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 A B S T R A C T

Non-invasive methods utilizing tracers have a great potential to investigate carbon allocation in plants. 
Specifically, radioactive tracers, such as 11C, enable the monitoring of spatially localized transport processes on 
short time scales in living plants. Typically, such tracer transport experiments yield time activity curves (TACs) 
of tracer activity over time at various locations along a transport pathway. These TACs can exhibit different 
characteristic shapes that strongly depend on tracer transport dynamics, reflecting properties such as transport 
velocity, exchange with surrounding tissue, and tracer storage along the pathway. Various methods, either 
data-driven or model-based, exist to determine transport velocities from TACs. However, for some TAC shapes, 
the inferred carbon tracer velocity values can be inconsistent and greatly vary between analysis methods. In 
the present study, we review and evaluate different analysis methods for their suitability to reliably determine 
tracer transport velocities from typical TAC shapes. For this evaluation, we use both in silico generated and 
experimentally acquired TACs from positron emission tomography measurements on tomato, barley, and bean. 
We demonstrate that each of the compared methods can be suitable for specific TAC shapes while being less or 
not appropriate for others. In conclusion, we present a case-specific evaluation of methods as a reference for 
analyzing TACs from tracer transport experiments, which allows to ensure a robust and globally comparable 
determination of transport velocities.
1. Introduction

Despite a century of research in the field of long-distance transport 
in higher plants, the underlying mechanisms of carbon allocation still 
remain unclear [1–4]. The delicate structure of the phloem poses an 
ongoing challenge for undisrupted, real-time analysis of assimilate 
transport. Non-invasive methods such as tracer studies that utilize the 
short-lived radioisotope 11C do not interfere with the carbon transport 
while enabling analysis in intact plants and have been established over 
the last decades [5–10]. In such experiments, the tracer is typically 
fed to the plant as 11CO2 over a short time span. The allocation 
of the assimilated carbon isotope through the plant’s vascular tissue 
can be traced with positron emission tomography (PET), providing 
spatio-temporal 3D information about the movement of the tracer 
pulse over the duration of the experiment. Unlike 13C, 14C and other 
tracers, the approach combining 11C and PET provides high-resolution 
spatio-temporal tracer data, enabling accurate and in-depth analysis 
of transport dynamics. Time-activity curves (TACs) derived from such 
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3D data show tracer activity at defined locations along the transport 
pathway. The shapes of these TACs reflect the underlying transport 
dynamics, depending on transport velocity, exchange with surrounding 
tissues, and tracer storage along the pathway [11]. Deriving transport 
velocities from these TACs is of special interest for functional pheno-
typing of plant traits under varying environmental conditions [6,12]. 
Various approaches to analyze tracer transport velocity have been 
published: Data-driven methods exploit curve characteristics, for ex-
ample, by comparing the times of tracer pulse arrival at the detector 
site or the times at half height of the curve [13–17]. These methods 
typically disregard mechanistic and physiological considerations. In 
contrast, model-based approaches aim to explain the origin of the curve 
shape [18]. Mechanistic model approaches [7,19] additionally encode 
multiple other transport properties alongside transport velocity.

In this study, we evaluate and compare different readily available 
analysis methods for determining tracer transport velocities from TACs. 
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Fig. 1. Schematic of time-activity curve acquisition: The three regions of interest (ROIs) in blue, orange and green in the PET image correspond to three distinct spatial locations 
of the plant. The ROIs are manually placed to analyze the 3D PET data with MeVisLab. The tracer accumulated inside each ROI results in a time-activity curve (TAC) that can 
be further analyzed. The data shown is not decay-corrected and scaled to a maximum of 1.
To conduct this evaluation, we utilize both in silico generated and exper-
imentally acquired TACs, the latter obtained from PET measurements 
on three plant species: tomato, barley, and bean. The goal is to provide 
a case-specific assessment of the suitability of various methods, serving 
as a reference for robust and globally comparable determination of 
transport velocities in tracer transport experiments.

2. Methods

2.1. Data acquisition

For each tracer transport experiment, a single plant leaf was sealed 
into a cuvette and pulse-labeled for 6 min with a gas mixture con-
taining the radioactive tracer 11CO2 at atmospheric concentration. The 
11CO2 tracer was produced through the 14N(𝑝, 𝛼)11C nuclear reaction 
by irradiating nitrogen in a gas target with 18 MeV protons. De-
tails of the trapping device used to collect 11CO2, as well as the gas 
exchange and labeling system, are provided in Metzner et al. [20]. 
The PET measurement system ‘PhenoPET’ used in the experiment is 
a custom-built vertical-bore instrument specifically designed for plant 
measurements [21]. Further details about the plants’ growth conditions 
and the protocol of tracer transport experiments with the PhenoPET are 
specified in Appendix  A.

The three-dimensional spatio-temporal PET image data were pro-
cessed and visualized in MeVisLab 3.4. (MeVis Medical Solutions AG, 
Bremen, Germany) as described in Metzner et al. [20]. Supported by a 
custom-written MeVisLab tool [22], virtual cylindrical detectors were 
placed to define specific regions of interest (ROI) along the transport 
axis. These detectors have set dimensions which determine their length 
and diameter. Tracer activity inside each ROI is integrated over defined 
time intervals resulting in a TAC (Fig.  1).

2.2. The impact of decay correction on data error

The shape of TACs acquired as described in Section 2.1 is dominated 
by the radioactive decay of the short-lived radioisotopes used as tracers. 
For the data to accurately represent transport dynamics, this influence 
of radioactive decay needs to be taken into account, i.e., the curves 
must be decay-corrected. From the experimentally observed data 𝐷(𝑡), 
the initial tracer concentration 𝐷0 can be reconstructed, assuming 
𝐷(𝑡) = 𝐷0 ⋅exp(−𝜆𝑡), where 𝜆 is the decay constant. Increasing uncertain-
ties in later data points due to decay correction are here visualized in 
simulated data by adding a realistic noise of 0.7% (see Section 2.3.5) 
to the raw data (Fig.  2). It is important to note that the exponential 
effects of the decay correction on the uncertainty of the data are often 
neither discussed nor considered, although they can strongly influence 
the data analysis.
2 
Fig. 2. The effect of decay correction on the uncertainty of data as simulated with a 
realistic error margin of 0.7% following Bühler et al. [23]. Both TACs are scaled to a 
maximum of 1.

