001041302 001__ 1041302
001041302 005__ 20250610131450.0
001041302 0247_ $$2doi$$a10.1109/JSTARS.2025.3557956
001041302 0247_ $$2ISSN$$a1939-1404
001041302 0247_ $$2ISSN$$a2151-1535
001041302 0247_ $$2datacite_doi$$a10.34734/FZJ-2025-02209
001041302 0247_ $$2WOS$$aWOS:001480466600003
001041302 037__ $$aFZJ-2025-02209
001041302 082__ $$a520
001041302 1001_ $$0P:(DE-Juel1)194477$$aSivaprasad, Visakh$$b0$$eCorresponding author$$ufzj
001041302 245__ $$aDevelopment of Continuous AMSR-E/2 Soil Moisture Time Series by Hybrid Deep Learning Model (ConvLSTM2D and Conv2D) and Transfer Learning for Reanalyses
001041302 260__ $$aNew York, NY$$bIEEE$$c2025
001041302 3367_ $$2DRIVER$$aarticle
001041302 3367_ $$2DataCite$$aOutput Types/Journal article
001041302 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1744103828_4149
001041302 3367_ $$2BibTeX$$aARTICLE
001041302 3367_ $$2ORCID$$aJOURNAL_ARTICLE
001041302 3367_ $$00$$2EndNote$$aJournal Article
001041302 520__ $$aSurface soil Moisture (SSM) is a crucial climate variable of the Earth system that regulates water and energy exchanges between the land and atmosphere, directly influencing hydrological, biogeochemical, and energy cycles. However, satellite-derived SSM, particularly from the Advanced Microwave Scanning Radiometer AMSR-E/2, is limited by radio frequency interference (RFI), vegetation effects, frozen ground, and significant spatial and temporal data gaps. By excluding data points affected by these problems, we are able to train an unaffected system and fill the gaps with high accuracy predictions. We developed a sophisticated deep learning ConvLSTM model, that combines Convolutional Long ShortTerm Memory (ConvLSTM2D) layers and Convolutional Neural Network (Conv2D) layers. The model initially enhances AMSR-2 SSM values across time and space using Advanced SCATterometer (ASCAT) SSM as input. The ConvLSTM model, trained to enhance AMSR-2 SSM, is then fine-tuned by using the transfer learning technique to enhance AMSR-E data. The enhanced AMSR-2 data is used as a target to guide the enhancement of AMSR-E. This approach ensures that gaps in AMSR-E data are filled, while aligning the characteristics with the more consistent AMSR-2 SSM, resulting in a seamless AMSR-E/2 dataset from 2003 to 2023. Unlike previous studies incorporating additional datasets like precipitation, temperature, and Digital Elevation Models, our approach avoids these to prevent redundancy and potential inaccuracies when generating land surface reanalyses based on data assimilation, since such data are already integrated into the land surface model. The ConvLSTM model achieved a lower RMSE of 0.07 for AMSR-2 prediction and 0.04 for AMSR-E via transfer learning demonstrating significant gap-filling accuracy. The enhanced SSM demonstrated a 26% improvement in the correlation with in-situ SSM measurements, while maintaining accuracy and consistency in spatial and temporal patterns.
001041302 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
001041302 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
001041302 7001_ $$0P:(DE-Juel1)190435$$aRahmati, Mehdi$$b1$$ufzj
001041302 7001_ $$0P:(DE-HGF)0$$aSpringer, Anne$$b2
001041302 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
001041302 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b4$$ufzj
001041302 773__ $$0PERI:(DE-600)2457423-5$$a10.1109/JSTARS.2025.3557956$$gp. 1 - 16$$p1 - 16$$tIEEE journal of selected topics in applied earth observations and remote sensing$$v0$$x1939-1404$$y2025
001041302 8564_ $$uhttps://juser.fz-juelich.de/record/1041302/files/Invoice_APC600650139.pdf
001041302 8564_ $$uhttps://juser.fz-juelich.de/record/1041302/files/Development_of_Continuous_AMSR-E_2_Soil_Moisture_Time_Series_by_Hybrid_Deep_Learning_Model_ConvLSTM2D_and_Conv2D_and_Transfer_Learning_for_Reanalyses.pdf$$yOpenAccess
001041302 8767_ $$8APC600650139$$92025-04-07$$a1200213339$$d2025-04-23$$eAPC$$jZahlung erfolgt$$zUSD 1496,-
001041302 909CO $$ooai:juser.fz-juelich.de:1041302$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
001041302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)194477$$aForschungszentrum Jülich$$b0$$kFZJ
001041302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)190435$$aForschungszentrum Jülich$$b1$$kFZJ
001041302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b3$$kFZJ
001041302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b4$$kFZJ
001041302 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
001041302 9141_ $$y2025
001041302 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
001041302 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
001041302 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
001041302 915pc $$0PC:(DE-HGF)0003$$2APC$$aDOAJ Journal
001041302 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2024-12-19
001041302 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2024-12-19
001041302 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
001041302 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2024-12-19
001041302 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bIEEE J-STARS : 2022$$d2024-12-19
001041302 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2024-04-03T10:38:59Z
001041302 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2024-04-03T10:38:59Z
001041302 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2024-12-19
001041302 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2024-12-19
001041302 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2024-12-19
001041302 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
001041302 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Anonymous peer review$$d2024-04-03T10:38:59Z
001041302 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2024-12-19
001041302 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE J-STARS : 2022$$d2024-12-19
001041302 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2024-12-19
001041302 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2024-12-19
001041302 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
001041302 980__ $$ajournal
001041302 980__ $$aVDB
001041302 980__ $$aUNRESTRICTED
001041302 980__ $$aI:(DE-Juel1)IBG-3-20101118
001041302 980__ $$aAPC
001041302 9801_ $$aAPC
001041302 9801_ $$aFullTexts