SE=0.27,
t=4.13, p<0.001; poststimulus cerebellum: $=0.79, SE=0.27,
t=2.96, p=0.012; prefeedback vertex: f=1.47, SE=0.27, t=5.54,
p<0.001; prefeedback cerebellum: f=1.09, SE=0.27, t=4.07,
p<0.001; Fig. 12B).

To further examine whether we could find evidence against an
effect of these interactions, model comparisons were performed
to extract an estimation of the Bayes factor. The full LME models
were compared against a model without the interaction between
outcome valence, feedback delay, and group for Experiment 1
and outcome valence, TMS timing, and stimulation site for
Experiment 2. The Bayes factor was then estimated based on
the difference Bayesian Information Criterion, following Shen
and Gonzilez (2021). In line with the control analyses, the

Crus Il -

Viilb Crus Il vp

y =-78 mm

Lesion symptom mapping in Experiment 1 (patient study). Voxel-based lesion symptom mapping of lesion location comparing groups on (4) a cerebellar flatmap (Diedrichsen and

Zotow, 2015) and in 2D (B) sagittal, (€) coronal, and (D) axial views. Color code shown on the top right denotes z-scores (from purple = 1.7 to red =3.0). r, right; |, left.
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Table 7. Inferential statistics for the ANOVA investigating the influence of
stimulation site, TMS timing and block on accuracy in Experiment 2 (TMS study)

Effect df, df, F p
Stimulation site 1 23 0.01 0.938
TMS timing 1 23 0.13 0.717
Block 3.18 73.05 6.21 <0.001
Stimulation site X TMS timing 1 23 0.01 0.929
Stimulation site X block 312 71.87 0.88 0.461
TMS timing X block 333 76.65 0.62 0.619
Stimulation site X TMS timing  block 5 15 0.65 0.660
n=24.

estimated Bayes Factor indicated very strong evidence for an
absence of the triple interactions (BF=90.02 for both experi-
ments/comparisons).

Exploratory analysis of predictability of choice switching by
ERP components

While differences in accuracy or choice switching between groups
(Experiment 1) and stimulation sites (Experiment 2) were either
not significant or not as severe, differences in RL-PE processing in
the FRN were substantial. While the FRN does not seem to have a
strong behavioral correlate (Ullsperger, 2024), there is some evi-
dence linking it to behavioral flexibility (Cohen and Ranganath,
2007; Fischer and Ullsperger, 2013; Kirschner et al., 2022; but
also see Chase et al., 2011). In an exploratory analysis, we added
the FRN amplitude as an additional factor to the LME models
with choice switching as the dependent variable. However, the
respective LME models did not offer a better fit to the data than
the original models (Experiment 1: y(s,=36.01, p=0.286;
Experiment 2: x{s) = 24.82, p = 0.813) and neither did any effects
including the FRN amplitude and the group factor reach signifi-
cance within these models (all p>0.079). In an additional
analysis for Experiment 1, we tried to relate the difference FRN
as presented in Figure 8C to choice switching using group-specific
correlations. However, this correlation did not reach significance
for controls (t;4=0.29, p=0.773) or patients (t,3)=0.28,
p=0.784).

For completeness, we also added the P3a and P3b separately
to the choice switching model to see whether these would
improve model fit. P3a and P3b in the feedback-related ERP
peak at ~300-500 ms postfeedback frontocentrally and parie-
tally, respectively (Hruby and Marsalek, 2003; Polich, 2007),
and have been more clearly associated with behavioral flexibil-
ity (Ullsperger, 2024). Indeed, including P3a/b in the model
significantly improved model fit for both P3a (y(s)=58.19,
p=0.003) and P3b ()(%32)=54.72, p=0.007) in Experiment 1.
Full statistics for the model comparisons can be found in
Table 10. Several effects including both P3a and group reached
significance and one effect including both P3b and group
reached significance. The general effect patterns seem to indi-
cate that the P3a is generally predictive of choice switching
for healthy controls, but only under specific circumstances for
patients.