2.3. Methods for velocity estimation

The tracer transport velocity is typically calculated from the mean 
distance 11C tracer travels over a specific period. As the location 𝑥𝑖 and, 
consequently, the distance 𝛥𝑥𝑖 between the centroid of either virtual 
or real detectors 𝑖 are usually predetermined, most methods used to 
determine tracer transport velocity aim to identify a reference time 𝑡𝑖
corresponding to a specific feature in the TAC (and thus in the pulse 
within the detector’s field of view). The tracer flow velocity, 𝑣, can 
then be estimated as the slope of a linear fit, 𝑥𝑖 = 𝑣 ⋅ 𝑡𝑖 + 𝑥𝑡=0, to the 
distance-time observations. The relative standard deviation can be cal-
culated from the variances found in the diagonal of the corresponding 
covariance matrix.

In the following, four methods, three of which determine reference 
times based on TAC shapes and one mechanistic approach directly 
estimating a model velocity, are introduced and their strengths and 
weaknesses are evaluated.

2.3.1. Time of first arrival - intercept method
The time when the tracer pulse first arrives at the detector field of 

view is a characteristic point of a TAC. The velocity calculated from 
the times of first arrival constitutes a front velocity of the pulse and 
can be considered as the maximum velocity. A time of arrival could 
be determined by the time when the signal surpasses an arbitrary 
threshold (Fig.  3a, green dashed line). However, this approach is highly 
sensitive to noise in the tracer activity signal. Hence, the time of 
pulse arrival is more frequently estimated making use of the intercept 
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Fig. 3. Demonstration of the data driven analysis methods introduced in Section 2.3 on simulated tracer transport data (see Section 2.3.5). Showcased are the Intercept method 
(a), the Half-maximum method with linear regression (b), a spline (c) or logistic regression (d)–(e) and the McKay model (f). The orange circles are the datapoints. Simulated data 
in panels (a)–(c) and (e)–(f) resemble typical experimental data without noise in the form of a pulse activity over time. In panel (d) an example of a high storage with noise was 
chosen to showcase the application of logistic regression. In panels (a)–(e) the black line is the regression curve. In panel (a) the blue dotted line equals the zero line, the green 
dashed line marks an threshold value that has to be surpassed to mark the time of arrival. In panels (b)–(e) the green dashed line equals the half-maximum. In panels (b) and (c) 
the blue dotted line marks the maximum. In panels (a)–(e) 𝑡𝑖 is given by the intersection of the green dotted line and the black regression line. In panel (f) the blue dotted line 
marks the unbound activity, the green dotted line marks the bound activity and the black vertical line equals 𝑡𝑖.
method [13,17]. The intercept method identifies a linear part in the 
pulse increase (Fig.  3a, black line) and calculates the time of first 
pulse arrival as the point where the regression line crosses zero tracer 
activity. In the cited works, identification of the linear part of the 
curve relied solely on visual inspection of the TACs. There have been 
attempts to minimize the subjectiveness and variability in this approach 
by choosing the slope through binning candidates of arrival times in a 
histogram [16]. However, this introduces additional parameters that 
must be chosen individually and can influence the determined time of 
arrival. As part of our study, we propose an alternative by utilizing the 
RANSAC algorithm (Section 3.1.2) to minimize discrepancies between 
determined velocity and true velocity that can otherwise be caused by 
subjective choices and manual errors.

2.3.2. Time at half-maximum - half-maximum method
Comparing times at which signals reach half-height of their max-

imum is a known approach throughout different fields and has also 
been utilized in tracer transport analysis [15,17]. In this method, the 
maximum of the curve is determined, halved, and the first time at 
which half-maximum is reached is considered as reference time point 
for each ROI. Analyzing half-maximum times focuses on the steepest 
segment of the TACs slope. This avoids a common issue encountered 
when directly comparing peak maxima, i.e., flat or noisy peaks resulting 
in increased variability in the 𝑥 values (time) between closely spaced 
𝑦 coordinates (activity). Hence, using the half-maximum reduces the 
influence of measurement errors and complete failures of the method 
caused by peak maxima that are difficult or impossible to identify.

Compared to the intercept method this approach estimates an av-
erage time of arrival instead of the time of first arrival. As the highest 
point of the TAC does not necessarily represent the true peak maximum, 
especially for noisy data or data with low resolution, the position 
of the true maximum needs to be reconstructed. Also, the point at 
the half-maximum has to be determined through interpolation of the 
data. This can be done by fitting a linear regression curve through 
the TAC slope (Fig.  3b) or polynomial regression to the whole TAC. 
Alternatively, we here propose an approach employing splines (Fig. 
3c) to approximate the TAC shape, as it allows for the simultaneous 
identification of the peak maximum and half-maximum as well as their 
corresponding times. For unclear maxima which resemble a noisy point 
cloud without a decline, either calculating the average height of the 
points in the cloud or logistic regression (Fig.  3d) may be applicable to 
estimate the maximum. The logistic regression assumes a sigmoidal (s-
shaped) curve, categorizing points between a minimum and maximum. 
3 
The inflection point equals the point at the half-maximum and can 
be directly derived from the regression formula. Note that logistic 
regression cannot be applied to TACs with peaking pulse shapes (Fig. 
3e).

