001     1041302
005     20250610131450.0
024 7 _ |a 10.1109/JSTARS.2025.3557956
|2 doi
024 7 _ |a 1939-1404
|2 ISSN
024 7 _ |a 2151-1535
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02209
|2 datacite_doi
024 7 _ |a WOS:001480466600003
|2 WOS
037 _ _ |a FZJ-2025-02209
082 _ _ |a 520
100 1 _ |a Sivaprasad, Visakh
|0 P:(DE-Juel1)194477
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Development of Continuous AMSR-E/2 Soil Moisture Time Series by Hybrid Deep Learning Model (ConvLSTM2D and Conv2D) and Transfer Learning for Reanalyses
260 _ _ |a New York, NY
|c 2025
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744103828_4149
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Surface soil Moisture (SSM) is a crucial climate variable of the Earth system that regulates water and energy exchanges between the land and atmosphere, directly influencing hydrological, biogeochemical, and energy cycles. However, satellite-derived SSM, particularly from the Advanced Microwave Scanning Radiometer AMSR-E/2, is limited by radio frequency interference (RFI), vegetation effects, frozen ground, and significant spatial and temporal data gaps. By excluding data points affected by these problems, we are able to train an unaffected system and fill the gaps with high accuracy predictions. We developed a sophisticated deep learning ConvLSTM model, that combines Convolutional Long ShortTerm Memory (ConvLSTM2D) layers and Convolutional Neural Network (Conv2D) layers. The model initially enhances AMSR-2 SSM values across time and space using Advanced SCATterometer (ASCAT) SSM as input. The ConvLSTM model, trained to enhance AMSR-2 SSM, is then fine-tuned by using the transfer learning technique to enhance AMSR-E data. The enhanced AMSR-2 data is used as a target to guide the enhancement of AMSR-E. This approach ensures that gaps in AMSR-E data are filled, while aligning the characteristics with the more consistent AMSR-2 SSM, resulting in a seamless AMSR-E/2 dataset from 2003 to 2023. Unlike previous studies incorporating additional datasets like precipitation, temperature, and Digital Elevation Models, our approach avoids these to prevent redundancy and potential inaccuracies when generating land surface reanalyses based on data assimilation, since such data are already integrated into the land surface model. The ConvLSTM model achieved a lower RMSE of 0.07 for AMSR-2 prediction and 0.04 for AMSR-E via transfer learning demonstrating significant gap-filling accuracy. The enhanced SSM demonstrated a 26% improvement in the correlation with in-situ SSM measurements, while maintaining accuracy and consistency in spatial and temporal patterns.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Rahmati, Mehdi
|0 P:(DE-Juel1)190435
|b 1
|u fzj
700 1 _ |a Springer, Anne
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
|u fzj
700 1 _ |a Montzka, Carsten
|0 P:(DE-Juel1)129506
|b 4
|u fzj
773 _ _ |a 10.1109/JSTARS.2025.3557956
|g p. 1 - 16
|0 PERI:(DE-600)2457423-5
|p 1 - 16
|t IEEE journal of selected topics in applied earth observations and remote sensing
|v 0
|y 2025
|x 1939-1404
856 4 _ |u https://juser.fz-juelich.de/record/1041302/files/Invoice_APC600650139.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/1041302/files/Development_of_Continuous_AMSR-E_2_Soil_Moisture_Time_Series_by_Hybrid_Deep_Learning_Model_ConvLSTM2D_and_Conv2D_and_Transfer_Learning_for_Reanalyses.pdf
909 C O |o oai:juser.fz-juelich.de:1041302
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)194477
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)190435
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129506
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2025
915 p c |a APC keys set
|0 PC:(DE-HGF)0000
|2 APC
915 p c |a Local Funding
|0 PC:(DE-HGF)0001
|2 APC
915 p c |a DFG OA Publikationskosten
|0 PC:(DE-HGF)0002
|2 APC
915 p c |a DOAJ Journal
|0 PC:(DE-HGF)0003
|2 APC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-19
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2024-12-19
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b IEEE J-STARS : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2024-04-03T10:38:59Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2024-04-03T10:38:59Z
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-19
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-19
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Anonymous peer review
|d 2024-04-03T10:38:59Z
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2024-12-19
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE J-STARS : 2022
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-19
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-19
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21