For the P3a LME model in Experiment 1, the interaction
between P3a and group reached significance (f=0.01,
SE=0.00, t(575283=2.04, p=0.042). P3a was predictive of
choice switching for controls (8=-0.01, SE=0.00, t=-2.45,
p=0.028), such that an increased P3a corresponded to decreased
choice switching. This effect did not reach significance in patients
(8=0.00, SE=0.00, t=0.90, p=0.734). This interaction was fur-
ther modulated by block (8=0.01, SE=0.00, 571076 = 2.05,
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Table 8. Inferential statistics for the LME analysis examining the effect of feedback
valence, response type, stimulation site, TMS timing, and block onto choice
switching in Experiment 2 (TMS study)

Fixed effects

Est/B SE df t p
(Intercept) 007  0.04 22.60 1.91 0.069
Feedback valence —0.23 0.03 6,489.74 —7.74 <0.001
Response type —039 003 650249 —1264 <0.001
Stimulation site —0.11 0.03 647516  —3.67 <0.001
TMS timing 000 003 6477.69 0.06 0954

Block 0.00 002 648140 021 0831

Feedback valence X response type 007 006 647945 115 0252

Feedback valence X stimulation site —001 006 648720 —0.19 0852

Response type X stimulation site —006 006 648388 —107 0.286

Feedback valence x TMS timing 0.01 006 6,461.84 014 0.889

Response type X TMS timing 0.04 006 6,502.24 0.64 0524

Stimulation site X TMS timing —0.03 006 6,479.64 —0.56 0.577

Feedback valence x block 0.01 0.03 6,327.19 0.36 0.720

Response type x block —015 003 6499.06 —502 <0.001

Stimulation site x block —0.03 0.03 648272 —087 0.387

TMS timing X block 001 003 648330 031 0758

Feedback valence X response type X 013 012 648154 1.04 0298
stimulation site

Feedback valence X response type X 0.04 012 6489.48 035 0727
TMS timing

Feedback valence X stimulation sitex ~ —0.12 012 6,436.24 —099 0325
TMS timing

Response type X stimulation site x 0.02 012 650230 019 0848
TMS timing

Feedback valence X response type X —007 006 648486 —111 0268
block

Feedback valence X stimulation site X 0.00 0.06 6,10747 —0.04 0.968
block

Response type X stimulation site X —0.02 006 649.12 —036 0721
block

Feedback valence x TMS timing X 013 006 638446 208 0.037
block

Response type X TMS timing x block ~ —0.03  0.06 6,485.44 —048  0.629

Stimulation site X TMS timing X block ~ —0.07  0.06 647998 —1.16  0.246

Feedback valence X response type X —0.03 024 6489.04 —012 0906
stimulation site X TMS timing

Feedback valence X response type X —004 012 648543 —037 0709
stimulation site X block

Feedback valence X response type X —027 012 648930 —222  0.027
TMS timing X block

Feedback valence X stimulation site x 0.03 012 492233 0.21 0.833
TMS timing X block

Response type X stimulation site X 0.13 0.12  6,489.78 110 0271
TMS timing X block

Feedback valence X response type X 001 025 48.64 004 0971
stimulation site X TMS timing X
block

Random effects

Variance SD  Corr

Subject (intercept) 0.03 0.16
Subject (feedback valence X response 010 032 053
type X stimulation site x TMS
timing X block)

Residual 088 094
Model fit

Marginal Conditional
R 0.08 0.1

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: choice switching
~ 1+ feedback valence * response type * stimulation site * TMS timing * block + (1 + feedback valence:
response type:stimulation site:TMS timing:block | subject). Agupjecs = 21, Mopservations = 6,541.
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A. Grand average feedback-locked ERPs at FCz
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B. PE effect on FRN amplitude
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Figure 11.  ERP results for Experiment 2 (TMS study). A, Grand average feedback-locked ERPs at F(z according to unsigned RL-PE (low, high), feedback valence (positive, negative), and

stimulation site (vertex, cerebellum). Red lines denote high unsigned RL-PE (>0.5) and blue lines low unsigned RL-PE (<0.5). Colored bands indicate standard errors. B, Slope estimates for FRN
amplitude predicted by unsigned RL-PE and modulated by feedback valence and stimulation site. Red lines denote positive feedback valence and blue lines negative feedback valence. Colored

bands indicate 95% confidence intervals. *p < 0.05. **p < 0.01. ***p < 0.001.

p=0.041). Choice switching was increased with increasing P3a
for patients late in the task on trend level ($=0.01, SE=0.00,
t=2.38, p=0.068), but not early in the task, and not at all
for healthy controls (all p>0.191). The interaction was further
modulated by outcome valence in a four-way interaction (=
0.02, SE=0.01, t(570665 =2.31, p=0.021). Choice switching
was increased on trend level with increasing P3a for patients
late in the task only for positive feedback (8=0.01, SE=0.01,
t=2.55, p=0.087). No other simple slopes reached significance
when resolving the interaction (all p > 0.168).