2.3.3. Compartmental model according to McKay
McKay et al. [18] introduced a kinetic tracer model that assumes 

unidirectional tracer movement along a transport pathway, where at 
position 𝑥𝑖 tracer can get irreversibly stored with probability 𝑠𝑖 [1/mm] 
per spatial unit. The measured pulse signal 𝑀𝑖(𝑡) [Bq/mm] is modeled 
as the sum 
𝑀𝑖(𝑡) = 𝐺𝑖(𝑡) + 𝐵𝑖(𝑡) (1)

of the mobile radiotracer 𝐺𝑖(𝑡) and immobilized radiotracer 𝐵𝑖(𝑡). The 
mobile tracer is assumed to have a bell shape, resulting in 𝐺𝑖(𝑡 =
∞) = 0 and therefore, according to Eq.  (1), 𝑀𝑖(𝑡 = ∞) = 𝐵𝑖(𝑡 = ∞), 
presupposing that the measured signal at the last time point equals the 
signal at 𝑡 = ∞ and therefore is equivalent to the immobilized tracer. 
At each position, 𝑖, tracer is immobilized at a rate of 
𝑑𝐵𝑖(𝑡)∕𝑑𝑡 = 𝑠𝑖𝑣𝑖𝐺𝑖(𝑡) = 𝑠𝑖𝑣𝑖(𝑀𝑖(𝑡) − 𝐵𝑖(𝑡)). (2)

The immobilized tracer 𝐵𝑖(𝑡) per unit length at any given time 𝑡 can 
then be calculated as the integral from 0 to 𝑡: 

𝐵𝑖(𝑡) = 𝑠𝑖𝑣𝑖 ∫

𝜏=𝑡

𝜏=0
(𝑀𝑖(𝜏) − 𝐵𝑖(𝜏))𝑑𝜏 (3)

and the mean arrival time at position 𝑖 is given by 

𝑡𝑖 =
∫ ∞
𝑡=0 𝑡𝐺𝑖(𝑡)𝑑𝑡

∫ ∞
𝑡=0 𝐺𝑖(𝑡)𝑑𝑡

. (4)

This derivation is explained in detail in McKay et al. [18].
Converse et al. [24] applied this method to analyze PET tracer data 

by determining the mean arrival time 𝑡𝑖 at given ROI 𝑖 and calculated 
tracer transport velocity 𝑣𝑖 using the known distance between the ROIs 
center points. An example of the separation of the TAC into mobile and 
immobilized tracer is shown in Fig.  3f.

2.3.4. Compartmental models according to Bühler et al.
Bühler et al. [7] introduced a family of compartmental models, 

rooted in the works of Horwitz et al. [25] and Tyree et al. [11]. These 
models incorporate plant mechanistic properties while selectively con-
sidering only a subset of physiological parameters, avoiding issues of 
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Fig. 4. Architecture of multichannel transport model class with 𝑁 one-dimensional 
spatially parallel compartments, flux velocities 𝑣𝑖 and exchange rates 𝑒𝑖𝑗 between 
compartments 𝑖 and 𝑗.
Source: Figure taken from Bühler et al. [7].

excessive complexity and parameter abundance seen in physiological 
models. Notably, this approach differs from the previously introduced 
methods by simultaneously fitting TACs of every ROI instead of de-
termining reference times for each TAC. Furthermore, radioactive de-
cay is explicitly included into the model equations, enabling direct 
analysis of non-decay-corrected original data and thereby avoiding 
data errors introduced by decay correction (Section 2.2). The primary 
concept of this model family is to enable mechanistic modeling of 
spatio-temporal tracer transport while maintaining simplicity without 
anatomical specifics and requiring minimal fit parameters [26]. Under 
the name multichannel transport (MCT) model, the model family was 
now added as an extension of the CADET solver, a software package 
originally developed in the field of chromatography modeling [27], 
which is freely accessible under the GPL license (https://cadet.github.
io). All simulations in this study were performed using the MCT model 
integration and the reaction module of CADET [28], included in the 
currently published development version and will be part of a full 
release in the future [29].

The general model class (Fig.  4) comprises 𝑁 one-dimensional 
spatially parallel compartments, within each of which axial tracer 
transport can occur at flux velocities 𝑣𝑖. In addition, tracer can be 
laterally exchanged between any two compartments, denoted as 𝑖 and 
𝑗, with a rate constant 𝑒𝑖𝑗 . This results in a coupled system of partial 
differential equations (PDEs) 
𝜕𝝆(𝑥, 𝑡)

𝜕𝑡
=
(

𝐴𝑇 − 𝑉 𝜕
𝜕𝑥

+𝐷 𝜕2

𝜕𝑥2

)

𝝆(𝑥, 𝑡), (5)

where 𝝆 = (𝜌1 … 𝜌𝑁 )𝑇  describes the tracer density within each com-
partment 𝑁 at position 𝑥 and time 𝑡. The coupling matrix 𝐴 contains 
exchange rates 𝑒𝑖𝑗 describing the lateral tracer transport from com-
partment 𝑖 to compartment 𝑗. The decay of a radioactive tracer is 
included at a tracer-specific rate 𝜆. The diagonal matrix 𝑉  contains 
the flux velocities 𝑣𝑖 and the diagonal matrix 𝐷 contains the dispersion 
coefficients 𝑑𝑖 for each compartment. For a more thorough exploration 
of the mechanistic assumptions underlying each term and the numerical 
solution approximation of the PDEs, additional details can be found in 
Bühler et al. [7,30] and the CADET documentation.

Solving these equations yields the spatio-temporal distribution of 
tracer activity (Fig.  5). From this, TACs can be determined for each 
ROI, corresponding to the locations of the virtual detectors marked by 
the dotted white line in Fig.  5. The model parameters can be estimated 
by fitting these simulated TACs to the corresponding observed TACs. 
The fit quality can be assessed using the mean squared error (MSE), 
which quantifies the deviation between the fit and experimental data.

In Bühler et al. [7,23,26,30] the compartmental models have been 
used assuming a local initial condition represented by a Gaussian curve 
4 
Fig. 5. Spatio-temporal tracer distribution of two simulated datasets (see Section 2.3.5). 
The upper one with a Gaussian initial condition and the lower one with a stretched 
Gaussian boundary condition. The dotted white lines mark the ROIs.

Fig. 6. A subset of the multichannel transport model class (see Fig.  4): M01 (a) with 
only one flux velocity, M02 (b) with a flux velocity and a storage parameter, M13 (c) 
with a flux velocity, storage, and exchange parameters.
Source: Figures taken from Bühler et al. [7].

(Fig.  5 upper). This means tracer activity enters the system as a spatial 
distribution at time 𝑡 = 0. In the present work an asymmetric boundary 
condition at 𝑥 = 0 was used instead (Fig.  5 lower). This ‘stretched 
Gaussian’ is similar to a log-normal distribution and defined as 

𝑦 = 𝑝1 exp
(

−1
2
(

ln((𝑡 − 𝑝3)∕(𝑝2 − 𝑝3))∕ ln 𝑝4
)2
)

. (6)

This asymmetric boundary condition has the advantage of more 
accurately describing tracer profiles observed after 𝐶𝑂2 uptake through 
plant leaves compared to the symmetric Gaussian curve as initial 
condition.

