001     1041319
005     20250512115730.0
024 7 _ |a 10.1148/radiol.241482
|2 doi
024 7 _ |a 0033-8419
|2 ISSN
024 7 _ |a 1527-1315
|2 ISSN
024 7 _ |a 40131110
|2 pmid
024 7 _ |a WOS:001464548700015
|2 WOS
037 _ _ |a FZJ-2025-02218
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Doering, Elena
|0 P:(DE-Juel1)207083
|b 0
245 _ _ |a “Fill States”: PET-derived Markers of the Spatial Extent of Alzheimer Disease Pathology
260 _ _ |a Oak Brook, Ill.
|c 2025
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1744693647_11069
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Deutsche Forschungsgemeinschaft [DFG] research grant “Brain network dependent propagation of tau-pathology in Alzheimer disease” DR 445/9-1 [AD]). Some co-authors received funding from the DFG (project ID 431549029-SFB 1451). Datacollection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health grant no. U01 AG024904) and U.S. Department of Defense ADNI (award no. W81XWH-12-2-0012).
520 _ _ |a Background: Alzheimer disease (AD) progression can be monitored by tracking intensity changes in PET standardized uptake value (SUV) ratiosof amyloid, tau, and neurodegeneration. The spatial extent (“fill state”) of these three hallmark pathologic abnormalities may serve as criticalpathophysiologic information, pending further investigation.Purpose: To examine the clinical utility and increase the accessibility of PET-derived fill states.Materials and Methods: This secondary analysis of two prospective studies used data from two independent cohorts: the Alzheimer’s DiseaseNeuroimaging Initiative (ADNI) and the Tau Propagation over Time study (T-POT). Each cohort comprised amyloid-negative cognitively normalindividuals (controls) and patients with subjective cognitive decline, mild cognitive impairment, or probable-AD dementia. Fill states of amyloid, tau,and neurodegeneration were computed as the percentages of significantly abnormal voxels relative to controls across PET scans. Fill states and SUVratios were compared across stages (Kruskal-Wallis H test, area under the receiver operating characteristic curve analysis) and tested for associationwith the severity of cognitive impairment (Spearman correlation, multivariate regression analysis). Additionally, a convolutional neural network(CNN) was developed to estimate fill states from patients’ PET scans without requiring controls.Results: The ADNI cohort included 324 individuals (mean age, 72 years ± 6.8 [SD]; 173 [53%] female), and the T-POT cohort comprised 99individuals (mean age, 66 years ± 8.7; 63 [64%] female). Higher fill states were associated with higher stages of cognitive impairment (P < .001),and tau and neurodegeneration fill states showed higher diagnostic performance for cognitive impairment compared with SUV ratio (P < .05) acrosscohorts. Similarly, all fill states were negatively correlated with cognitive performance (P < .001) and uniquely characterized the degree of cognitiveimpairment even after adjustment for SUV ratio (P < .05). The CNN estimated amyloid and tau accurately, but not neurodegeneration fill states.Conclusion: Fill states provided reliable markers of AD progression, potentially improving early detection, staging, and monitoring of AD in clinicalpractice and trials beyond SUV ratio.
536 _ _ |a 5253 - Neuroimaging (POF4-525)
|0 G:(DE-HGF)POF4-5253
|c POF4-525
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Hoenig, Merle C.
|0 P:(DE-Juel1)178642
|b 1
700 1 _ |a Giehl, Kathrin
|0 P:(DE-Juel1)178805
|b 2
700 1 _ |a Dzialas, Verena
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Andrassy, Grégory
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bader, Abdelmajid
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bauer, Andreas
|0 P:(DE-Juel1)131672
|b 6
700 1 _ |a Elmenhorst, David
|0 P:(DE-Juel1)131679
|b 7
700 1 _ |a Ermert, Johannes
|0 P:(DE-Juel1)131818
|b 8
700 1 _ |a Frensch, Silke
|0 P:(DE-Juel1)162267
|b 9
|u fzj
700 1 _ |a Jäger, Elena
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Jessen, Frank
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Krapf, Philipp
|0 P:(DE-Juel1)169356
|b 12
700 1 _ |a Kroll, Tina
|0 P:(DE-Juel1)131691
|b 13
700 1 _ |a Lerche, Christoph
|0 P:(DE-Juel1)164254
|b 14
700 1 _ |a Lothmann, Julia
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Matusch, Andreas
|0 P:(DE-Juel1)138474
|b 16
|u fzj
700 1 _ |a Neumaier, Bernd
|0 P:(DE-Juel1)166419
|b 17
700 1 _ |a Onur, Oezguer A.
|0 P:(DE-Juel1)131736
|b 18
700 1 _ |a Ramirez, Alfredo
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Richter, Nils
|0 P:(DE-Juel1)167565
|b 20
700 1 _ |a Sand, Frederik
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Tellmann, Lutz
|0 P:(DE-Juel1)131797
|b 22
700 1 _ |a Theis, Hendrik
|0 P:(DE-HGF)0
|b 23
700 1 _ |a Zeyen, Philip
|0 P:(DE-HGF)0
|b 24
700 1 _ |a van Eimeren, Thilo
|0 P:(DE-Juel1)208645
|b 25
|u fzj
700 1 _ |a Drzezga, Alexander
|0 P:(DE-Juel1)177611
|b 26
|e Corresponding author
700 1 _ |a Bischof, Gerard Nisal
|0 P:(DE-Juel1)166265
|b 27
|e Corresponding author
773 _ _ |a 10.1148/radiol.241482
|g Vol. 314, no. 3, p. e241482
|0 PERI:(DE-600)2010588-5
|n 3
|p e241482
|t Radiology
|v 314
|y 2025
|x 0033-8419
856 4 _ |u https://juser.fz-juelich.de/record/1041319/files/doering-et-al-2025-fill-states-pet-derived-markers-of-the-spatial-extent-of-alzheimer-disease-pathology.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:1041319
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)207083
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)178642
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)178805
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)131672
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131679
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131818
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)162267
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)169356
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)131691
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)164254
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)138474
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)166419
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)131736
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)167565
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 22
|6 P:(DE-Juel1)131797
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 25
|6 P:(DE-Juel1)208645
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 26
|6 P:(DE-Juel1)177611
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-525
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Decoding Brain Organization and Dysfunction
|9 G:(DE-HGF)POF4-5253
|x 0
914 1 _ |y 2025
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIOLOGY : 2022
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2024-12-12
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2024-12-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2024-12-12
915 _ _ |a IF >= 15
|0 StatID:(DE-HGF)9915
|2 StatID
|b RADIOLOGY : 2022
|d 2024-12-12
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 2
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21