A three-way interaction including P3a, group, and feedback
delay (8=-0.02, SE=0.01, f(5720.44)=2.23, p=0.026) showed
that P3a was predictive of choice switching only for controls in
the short feedback delay condition, however, only at trend level
(8=-0.01, SE=0.00, t=2.39, p=0.067). Larger P3a amplitudes
led to reduced choice switching. The effect did not reach signifi-
cance for controls in the long feedback delay condition or for
patients at all (all p >0.125). However, two higher-level interac-
tions indicated that a P3a-choice switching relation did exist for
patients under specific circumstances: The interaction between
P3a, group, and feedback delay was further modulated by
response type in a four-way interaction (8=-0.04, SE=0.02,
tas,712.02) = 2.37, p=0.018). This four-way interaction revealed
that P3a was significantly predictive of choice switching only
for patients for short feedback delay when the choice was correct
(8=0.02, SE=0.00, t =3.48, p =0.004). In no other condition did
the effect reach significance (all p >0.301). Finally, the four-way
interaction was further modulated by outcome valence in a
five-way interaction (8=0.08, SE=0.04, f(57052s)=2.16,
p=0.031). In this five-way interaction, P3a was predictive of
choice switching on trend level only for patients for the short
delay condition, when feedback was positive and the reaction
was correct, with larger P3a amplitudes predicting more choice
switching (8=0.01, SE=0.00, t=2.77, p=0.090). No other slope
reached significance (all p >0.254). These effect patterns might

be due to a smaller, more general effect of P3a on choice switch-
ing in healthy controls, while for patients, the direction of the
effect was more dependent on the experimental condition. The
full statistical pattern is displayed in Table 11.

For P3b, a four-way interaction between P3b, outcome valence,
group, and block emerged (8=0.02, SE=0.01, f(14,13518)=1.97,
p=0.049). P3b amplitude was predictive of choice switching
only for patients when receiving positive feedback and only late
in the task (8=0.02, SE=0.01, t=3.97, p<0.001; all other
p>0.894).

Notably, we could not replicate these findings for Experiment
2. The stroke patient sample might have been more suitable to
explore such deficits, as the single-pulse TMS we used in
Experiment 2 creates a virtual lesion merely via inducing noise.
A brain-behavior connection might be clearer when using
r'TMS protocols. Including the P3a/b in the model did not result
in significant improvements in model fit (P3a: X(232) =4442,
p=0.071; P3b: x5, = 45.47, p=0.058).

Discussion

The current study aimed to investigate whether cerebellar output
is required for reinforcement learning-prediction error (RL-PE)
coding in the ACC-generated FRN. We studied this in two cere-
bellar lesion models (cerebellar stroke patients and single-pulse
cerebellar TMS) during a probabilistic feedback learning task.
While we found RL-PE coding in the FRN for healthy controls
and for control stimulation (vertex) in negative outcome/feed-
back contexts, it was largely absent for cerebellar stroke patients
and for cerebellar TMS. The results provide evidence that RL-PE
computation is dependent on cerebellar output. Behavioral defic-
its, however, were subtle. While overall learning success was
unaffected by cerebellar lesions or cerebellar TMS, behavioral
flexibility, as indexed by choice switching, was reduced. Subtle
deficits may be due to compensation by other brain areas within
the reinforcement learning network.
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Table 9. Inferential statistics for the LME analysis examining the effect of unsigned
RL-PE, feedback valence, stimulation site, and TMS timing onto FRN amplitude in
Experiment 2 (TMS study)

Fixed effects
Est/B SE df t p

(Intercept) 1.92 0.64 2108 3.02  0.007
Unsigned PE 0.20 020 7,125.07 1.00 0.320
Feedback valence 1.08 014 711694 790 <0.001
Stimulation site 0.08 014 595365 056 0577
TMS timing 3.38 015 552183 2299 <0.001
Unsigned PE x feedback valence —-1n 049 650698 —228  0.023
Unsigned PE x stimulation site —0.46 040 772014 =117 0244
Feedback valence X stimulation site -0.27 027 712363 —1.00 0.317
Unsigned PE x TMS timing 0.89 040 712123 224 0.025
Feedback valence x TMS timing 0.49 0.27 712251 180 0.07
Stimulation site x TMS timing 1.28 031 3,279.84 414 <0.001
Unsigned PE x feedback valence x 2.82 093 552319  3.05  0.002