Although the family contains numerous models, with their specific 
architectures listed in detail in Bühler et al. [7], a smaller subset often 
proves adequate for describing TACs across most plant species. Model 
M13 (Fig.  6c) includes phloem unloading/reloading as well as storage 
and can sufficiently describe most cases in which these processes are 
significantly contributing. Conversely, in cases where such exchange 
is absent and the tracer is just transported while being stored along 
the transport axis or redirected into lateral branches, Model M02 (Fig. 
6b) often provides a suitable fit. Model M01 can describe dynamics 
when neither storage nor exchange processes are present and the TAC 
is characterized solely by the transport (Fig.  6a).

https://cadet.github.io
https://cadet.github.io
https://cadet.github.io
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Fig. 7. Examples of three transport types that are commonly observed in tracer transport experiments. Data was simulated with model M01 (a), model M02 (b) and model M13 
(c). TACs at different ROIs of Uniform transport (a) and Storage type transport (b) have the same shape, only shifted in height due to loss or storage or in time due to the velocity. 
The curve shape changes for Exchange type (c) transport, due to the unloading and reloading of the tracer.
2.3.5. Creation of artificial reference data with the Bühler model family for 
three different transport types

In the present study, several reference data sets were created to 
enable a controlled investigation of analysis methods. These data sets 
reflect in vivo transport dynamics observed in tracer transport exper-
iments and match those in the case study to ensure comparability. 
Here, we distinguish three types of transport dynamics. For simplicity, 
these are referred to in the following as ‘Uniform’, ‘Storage’, and 
‘Exchange’. To facilitate visual observation of transport dynamics, all of 
the depicted TACs are decay-corrected (Fig.  7). The Uniform transport 
type (Fig.  7a) is dominated by the tracer moving as a closed faction with 
very little or no exchange and storage effects. The shape of the TAC 
at the different ROIs therefore either does not change or only changes 
in height in between curves due to little loss or storage along the 
transport axis. When observing this transport type, a clear maximum 
of the pulse is visible in the decay-corrected curves. The Storage type 
describes transport that involves substantial storage along the transport 
axis (Fig.  7b), resulting in curves with a plateau instead of a maximum 
peak. The Exchange type is dominated by unloading and reloading 
processes surrounding the phloem in addition to transport and storage 
(Fig.  7c). This results in a change of shape between the curves acquired 
at different ROIs. Transport types can differ between different plant 
organs of the same plant or between plant species in vivo.

The reference data for any of the three transport types were gen-
erated using the Bühler model family. For each transport type, the 
best-fitting model from the model family was selected based on its 
ability to describe the experimental data while adhering to rational 
criteria to avoid overfitting, as detailed in Bühler et al. [7]. There, the 
Uniform transport type relates to either model M01 or model M02 with 
no or only little storage. The storage-dominated transport was modeled 
with model M02 with a high storage rate. With exchange parameters 
allowing to model tracer transfer between multiple compartments, 
model M13 was used to simulate the Exchange transport type with 
changing curve shapes. Fig.  6 illustrates the hierarchical structure of 
these models, where an increasing number of parameters corresponds 
to progressively more complex transport dynamics.

For every reference data set at 𝑥0 = 0 the stretched Gaussian 
distribution was used as a boundary condition. The parameters used 
to create the respective artificial data for each experiment, table, or 
figure are specified in Appendix  B.1. The choice of model parameters 
was based on typical fit parameters for the respective curve shapes, that 
correspond to the intended transport dynamics. To simulate a model 
error that matches the noise on real data, normally distributed noise 
with a standard deviation of 7𝑒−3 was added to the simulated data. This 
is analogous to Bühler et al. [23] and matches a typical error analyzing 
TACs from sugar beets [7].
5 
3. Results and discussion

3.1. Evaluation of methods

3.1.1. Effect of data noise on methods
Tracer transport data acquired by PET measurements is naturally 

subject to a range of possible errors, caused for example by the way of 
detection and correction or weak signals resulting in noisy data. This 
noise is exponentially amplified by the necessary decay correction of 
the raw data (see Section 2.2), especially noticeable towards later times 
(see Fig.  8, right column). To test the noise sensitivity of the introduced 
methods, we analyzed the ability to retrieve a known tracer transport 
velocity of two simulated datasets: one without noise and another with 
added Gaussian noise of 0.7% (see Section 2.3.5). Both datasets match 
the Uniform transport type, characterized by the absence of storage and 
exchange processes, with a defined maximum peak.

Except for the McKay model, each of the introduced methods per-
formed well for the noiseless data (Results in Table  1 and Fig.  8, left 
column).

In case of the noisy data set (Fig.  8, right column), similar dif-
ferences in method performance were observed. The Intercept and 
Half-Maximum methods make use of early parts of the TAC that are 
not much affected by the exponentially growing noise. Therefore they 
perform similarly for noiseless and noisy data, with velocity estimations 
close to the true velocity of 5 mm/min (Table  1). The Bühler model 
performed well for both, noiseless and noisy data, also indicated by 
very small MSEs of 1.71𝑒−07 for the noiseless and 6.22𝑒−5 for the noisy 
case. The model compensates for uncertainties through noise by fitting 
all TACs at the same time instead of analyzing each one separately. The 
relative difference of 0% in the noiseless data case is expected, as the 
data was created with a model of the Bühler model family.

The high relative standard deviation (7.4%) of the Intercept method 
and the failure of the McKay method are investigated further in the next 
two sections.

3.1.2. Effect of choice of the linear part of curve on the intercept method
As the intercept method determines the reference times 𝑡𝑖 by ex-

trapolating from the linear part of TACs, the analysis is sensitive to 
the distance between the linear part and the time-axis, as well as to 
the choice of which points to include when assuming that linear part. 
In the literature, the determination of the linear part of the curve has 
often been performed by the mere judgment of the user. To avoid the 
subjectivity of manually identifying the linear slope, in this study the 
intercept method was combined with the RANSAC algorithm [31]. The 
RANSAC algorithm identifies points in a dataset that fit a linear rela-
tionship, allowing for a specified error margin. The algorithm requires 
a minimum of four data points as potential candidates for the linear 
region of the curve to operate effectively.

