001     1041316
005     20250414120449.0
024 7 _ |a 10.1007/s00415-025-12931-6
|2 doi
024 7 _ |a 0367-004X
|2 ISSN
024 7 _ |a 0012-1037
|2 ISSN
024 7 _ |a 0340-5354
|2 ISSN
024 7 _ |a 1432-1459
|2 ISSN
024 7 _ |a 10.34734/FZJ-2025-02215
|2 datacite_doi
024 7 _ |a 39934559
|2 pmid
024 7 _ |a WOS:001419949200007
|2 WOS
037 _ _ |a FZJ-2025-02215
082 _ _ |a 610
100 1 _ |a Ophey, Anja
|0 0000-0001-5858-7762
|b 0
|e Corresponding author
245 _ _ |a Accelerometry-derived features of physical activity, sleep and circadian rhythm relate to non-motor symptoms in individuals with isolated REM sleep behavior disorder
260 _ _ |a [Darmstadt]
|c 2025
|b Steinkopff
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744287758_30327
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Funding Open Access funding enabled and organized by Projekt DEAL
520 _ _ |a Accelerometry enables passive, continuous, high-frequency monitoring under free-living conditions. For individuals with isolated REM sleep behavior disorder (iRBD), a potential prodromal phase of Parkinson's disease (PD) and dementia with Lewy bodies, accelerometry has been primarily applied to aid diagnosis and to assess phenoconversion risk. To extend this knowledge, we cross-sectionally combined clinical assessments focusing on non-motor symptoms with accelerometry-derived features of physical activity (PA), sleep, and circadian rhythm of N = 68 individuals with iRBD (age: 69.48 ± 6.01 years, self-reported RBD symptom duration: 9.46 ± 6.21 years, 85 % male). Accelerometry-assessed PA was associated with more stable circadian rhythms. Additionally, higher PA and more stable circadian rhythms were linked to a lower burden of overall non-motor symptoms, depressive symptoms, and fatigue with small to moderate effect sizes. Furthermore, including accelerometry-derived features improved the prediction of individual clinical scores, particularly for cognitive performance. Our findings contribute to the growing body of evidence highlighting the complex interplay between PA, sleep, circadian rhythm, and non-motor symptoms in α-synucleinopathies. Future research should focus on longitudinal studies to monitor changes in clinical outcomes and digital biomarkers over time to enhance our understanding of symptom progression and corresponding lifestyle changes in prodromal and manifest α-synucleinopathies.Keywords: Actigraphy; Digital biomarkers; Digital health technology; Prodromal Parkinson’s disease; Wearables.
536 _ _ |a 5252 - Brain Dysfunction and Plasticity (POF4-525)
|0 G:(DE-HGF)POF4-5252
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Vinod, Vaishali
|0 0000-0002-2951-2208
|b 1
700 1 _ |a Röttgen, Sinah
|0 P:(DE-Juel1)194632
|b 2
700 1 _ |a Scharfenberg, Daniel
|0 0000-0003-2781-3143
|b 3
700 1 _ |a Fink, Gereon Rudolf
|0 P:(DE-Juel1)131720
|b 4
700 1 _ |a Sommerauer, Michael
|0 P:(DE-Juel1)179044
|b 5
700 1 _ |a Kalbe, Elke
|0 0000-0001-8603-2545
|b 6
700 1 _ |a Maetzler, Walter
|0 0000-0002-5945-4694
|b 7
700 1 _ |a Hansen, Clint
|0 0000-0003-4813-3868
|b 8
773 _ _ |a 10.1007/s00415-025-12931-6
|g Vol. 272, no. 3, p. 201
|0 PERI:(DE-600)1421299-7
|n 3
|p 201
|t Journal of neurology
|v 272
|y 2025
|x 0367-004X
856 4 _ |u https://juser.fz-juelich.de/record/1041316/files/PDF.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:1041316
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)194632
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131720
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)179044
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5252
|x 0
914 1 _ |y 2025
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2024-12-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NEUROL : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-10
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-10
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2024-12-10
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NEUROL : 2022
|d 2024-12-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2024-12-10
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21