stimulation site

Unsigned PE x feedback valence x TMS 2.45 0.89 6,049.33 275 0.006

timing

Unsigned PE x stimulation site X TMS 0.38 0.80 7,72494 048  0.632
timing

Feedback valence X stimulation site X 0.21 0.54 7,124.02 0.39 0.696
TMS timing

Unsigned PE x feedback valence x 531 4.07 19.75 130 0.207

stimulation site x TMS timing

Random effects

Variance  SD  Corr

Subject (intercept) 8.82 2.97
Subject (unsigned PE x feedback 28719 16,95 0.03
valence X stimulation site x TMS

timing)
Residual 29.10 539
Model fit
Marginal Conditional
R 0.08 030

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: FRN ~ 1+
unsigned PE * feedback valence * stimulation site * TMS timing + (1 + unsigned PE:feedback valence:
stimulation site:TMS timing | subject). Ngubjects = 22, Nopservations = 7,162.

For healthy controls (Experiment 1) and control stimulation
(Experiment 2), RL-PE coding in the FRN was found only for
negative feedback. This is consistent with previous studies in
healthy participants that found the RL-PE reflected in the FRN
only, or at least more strongly, for negative outcomes/feedback
(Hoy et al., 2021; Rawls and Lamm, 2021). Note that the direction
of the effect was unexpectedly reversed for control stimulation in
Experiment 2, as discussed below. Importantly, patients with cer-
ebellar damage and healthy participants receiving cerebellar TMS
showed no significant RL-PE coding in the FRN. Activity consis-
tent with RL-PE has previously been described in the rodent cer-
ebellum, although mainly for reward contexts (Kostadinov and
Héusser, 2022). It is thus conceivable that RL-PE processing in
the cerebellum, as found in these previous studies, is necessary
for further RL-PE processing in connected areas classically asso-
ciated with reinforcement learning (i.e., forebrain and midbrain
areas). Of note, feedback processing was not deficient in general,
with an intact valence effect in the FRN under short feedback
delays in cerebellar patients and in healthy participants receiving
cerebellar TMS.

Closer inspection of Figure 7A reveals that the lack of differ-
entiation between low and high RL-PEs in the FRN in patients
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Figure 12. Slope estimates for FRN amplitude predicted by feedback valence. 4, Slope

estimates for FRN amplitude predicted by feedback valence and modulated by feedback delay
and group. Red lines denote patients and blue lines healthy controls. B, Slope estimates for
FRN amplitude predicted by feedback valence and modulated by TMS timing and stimulation
site. Red lines denote cerebellar TMS and blue lines vertex TMS. Colored bands indicate 95%
confidence intervals. *p < 0.05. **p < 0.01. ***p < 0.001.

was driven by an increase in FRN amplitudes for low RL-PEs
rather than a decrease in FRN amplitudes for high RL-PEs.
Thus, it appears that the effect is driven by over-activation
toward expected outcomes rather than underactivation for unex-
pected outcomes, which may be indicative of exaggerated per-
ceived salience of expected feedback.

The deficit in RL-PE coding in the FRN was most pronounced
in patients with lesions at the border of Crus II and lobule VIIb
and to a smaller degree in medial Crus II, Crus I, lobule VIIb, and
VIIIa. Especially Crus I and II have previously been identified to
be involved in decision making and executive control (Berlijn et
al.,, 2024b) and are also connected to the reinforcement learning
network (Habas, 2021). The present cluster in Crus II/lobule
VIIb overlapped with regions associated with higher cognitive
functions, in particular working memory (region D2 in
Nettekoven et al., 2024), shown in cerebellar parcellations based
on functional magnetic resonance imaging (fMRI) data. The
cluster in Crus I, Crus II, and lobule VIIb/VIIIa seemed to be
related to default mode network/theory of mind, working mem-
ory, and spatial rotation/simulation (regions S$3, D1, and Al in
Nettekoven et al., 2024). Data on reinforcement learning tasks,
however, were not included in the fMRI data on which these par-
cellations are based. Notably, the cluster in Crus II/lobule VIIb in
the present study seems to match with a cluster found in relation
to behavioral changes in a feedback learning task very similar to
ours (Peterburs et al., 2018). While the abovementioned regions
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Table 10. Model comparisons for the choice switching LME analysis with FRN, P3a, and P3b as additional predictors, respectively, for Experiments 1 and 2