To investigate how variations in the slope affect velocity estimation, 
a simulated dataset was created using model M01 and a velocity of 𝑣 =
5  mm/min, to serve as a ground truth. Then a ‘standard RANSAC’ anal-
ysis was performed with the intercept method utilizing the RANSAC 
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Table 1
Derived velocities from simulated data (see Section 2.3.5) with Intercept method, Half-maximum method, McKay model and 
Bühler model. Reference velocity 5 mm/min.
 Method

 Intercept Half-maximum McKay model Bühler model 
 Noiseless 𝑣 [mm/min] 4.97 ± 7.4% 5.02 ± 0.4% 6.72 ± 0.2% 5.00 ± 0.0%  
 Noisy 𝑣 [mm/min] 5.01 ± 7.8% 4.90 ± 1.8% −0.05 ± 1919% 5.02 ± 1.5%  
Fig. 8. Application of velocity determination methods on simulated data (see Section 2.3.5) without noise (left) and noisy data (right). Intercept (a)–(b), Half-maximum (c)–(d), 
McKay (e)–(f), Bühler Model (g)–(h). Reference velocity 𝑣 = 5  mm/min. Derived velocities are noted in Table  1.
algorithm (Fig.  9a). In a second analysis, the points identified by the 
RANSAC algorithm were shifted either one point in negative or in 
positive direction (Fig.  9b and c, respectively) along the curve, and 
the resulting velocities were determined. These shifts emulate small 
deviations in the determination of the linear part, as they could happen 
when manually picking the points to include in the regression. In Fig.  9 
the red points mark the points used for the respective linear regression.

While the ‘standard RANSAC’ analysis yielded a velocity of 5.01 ±
7.8%  mm/min, thus very close to the ground truth, the velocities 
6 
determined from the ‘offset’ analysis resulted in relative differences of 
15%–25% with 3.98±3.8%  mm/min for the negative and 5.90±13.9%
mm/min for the positive offset respectively. Each of the three analyses 
had a high coefficient of determination 𝑅2 in the distance-time fits for 
velocity estimation (Appendix  C).

The high 𝑅2 as well as the visual similarity between the three fits 
in Fig.  9 show, that a manual identification of the linear part is hardly 
possible and cannot be done objectively. This user-dependency may 
result in high errors for the flow velocity when analyzing noisy datasets 
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Fig. 9. Velocity determination with the intercept method affected by offsets causing a change in the linear slope for the ‘standard’ RANSAC analysis (a), a negative offset (b) and 
a positive offset (c). The black line is the original regression in every figure. Offset regressions are marked by the dashed gray lines. Simulated data (see Section 2.3.5) with a 
reference velocity of 𝑣 = 5  mm/min.
Table 2
Application of velocity determination methods on simulated data for different types of TACs. Reference velocity 5 mm/min. 
 Transport type
 Uniform Storage Exchange  
 Intercept Original data 𝑣 [mm/min] 4.87 ± 3.9% 5.29 ± 10.02% 2.96 ± 3.38% 
 Corrected data 𝑣 [mm/min] 5.21 ± 6.3% 4.42 ± 8.6% 2.11 ± 3.8%  
 Half-maximum Original data 𝑣 [mm/min] 4.95 ± 0.6% 5.04 ± 2.2% 2.07 ± 8.2%  
 Corrected data 𝑣 [mm/min] 5.13 ± 7.4% 4.12 ± 29% 1.7 ± 9.4%  
 McKay model Corrected data 𝑣 [mm/min] −0.76 ± 309% −3.91 ± 156% 0.27 ± 740%  
 Bühler model Original data 𝑣 [mm/min] 5.05 ± 1.9% 5.07 ± 2.3% 5.14 ± 9.0%  
as well as significant differences in flow speed values depending on how 
the linear slope is determined.

The RANSAC algorithm can eliminate some of those uncertainties, 
making the intercept method more robust and better comparable. The 
accurate velocity determination in the ‘standard RANSAC’ analysis 
further supports this finding.

3.1.3. Effect of noise and measurement times on McKay method
The McKay model operates on the assumption that the TAC can 

be described as the sum of two curves: the moving tracer and the 
immobilized tracer. Additionally, it assumes that the moving tracer 
activity is zero at the final value of the TAC (see Section 2.3.3). This 
leads to two issues: firstly, the method is highly sensitive to noise at 
later times because it relies on the final TAC value. This is the reason 
for the failure of the McKay method in Fig.  8f. Secondly, a systematic 
error in the estimated velocity occurs if the assumption that the moving 
tracer is zero at the end of the measurement is not met. This explains 
the high difference between the ground truth and the McKay model 
estimation for the noiseless dataset since the function value at the last 
point was still containing a non-zero moving portion.

In experimental data, TACs that end before the moving part equals 
zero are not unusual as in vivo measurements often show very broad 
pulses (see case study in Section 3.2).

3.1.4. Effect of different transport types on methods
Besides noise, the performance of analysis methods is also subject to 

the TAC shape, resulting from its underlying transport dynamics. To in-
vestigate the suitability of each method for different TAC shapes, their 
performance was tested with three simulated datasets corresponding to 
the three transport types presented in Section 2.3.5. Intercept and Half-
maximum data were tested for decay-corrected as well as uncorrected 
original data to evaluate potential differences.

The Intercept method led to high relative standard deviations be-
tween 4% and 16% (Table  2). This stems from the method’s sensitivity 
to the choice of the linear part of the curve as discussed in Section 3.1.2. 
This effect was more prominent in the original data due to the steeper 
slope in the linear incline. For Uniform transport, the Intercept method 
retrieved the simulated velocity of 5 mm/min within the error margin 
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given by the standard deviation. The underestimation of the velocity 
in case of the Storage transport type can be attributed to the difficulty 
of estimating the linear part on a steady curvature (Fig.  C.2 Storage, 
decay-corrected). Although the distance-time fit for the Exchange trans-
port was decent (Fig.  C.6), the Intercept method underestimated the 
velocity in this type of transport.

In comparison, the Half-maximum method generally yielded results 
with lower standard deviations in cases where a clear maximum was 
present in the data, such as the Uniform transport type or non-decay-
corrected data, which always exhibit a maximum. The corrected curves 
of the Storage and Exchange transport do not exhibit a defined maxi-
mum but rather run towards a plateau due to ongoing storage (Fig. 
C.3 Storage/Exchange, decay-corrected). For the analysis of the Storage 
and Exchange type (decay-corrected) data with the Half-maximum 
method, the maximum was approximated as the average of the last ten 
data points, while disregarding strong outliers. This approach weak-
ened the influence of noise, yet the deviation from the true value was 
still higher than for the Uniform case. In case of the Exchange transport, 
the Half-maximum method underestimated the true velocity, similar to 
the Intercept method.

The McKay method relies on the transport dynamics and therefore 
can only be performed on corrected data. The McKay method yielded 
far-off results due to its noise sensitivity discussed in Section 3.1.1.

As the decay correction is already integrated into the Bühler model, 
it is used only with the original, uncorrected data. The Bühler model 
performs well for all three transport types, with relatively low stan-
dard deviation and decent fits characterized by small MSE values of 
4.06e−05 for the Uniform, 3.28e−05 for the Storage, and 4.50e−05 for 
the Exchange transport type.

Neither Half-maximum nor Intercept method can correctly deter-
mine the velocity for the Exchange transport type. As described in 
Section 2.3.5 this specific transport type is characterized by a change 
of TAC shape between the ROIs, caused by unloading and reloading 
processes inside the phloem. Distances between TACs can be due to 
either a time shift relating to the transport velocity or a change of 
curve shape caused by exchange processes. Both, Intercept and Half-
maximum methods are not able to differentiate between these two 
reasons.
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Fig. 10. Application of different methods on TACs measured in the shoot of tomato. Decay-corrected data was used for the Intercept method (a), Half-maximum method (b) and 
the McKay model (c). The Bühler model (d) operates on uncorrected original data.
Fig. 11. Application of different methods on TACs measured in the shoot of barley. Decay-corrected data was used for the Intercept method (a), Half-maximum method (b) and 
the McKay model (c). The Bühler model (d) operates on uncorrected original data.
3.2. Case study - analysis of experimental datasets

To confirm and test the findings based on the simulated datasets, the 
analysis methods were applied to three experimental test cases, which 
correspond to the three introduced transport types. To identify shape 
changes and therefore underlying transport types, the linear correlation 
between the TACs was tested for each dataset. For each TAC, the 
average Pearson correlation coefficients against all other TACs were 
determined. These were 0.93 for tomato, 0.97 for barley and 0.86 for 
phaseoulus, respectively. A Pearson coefficient greater than 0.9 was 
considered indicative of a linear relationship, while for a coefficient less 
8 
than 0.9 we assumed a non-linear relationship. Transport in the stem of 
a tomato plant (Fig.  10) matched the Uniform transport type, with little 
storage and no exchange of tracer. In the barley stem (Fig.  11), a large 
amount of tracer was stored along the transport path, corresponding to 
the Storage transport type. The transport in a low phaseolus internode 
(Fig.  12) was characterized by a visible change in TAC shape, thus being 
an example of the Exchange transport type. In each case, a transport 
velocity was determined (Table  3) for the decay-corrected data (except 
for the Bühler model, operating on original data). For the tomato or 
Uniform transport, all methods worked generally well (Fig.  10) and 
resulted in similar velocities, except for the McKay method.
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Fig. 12. Application of different methods on TACs measured in the shoot of phaseolus. Decay-corrected data was used for the Intercept method (a), Half-maximum method (b) 
and the McKay model (c). The Bühler model (d) operates on uncorrected original data.
Table 3
Data analysis with three experimental data sets corresponding to different transport types.
 Method

 Intercept Half-Max. McKay Bühler  
 
Uniform Tomato

𝑣 [mm/min] 6.4 ± 16.0% 6.3 ± 5.4% 7.5 ± 5.2% 6.3 ± 3.2%  
 𝑅2 0.97 0.99 0.99 –  
 𝑀𝑆𝐸 – – – 1.19e−04  
 
Storage Barley

𝑣 [mm/min] 30.7 ± 29.7% 7.5a±168% −4.7 ± 107% 35.3 ± 18.9% 
 𝑅2 0.92 0.26a 0.47 –  
 𝑀𝑆𝐸 – – – 5.74e−05  
 
Exchange Phaseolus

𝑣 [mm/min] 5.0 ± 4.6% 3.5 ± 5.7% 4.0 ± 31.7% 7.2 ± 4.1%  
 𝑅2 1 0.99 0.91 –  
 𝑀𝑆𝐸 – – – 2.20e−04  
a Barley with Half-maximum method on uncorrected data v = 26.49 ± 5.3%, 𝑅2 = 0.96.
For Barley, the Intercept method as well as the Bühler model yielded 
velocities in the same order of magnitude, while the Half-maximum and 
McKay method failed, due to the absence of a maximum and noise in 
the last data points, respectively (Fig.  11). Using uncorrected data (Fig. 
C.11), the Half-maximum method yielded a result closer to but still 
significantly lower than the Intercept method and the Bühler model.

For the phaseolus TACs (Fig.  12) the Intercept and Half-maximum 
method resulted in excellent distance-time fits, yet the estimated ve-
locities were lower than with the Bühler model. The McKay method 
resulted in a velocity in between Intercept and Half-Maximum but 
had a very high standard deviation of over 30%. This difference is 
to be expected, as the Intercept and Half-maximum method cannot 
separate between TAC shifts caused by transport or exchange processes 
as mentioned in 3.1.4. The Bühler method achieved a good fit with a 
very small MSE and a low relative standard error.

The findings of the case study confirmed the results of simulated 
data in Section 3.1.4: Intercept, Half-maximum, and the Bühler model 
performed well for tomato (Uniform transport). The Intercept method 
generally yielded higher standard deviations, due to slope sensitivity. 
The McKay method did not work for phaseolus (Exchange) and barley 
(Storage) and deviated from the other velocities in case of tomato 
9 
(Uniform). For Uniform and Storage type transport, the Bühler model 
results were close to either the Half-maximum or the Intercept methods. 
The transport velocity determined for the phaseolus (Exchange) was 
different for every method.