Model comparison

Model Nparameter AIC BIC Log likelihood Deviance % df p
Experiment 1
Standard model (data with valid FRN, P3a, and P3b) 36 42,815 43,091 —21,372 42,743
Model with FRN as an additional predictor 68 42,843 43,365 —21,354 42,707 36.01 32 0.286
Model with P3a as an additional predictor 68 42,821 43,343 —21,343 42,685 58.19 32 0.003
Model with P3b as an additional predictor 68 42,825 43,346 —21,344 42,689 54.72 32 0.007
Experiment 2
Standard model (data with valid FRN) 36 17,686 17,930 —8,807.1 17,614
Model with FRN as an additional predictor 68 17,725 18,186 —8,794.7 17,589 24.82 32 0.813
Standard model (data with valid P3a/b) 36 17,821 18,065 —8,874.4 17,749
Model with P3a as an additional predictor 68 17,841 18,302 —8,852.2 17,705 4442 32 0.071
Model with P3b as an additional predictor 68 17,839 18,301 —8,851.7 17,703 45.47 32 0.058

Model comparisons based on deviance.

were associated with especially aberrant RL-PE coding, the distri-
bution of difference FRN was overall shifted for patients com-
pared with controls (Fig. 8C). Considering the overall lesion
distribution in patients, it is conceivable that other posterolateral
cerebellar regions also play a role in RL-PE processing.

It has to be noted that behavioral changes associated with cer-
ebellar lesions or cerebellar TMS were quite subtle which seems
unexpected given the substantial changes in the FRN. While
the FRN generator, ACC, is essential for action-outcome learning
(Rudebeck et al., 2008; Camille et al., 2011), the present experi-
ments used additional visual stimuli to represent choices
(i.e, button presses). It is therefore conceivable that areas
involved in stimulus-outcome learning, such as the orbitofrontal
cortex (OFC; Rudebeck et al., 2008; Camille et al., 2011), were
able to compensate for ACC-driven deficits. Action-outcome-
and stimulus-outcome-based learning might have redundancy
to accommodate different environmental requirements. While
both the ACC and the OFC receive a wide range of input
(Heilbronner and Hayden, 2016; Groman et al., 2021), they
might differ in relation to cerebellar input and dependency on
predictive information processed by the cerebellum (Peterburs
and Desmond, 2016). Previous studies in rodents showed that
the cerebellum modulates dopaminergic activity in the substantia
nigra (Washburn et al., 2024), and projections from the cerebel-
lum to the VTA were able to modulate place preference (Carta
et al., 2019). Both the substantia nigra and the VTA project
toward the ACC (Zhang et al,, 2017; Elston et al., 2018, 2019).
The OFC, in turn, may be more independent from cerebellar pro-
cessing. While there is some evidence for connections between
the cerebellum and OFC (Palesi et al., 2017), we did not measure
proxies of OFC activity and therefore cannot conclude whether
processing in the OFC was affected. Notably, there seems to be
a general pattern of reduced behavioral flexibility and intact
acquisition concomitant with cerebellar damage/disruption:
learning acquisition was shown to be intact in patients with
cerebellar stroke (Thoma et al., 2008; Rustemeier et al., 2016; pre-
sent Exp. 1) and cerebellar degeneration (A.M. Berlijn, D.M.
Huvermann, E. Bechler et al., unpublished observation) as well
as healthy participants receiving cerebellar single-pulse or
rTMS (present Exp.2, Kruithof et al., 2025). Nicholas et al.
(2024) showed deficits in behavioral flexibility in patients with
cerebellar degeneration using a task with constantly changing
drifting reward probabilities. In an additional exploratory
analysis, we were able to link deficits not in the FRN but in later
feedback processing (P3a) to deficits in choice switching, which
is consistent with the current conception that the P3 has

stronger behavioral correlates than the FRN (Ullsperger, 2024).
There is some evidence for a relation between FRN and beha-
vioral adjustment (Fischer and Ullsperger, 2013; Kirschner
et al., 2022; but also see Chase et al.,, 2011), which might not
have played a big enough role in the current study. FRN seems
to predict choice switching in highly adaptive environments
(Cohen and Ranganath, 2007). The FRN might thus be a readout
of a RL-PE that depends on cerebellar output but is not strictly
required for learning success in tasks which do not require
a high degree of behavioral flexibility. Thoma et al. (2008)
and Kruithof et al. (2025) showed that behavioral flexibility
required in reversal learning is indeed impaired in cerebellar
damage/disruption even in the presence of intact learning
acquisition.