4. Conclusion

The evaluation of method performance using both simulated and ex-
perimental data highlighted method-specific strengths and weaknesses. 
Analyzing artificial data with random noise provided clear insights 
into the noise sensitivity of all methods. However, as the simulated 
data was both created and analyzed with the Bühler model, it may 
overestimate its capabilities and is therefore limited for comparing 
method performance. Therefore, the case study data, reflecting in vivo
conditions, was far more meaningful for evaluating model performance. 
Notably, the conclusions from the case study aligned with those from 
the simulated data, supporting the overall findings. This enabled us 
to compile a case-specific recommendation on their applicability, as 
summarized in Fig.  13.

The Half-maximum method is best used in combination with a 
spline to interpolate the exact time coordinate of maximum and half-
maximum. For the Storage type transport, the Half-maximum method 
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Fig. 13. Recommendations of utilization of the introduced methods depending on 
the three characteristic transport types. A green checkmark means unconditional 
recommendation for that transport type. A yellow tilde means limited recommendation, 
a red X means no recommendation.

is limited, as a non-clear maximum with high noise levels leads to high 
uncertainties and errors in velocity determination. In cases where the 
transport is highly storage-dominated and the maximum represents a 
noisy plateau, the half-maximum method might yield a more robust 
result when assuming the maximum to be the average of the point 
cluster or combined with a sigmoidal fit (logistic regression). Non-
decay-corrected data can be analyzed to acquire a rough estimate for 
the velocity but ultimately should be avoided, as data-driven anal-
ysis methods derive information directly from the TAC shape and 
non-decay-corrected data does not represent transport dynamics.

The Intercept method can prove valuable in cases where the Half-
maximum fails, as it is independent of the detectability of the max-
imum. Still, due to its sensitivity to noise and user subjectivity, the 
Intercept method is less favorable to use and if necessary should be 
combined with a rational evaluation of the linear slope such as the 
RANSAC algorithm.

The McKay method’s sensitivity to noise renders it unreliable and 
therefore impractical to use except maybe for cases with very short 
tracer pulses and low noise levels.

The compartmental model family yields reliable results in each of 
the analyzed cases, with model M01 being fit for Uniform and model 
M02 for Storage type transport while model M13 performs in modeling 
transport with exchange processes.

When analyzing TACs that change shape in between ROIs due to 
ongoing exchange processes, each of the introduced methods resulted 
in a different velocity. As described in Section 3.1.4 this is expected 
as data-driven methods cannot differentiate between transport and 
exchange processes, both of which influence the TAC shape. These 
data-driven methods (here Intercept, Half-maximum, and McKay) as-
sume a linear relationship between the chosen reference time points 
of each TAC. However, this linear relationship does not hold for the 
Exchange transport type data. It can be observed that, when analyz-
ing Exchange-type transport compared to the Half-maximum method 
(which is assumed to be closer to an average velocity), the Intercept 
method usually yields higher velocities, which can be understood as 
front velocities. However, since both methods are significantly influ-
enced by the exchange processes, it remains challenging to discern the 
specific dynamics represented by the calculated velocities.
10 
In general, a quantitative analysis that compares PET data across 
multiple studies requires a velocity estimation method that is robust 
regardless of the underlying transport dynamics. The model velocity 
in the Bühler model fulfills this requirement, as it equals the flow 
speed only in the transporting compartment while allowing storage and 
exchange to be modeled with separate exchange parameters.

In conclusion, when applied within their limitations and preferable 
with additional helping operations such as the RANSAC algorithm or a 
spline, the Intercept as well as the Half-maximum method have a jus-
tification that goes beyond empiric experience. With a prior thorough 
analysis of the data, the TACs, and the underlying transport dynamics, 
it is possible to pick a method that will yield an accurate velocity. 
Although the Bühler model in theory covers all the functionalities 
of the Intercept and Half-maximum method, it is still recommended 
to use it in combination with at least one of these methods. This 
either confirms model results or provides further information on the 
transport dynamics should the resulting velocities between model and 
data-driven approaches differ. Furthermore, in comparison to the data-
driven approaches, the Bühler model provides the possibility to not 
only obtain a comparable velocity in cases where TAC dynamics are 
characterized by exchange but also estimates storage and exchange 
rates. This is why it is highly recommended to utilize the Bühler 
model when analyzing tracer transport experiments, especially when 
the underlying transport dynamics are unclear.
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Appendix A. Plant growing and experimental conditions

In the case study, the tracer transport dynamics in the stem of three 
different plant species tomato, barley, and phaseolus were investigated, 
using a custom-built vertical-bore PET system known as PhenoPET. It 
features a field of view with a diameter of 180 mm and a height of 
200 mm. [20,21].
Tomato (Solanum lycopersicum, cv. Moneymaker): The plant was 
cultivated in a greenhouse, with a daytime temperature of 20 ± 1 ◦C, 
a nighttime temperature of 16 ± 1 ◦C, and humidity maintained at 
55 ± 5%. Supplemental light was provided for 14 h each day using 
SON-T Agro 400 W Philips metal halogen vapor lamps. During the time 
span of the measurements, the temperature in the climate chamber 
housing the PET was set at 20 ± 1 ◦C during the day and 16 ± 1 ◦C
at night (16 h/8 h). Humidity was maintained at 60 ± 2%, and light 
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Fig. C.1. Distance-time fits of noiseless (upper) data and noisy (lower) data relating to Fig.  8 and Table  1, Intercept (a)+(d), Half-maximum (b)+(e), McKay (c)+(f). 𝑣 is the 
derived velocity and 𝑅2 relates to the fit quality.
Fig. C.2. Intercept method applied to simulated data (see Section 2.3.5) of the three different transport types corresponding to Table  2. Original data in the upper row, and 
decay-corrected data in the lower row. For color coding of figure elements refer to Fig.  3.
Table B.4
Parameters of all simulations used to create artificial data in this study. A stretched Gauss boundary condition was used according to Eq.  (6). 
For exchange rates 𝑒𝑖𝑗 and models see Figs.  4 and 6, respectively. 
 Figure/Table 𝑣 [mm/min] 𝑝2 [min] 𝑝3 𝑝4 𝑝1 Model 𝑒12 𝑒21 𝑒23 Noise 
 Fig.  2 5 30 8 3 1 M01 – – – –  
 Fig.  3(a)–(d)+(f) 5 30 8 3 1 M01 – – – –  
 Fig.  3(e) 5 30 8 3 1 M02 0.06 – – –  
 Fig.  4(b) 5 20 8 2 1 M13 0.01 0.008 0.005 –  
 Fig.  7(a) 5 30 8 3 1 M01 – – – –  
 Fig.  7(b) 5 30 8 3 1 M02 0.06 – – –  
 Fig.  7(c) 5 30 8 3 1 M13 0.5 0.2 0.01 –  
 Table  1 noiseless/Fig.  8l. 5 40 10 2 1 M01 – – – –  
 Table  1 noisy/Fig.  8r. 5 40 10 2 1 M01 – – – 0.7%  
 Fig.  9 5 40 10 2 1 M01 – – – 0.7%  
 Table  2 Uni./Figs.  10–13 5 40 10 2 1 M01 – – – 0.7%  
 Table  2 Stor./Figs.  10–13 5 40 10 2 1 M02 0.06 – – 0.7%  
 Table  2 Exch./Figs.  10–13 5 40 10 2 1 M13 0.5 0.2 0.01 0.7%  
11 
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Fig. C.3. Half-Maximum method applied to simulated data (see Section 2.3.5) of the three different transport types corresponding to Table  2. Original data in the upper row, and 
decay-corrected data in the lower row. The circles are the datapoints and dashed lines mark the maximum as well as half-maximum of the respective ROIs.
Fig. C.4. McKay method applied to simulated data (see Section 2.3.5) of the three different transport types corresponding to Table  2. Only for decay-corrected data. For color 
coding of figure elements refer to Fig.  3.
Fig. C.5. Bühler model fits applied to simulated data (see Section 2.3.5) of the three different transport types Uniform (MSE 4.06e−05), Storage (MSE 3.28e−05) and Exchange 
(MSE 4.50e−05) corresponding to Table  2. Only for non-decay-corrected original data. For color coding of figure elements refer to Fig.  3.
was provided by in-house built LED lamps with a PAR intensity of 
300 μmol/m2 s. The cuvette received conditioned gas from a gas mixing 
unit with temperature 19 ± 1 ◦C, humidity 80 ± 1% and CO2 380 ± 5 ppm
controlled.

Barley (Hordeum vulgare, cv. Barke): The plant was grown in a 
climate chamber, maintaining a temperature of 20 ± 1 ◦C during the 
day and 16 ± 1 ◦C at night (16 h/8 h). Humidity was set at 60 ± 1%
and lighting alternated between five 400 W HPI and five 400 W SON-
T lamps. On the day of measurement, the temperature in the PET 
climate chamber was set to 22 ± 1 ◦C during the day and 16 ± 1 ◦C
at night (16 h/8 h), with humidity at 60 ± 2%. Lighting conditions 
were consistent with those described for Tomato. The cuvette received 
12 
conditioned gas with temperature 23±1 ◦C, humidity 62±1%, and CO2
400 ± 5ppm controlled.

Phaseolus (Phaseolus vulgaris, cv. Shiny Fardenlosa): The plant was 
grown in a climate chamber, with a temperature of 20 ± 1 ◦C during 
the day and 18±1 ◦C at night (16 h/8 h). Humidity was maintained at 
60±2%, and lighting alternated between five 400WHPI and five 400 W 
SON-T lamps. On the day of measurement, the temperature in the PET 
climate chamber was set to 22 ± 1 ◦C during the day and 16 ± 1 ◦C at 
night (16 h/8 h), with humidity at 60 ± 3%. Lighting conditions were 
consistent with those described for Tomato. Tracer production followed 
the same procedure as for Tomato and Barley. The cuvette received 
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Fig. C.6. Distance-time fits of the Intercept method for different transport types, relating to Fig.  C.2, Table  2. 𝑣 is the derived velocity and 𝑅2 relates to the fit quality.
Fig. C.7. Distance-time fits of the Half-maximum method for different transport types, relating to Fig.  C.3, Table  2. 𝑣 is the derived velocity and 𝑅2 relates to the fit quality.
Fig. C.8. Distance-time fits of the McKay for different transport types, relating to Fig.  C.4, Table  2. 𝑣 is the derived velocity and 𝑅2 relates to the fit quality.
Fig. C.9. Distance-time fits for the analysis of change in the linear TAC part used for the Intercept method for the ‘standard’ RANSAC analysis (a), a negative offset (b) and a 
positive offset (c). See Fig.  9. 𝑣 is the derived velocity and 𝑅2 relates to the fit quality.
13 
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Fig. C.10. Distance-time fits for different methods on TACs measured in the shoot of tomato. Analysis was performed with the Intercept method (a), the Half-maximum method 
(b) and the McKay model (c).𝑣 is the derived velocity and 𝑅2 relates to the fit quality.
Fig. C.11. Alternative maximum fit and distance-time fit for the maximum method on TACs measured in the shoot of barley. 𝑣 is the derived velocity and 𝑅2 relates to the fit 
quality.
Fig. C.12. Distance-time fits for methods on TACs measured in the shoot of barley. Analysis was performed with the intercept method (a), the half-maximum method (b) and the 
McKay model (c). 𝑣 is the derived velocity and 𝑅2 relates to the fit quality.
Fig. C.13. Distance-time fits for methods on TACs measured in the shoot of Phaseolus. Analysis was performed with the intercept method (a), the half-maximum method (b) and 
the McKay model (c). 𝑣 is the derived velocity and 𝑅2 relates to the fit quality.
conditioned gas with temperature 24±1 ◦C, humidity 68±3%, and CO2
400 ± 5 ppm controlled.
Appendix B

B.1. Artificial data parameter specifications

Table  B.4 references all artificially created data used in this study. 
The simulations were performed with the Multichannel transport model 
of the CADET framework.
14 
Appendix C. Additional figures

C.1. Noise experiment

See Fig.  C.1.

C.2. Transport types

See Figs.  C.2–C.9.
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C.3. Case study

See Figs.  C.10–C.13.

Data availability

Data will be made available on request.
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