In Experiment 2, we varied TMS pulse timing to test whether
the cerebellum is potentially involved in response and/or feedback
processing selectively. The variation in pulse timing did not appear
to modulate the effect of cerebellar TMS on RL-PE coding in the
FRN. While this might be related to differential contributions of
predictive effects (poststimulus TMS) and feedback processing
(prefeedback TMS), an absence of a timing effect might also result
from nonoptimal temporal placement of stimulation timings.

While in Experiment 1, the FRN reflected the RL-PE in the
expected direction in control participants (i.e., more negative
FRN amplitudes for higher RL-PEs), the direction was unexpect-
edly reversed for the control stimulation in Experiment 2. It thus
seems that even though vertex is a common site for control stim-
ulation, it did have an effect on feedback processing, challenging
its use as a control condition in Experiment 2. At least one study
(Jung et al., 2016) showed reduced activity in the ACC (i.e., the
generator of FRN; Hauser et al., 2014) with vertex TMS, although
not significantly with the inverted stimulation that we used.
Nevertheless, it is still noteworthy that findings for the cerebellar
TMS in Experiment 2 replicated the findings in Experiment 1 for
cerebellar stroke patients. Both showed a lack of RL-PE coding in
FRN. Even though the RL-PE was reflected in the FRN for vertex
TMS in the opposite direction, there was a significant RL-PE cod-
ing for vertex TMS, while it could not be found for the cerebellar
TMS, as well as no effect of stimulation site on learning, thus rep-
licating the overall result pattern in Experiment 1.

In summary, feedback processing, as indexed by the FRN, was
shown to be dependent on cerebellar output. While cerebellar
dysfunction or damage resulted in only subtle changes in beha-
vioral flexibility with reinforcement learning performance largely
intact, processing of RL-PEs as reflected in the FRN was substan-
tially blunted. Crucially, this pattern was consistent across two
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Table 11. Inferential statistics for the LME analysis examining the effect of P3a, feedback valence, response type, feedback delay, group, and block onto choice switching in

Experiment 1 (patient study)

Fixed effects
Est/B SE df t p

(Intercept) 0.09 0.04 64.23 231 0.024
P3a 0.00 0.00 15,752.83 —1.38 0.167
Feedback valence —0.18 0.03 15,706.55 —5.87 <0.001
Response type —0.25 0.03 15,739.13 —8.04 <0.001
Feedback delay —0.09 0.03 15,714.33 —2.78 0.005
Group —0.04 0.08 64.23 —0.48 0.632
Block —0.08 0.02 15,707.24 —5.59 <0.001
P3a X feedback valence 0.00 0.00 15,709.07 —1.06 0.288
P3a X response type 0.01 0.00 15,713.92 1.80 0.072
Feedback valence X response type —0.13 0.06 15,704.73 -214 0.032
P3a x feedback delay 0.00 0.00 15,729.44 —0.82 0.412
Feedback valence x feedback delay 0.12 0.06 15,707.21 1.93 0.053
Response type X feedback delay —0.10 0.06 15,717.62 —1.61 0.108
P3a X group 0.01 0.00 15,752.83 2.04 0.042
Feedback type X group —0.08 0.06 15,706.55 -1.34 0.180
Response type X group —0.07 0.06 15,739.13 -1.09 0.275
Feedback delay x group 0.10 0.06 15,714.33 1.68 0.092
P3a x block 0.00 0.00 15,710.76 132 0.186
Feedback valence X block 0.01 0.03 15,706.32 0.33 0.738
Response type X block —0.10 0.03 15,715.07 -3.29 0.001
Feedback delay x block 0.06 0.03 15,704.81 2.12 0.034
Group X block 0.01 0.03 15,707.24 0.39 0.700
P3a x feedback valence X response type 0.02 0.01 15,707.98 178 0.075
P3a x feedback valence x feedback delay —0.01 0.01 15,708.47 —0.67 0.505
P3a X response type X feedback delay 0.00 0.01 15,712.02 —0.45 0.652
Feedback valence x response type x feedback delay —0.07 0.12 15,704.17 —0.58 0.565
P3a x feedback valence x group 0.01 0.01 15,709.07 1.18 0.240
P3a X response type X group 0.00 0.01 15,713.92 —0.06 0.951
Feedback valence X response type X group 0.23 0.12 15,704.73 1.87 0.061
P3a x feedback delay x group —0.02 0.01 15,729.44 -3 0.026
Feedback valence x feedback delay x group 0.26 0.12 15,707.21 214 0.033
Response type X feedback delay X group 0.03 0.12 15,717.62 0.22 0.829
P3a x feedback valence x block 0.00 0.00 15,706.65 0.33 0.740
P3a X response type X block 0.00 0.00 15,708.16 0.18 0.857
Feedback valence X response type x block 0.09 0.06 15,704.32 1.58 0.114
P3a x feedback delay x block —0.01 0.00 15,707.03 -1.29 0.199
Feedback valence x feedback delay x block 0.01 0.06 15,705.59 0.21 0.836
Response type X feedback delay X< block —0.06 0.06 15,708.86 —0.92 0.357
P3a x group X block 0.01 0.00 15,710.76 2.05 0.041
Feedback valence x group X block —0.10 0.06 15,706.32 -1.69 0.092
Response type X group X block 0.00 0.06 15,715.07 0.02 0.983
Feedback delay x group X block 0.06 0.06 15,704.81 1.05 0.295
P3a x feedback valence X response type X feedback delay 0.02 0.02 15,705.28 0.89 0.374
P3a x feedback valence X response type X group —0.03 0.02 15,707.98 —1.85 0.065
P3a x feedback valence X feedback delay x group 0.02 0.02 15,708.47 1.23 0.219
P3a X response type X feedback delay x group —0.04 0.02 15,712.02 —237 0.018
Feedback valence X response type x feedback delay x group —0.43 0.25 15,704.17 —1.75 0.081
P3a x feedback valence X response type X block —0.01 0.01 15,706.99 —145 0.147
P3a x feedback valence x feedback delay X block —0.01 0.01 15,706.18 -1n 0.268
P3a X response type X feedback delay x block 0.01 0.01 15,707.24 1.29 0.19%
Feedback valence  response type X feedback delay X block —0.14 0.12 15,704.08 -1.13 0.257
P3a x feedback valence x group x block 0.02 0.01 15,706.65 231 0.021
P3a X response type X group X block —0.01 0.01 15,708.16 —1.51 0.132
Feedback valence X response type X group X block —0.06 0.12 15,704.32 —0.47 0.638
P3a x feedback delay x group x block —0.01 0.01 15,707.03 -1.13 0.257
Feedback valence x feedback delay x group x block —0.14 0.12 15,705.59 —-1.16 0.246
Response type x feedback delay x group x block 0.07 0.12 15,708.86 0.62 0.533
P3a x feedback valence X response type x feedback delay x group 0.08 0.04 15,705.28 2.16 0.031
P3a x feedback valence X response type X feedback delay x block 0.00 0.02 15,705.60 —0.13 0.894
P3a x feedback valence X response type X group X block —0.03 0.02 15,706.99 —1.48 0.140
P3a x feedback valence x feedback delay x group X block —0.01 0.02 15,706.18 —0.36 0.720
P3a X response type X feedback delay x group X block 0.02 0.02 15,707.24 0.93 0.350
Feedback valence X response type x feedback delay x group X block —0.04 0.24 15,704.08 —0.15 0.883
P3a X feedback valence X response type x feedback delay x group X block —0.02 0.04 15,705.60 —0.52 0.606

(Table continues.)
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Fixed effects

Est/B SE df p
Random effects

Variance SD
Subject (intercept) 0.07 0.26
Residual 0.86 0.93
Model fit
R Marginal Conditional

0.06 0.13

Simple slope analyses
P3a X group Est/B SE p
P3a slope for controls —0.01 0.00 245 0.028
P3a slope for patients 0.00 0.00 0.90 0.734
P3a x group X block Est/B SE p
P3a slope for controls and early experiment (M — 1SD) —0.01 0.00 1.56 0.471
P3a slope for controls and late experiment (M + 15D) —0.01 0.00 1.98 0.191
P3a slope for patients and early experiment (M — 15D) 0.00 0.00 1.09 >0.999
P3a slope for patients and late experiment (M + 15D) 0.01 0.00 238 0.068
P3a X group X block x feedback valence Est/B SE p
P3a slope for controls, early experiment (M — 1SD), and negative feedback —0.01 0.01 1.20 >0.999
P3a slope for controls, early experiment (M — 15D), and positive feedback 0.00 0.00 1.05 >0.999
P3a slope for controls, late experiment (M + 15D), and negative feedback 0.00 0.01 0.04 >0.999
P3a slope for controls, late experiment (M + 15D), and positive feedback —0.02 0.01 231 0.168
P3a slope for patients, early experiment (M — 15D), and negative feedback 0.00 0.01 0.01 >0.999
P3a slope for patients, early experiment (M — 15D), and positive feedback —0.01 0.00 157 >0.999
P3a slope for patients, late experiment (M + 1SD), and negative feedback 0.01 0.01 0.76 >0.999
P3a slope for patients, late experiment (M + 1SD), and positive feedback 0.01 0.01 2.55 0.087
P3a X group x feedback delay Est/B SE p
P3a slope for controls and short feedback delays —0.01 0.00 239 0.067
P3a slope for controls and long feedback delays 0.00 0.00 1.06 >0.999
P3a slope for patients and short feedback delays 0.01 0.01 215 0.125
P3a slope for patients and long feedback delays —0.01 0.00 1.44 0.600
P3a x group x feedback delay x response type Est/B SE p
P3a slope for controls, short feedback delays, and incorrect choices —0.01 0.01 149 >0.999
P3a slope for controls, short feedback delays, and correct choices —0.01 0.00 1.96 0.403
P3a slope for controls, long feedback delays, and incorrect choices —0.02 0.01 2.08 0.301
P3a slope for controls, long feedback delays, and correct choices 0.00 0.00 0.72 >0.999
P3a slope for patients, short feedback delays, and incorrect choices 0.00 0.01 0.03 >0.999
P3a slope for patients, short feedback delays, and correct choices 0.02 0.00 3.48 0.004
P3a slope for patients, long feedback delays, and incorrect choices 0.00 0.01 0.72 >0.999
P3a slope for patients, long feedback delays, and correct choices —0.01 0.00 1.28 >0.999
P3a x group X feedback delay X response type X feedback valence Est/B SE p
P3a slope for controls, short feedback delays, incorrect choices, and negative feedback 0.00 0.01 0.07 >0.999
P3a slope for controls, short feedback delays, incorrect choices, and positive feedback —0.02 0.02 153 >0.999
P3a slope for controls, short feedback delays, correct choices, and negative feedback —0.02 0.01 1.76 >0.999
P3a slope for controls, short feedback delays, correct choices, and positive feedback 0.00 0.00 0.41 >0.999
P3a slope for controls, long feedback delays, incorrect choices, and negative feedback 0.00 0.00 0.64 >0.999
P3a slope for controls, long feedback delays, incorrect choices, and positive feedback —0.03 0.01 24 0.254
P3a slope for controls, long feedback delays, correct choices, and negative feedback 0.00 0.01 0.51 >0.999
P3a slope for controls, long feedback delays, correct choices, and positive feedback 0.00 0.00 0.77 >0.999
P3a slope for patients, short feedback delays, incorrect choices, and negative feedback —0.01 0.01 121 >0.999
P3a slope for patients, short feedback delays, incorrect choices, and positive feedback 0.01 0.02 0.50 >0.999
P3a slope for patients, short feedback delays, correct choices, and negative feedback 0.02 0.01 2.10 >0.999
P3a slope for patients, short feedback delays, correct choices, and positive feedback 0.01 0.00 2.77 0.090
P3a slope for patients, long feedback delays, incorrect choices, and negative feedback 0.00 0.00 0.33 >0.999
P3a slope for patients, long feedback delays, incorrect choices, and positive feedback —0.01 0.01 1.22 >0.999
P3a slope for patients, long feedback delays, correct choices, and negative feedback —0.02 0.01 146 >0.999
P3a slope for patients, long feedback delays, correct choices, and positive feedback 0.00 0.00 0.03 >0.999

Key: p values for fixed effects calculated using Satterthwaite’s approximations. Model equation: choice switching ~ 1+ P3a * feedback valence * response type * feedback delay * group * block + (1] subject). Rgypjeqs =52,

Nobservations = 15,817
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complementary lesion models (i.e., stroke patients and single-
pulse TMS). Furthermore, lesion symptom mapping in patients
showed that regions at the border of Crus II and Lobule VIIb,
medial Crus II, and Crus I were of particular importance.
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